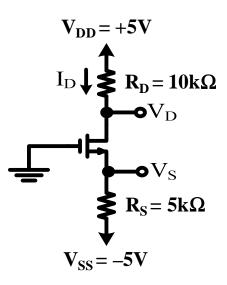


King Fahd University of Petroleum & Minerals Electrical Engineering Department Winter 2012 (112)

EE 203 – Exam II Wednesday, April 18, 2012 6:00-7:30 PM

Name	
ID	

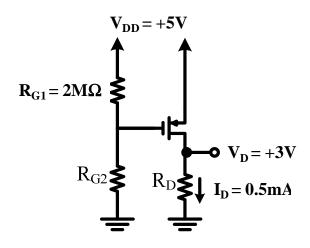
	Dr. M. Al-	Dr. H. Al-	Dr. O.	Dr. W.	Dr. H.
	Gahtani	Zaher	Hammi	Mesbah	Ragheb
Section	3 and 6	5	1, 4 and 8	7	2


Problem	Grade	
1 (12 points)		
2 (12 points)		
3 (6 points)		
Total (30 points)		

Problem 1 - A:

For the circuit below, assuming the MOSFET operates in saturation (pinch off) mode and has $V_t\!\!=\!\!2V$ and $\mu_n C_{ox}W/L\!\!=\!\!0.8mA/V^2.$

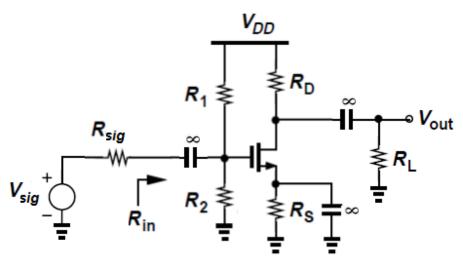
- a) Determine I_D , V_D , and V_S . [5 points]
- b) Verify the assumption on the transistor's mode of operation.


[1 points]

Problem 1 - B:

Design the below so that the MOSFET operates in saturation (pinch off) mode with I_D=0.5mA and V_D=3V. The MOSFET has V_t =-1V and k_pW/L =1mA/V².

- a) Given that $R_{G1}=2M\Omega$, find the values of R_{G2} and R_D . [4 points]
- b) Find R_D such that the transistor will work at the edge of saturation (pinch off). [2 points]

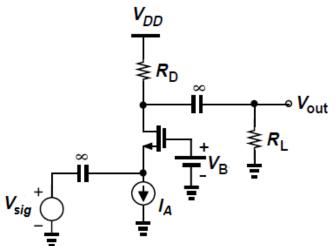

Problem 2 - A:

For the circuit shown below, the NMOS transistor operates into saturation (pinch off) mode. The transistor has channel length modulation $(\lambda \neq 0)$

a) What type of amplifiers is this?

[2 points]

b) Draw the small-signal equivalent model for the whole circuit using the small signal π -model. [4 points]

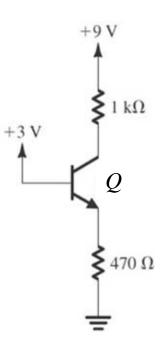


Problem 2 - B:

For the amplifier circuit shown below, $\lambda=0$, $I_A=1mA$, $V_{tn}=1V$, and $k_nW/L=2mA/V^2$.

- a) What type of amplifiers is this?
- b) Calculate the amplifier transconductance (g_m).
- c) Derive the expression of the overall voltage gain (v_{out}/v_{sig}) [3 points]

Note that $v_{\text{sig}} \text{ is an AC}$ source and all other sources are DC.



[1 point]

[2 points]

Problem 3:

The transistor in the circuit below has β =100 and V_{BE}(on)=0.7V. a) Find I_E, I_C, V_E and V_C? Start the analysis by assuming that the transistor works in the active mode. [4 points] b) Verify the mode of operation of the transistor. [2 points]

