

King Fahd University of Petroleum & Minerals Electrical Engineering Department Winter 2012 (112)

EE 203 – Exam I Saturday, March 3, 2012 6:00-7:30 PM

Name	
ID	

	Dr. M. Al-	Dr. H. Al-	Dr. O.	Dr. W.	Dr. H.
	Gahtani	Zaher	Hammi	Mesbah	Ragheb
Section	3 and 6	5	1, 4 and 8	7	2

Problem	Grade	
1 (6 points)		
2 (6 points)		
3 (6 points)		
4 (6 points)		
5 (6 points)		
Total (30 points)		

Question 1:

For the circuit shown in Figure 1, the op amp is ideal.

- a) Find the range of values of σ for which the closed loop gain is such that $|G| \le 20 \text{ V/V}$. Where the close loop gain is given by $(G=v_o/v_{in})$ [2 points]
- b) For $v_{in}=0.5\sin(1000t)$ V, find the maximum output current i_{θ} when $\sigma = 0.1$. [3 points]

[1 points]

c) Determine the input resistance.

Figure 1

Question 2:

For the circuit shown in Figure 2, assume that all diodes have a constant voltage drop model with $V_D=0.7$ V. Calculate I and V_a , and determine the mode of operation of each diode (ON or OFF) in the following cases: (Verify your Solution) [6 points]

Figure 2

Question 3:

A 10-V Zener diode is used to regulate the voltage across a variable load resistor as shown in Figure 3. The input voltage varies between 13 and 16 V. The load current varies from 0 to 85 mA. The minimum Zener current is 15 mA.

- a) Calculate the maximum value of **R**.
- b) Calculate the maximum power dissipated by the diode for $R=40\Omega$.

[3 points] [3 points]

Figure 3

Question 4:

The rectifier circuit shown in Figure 4 is designed to deliver 30 volt DC to 100Ω load with ripple voltage equal to 8% of the DC voltage

- a) Specify the value of *n*.
- b) Specify the value of C.

[3 points] [3 points]

Figure 4

Question 5:

Draw the voltage transfer characteristics (and show all key values) for the circuit shown in Figure 5, assume the diodes are identical and have a constant voltage drop model with $V_D = 0.6$ V. [6 points]

Figure 5