

King Fahd University of Petroleum & Minerals Electrical Engineering Department Fall 2011 (102)

EE 203 – Exam II Wednesday, May 4, 2011 6:30-8:00 PM

Name	
ID	

	Dr. Oualid	Dr. Al-Gahtani	Dr. Al-Zaher	Dr. Wessam
Section	1,2	3, 6	4,5	7,8

Problem	Grade
1 (40 points)	
2 (30 points)	
3 (30 points)	
Total (100 points)	

Question 1 – Part A:

- a) For the common source amplifier shown in Fig. 1 (a), assuming $\lambda = 0$,
 - 1. Find the required value for g_m to obtain gain of -10V/V.
 - 2. Determine the input and output resistances.

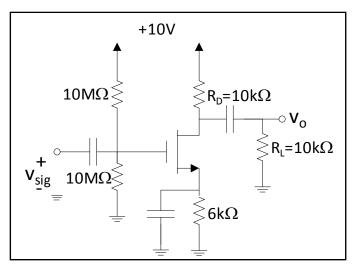


Fig. 1. (a)

Question 1 – Part B:

- b) It is required to use the core circuit shown Fig.1 (b) to design a **common drain amplifier (source follower)** without changing the DC operating point. The input ac source has a source resistance of R_{sig} =50k Ω and the load is supposed to be R_{L} =4k Ω .
 - 1. Draw the complete amplifier circuit.
 - 2. Draw the ac small-signal equivalent circuit using the Tmodel. (Neglect channel length modulation i.e. $\lambda = 0$)
 - 3. Find the expression of the amplifier's voltage gain.

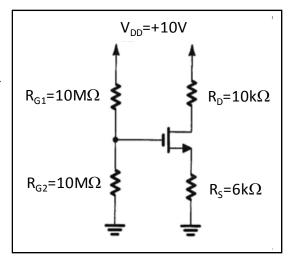


Fig. 1. (b)

Question 2 – Part A:

a) For the circuit shown in Fig. 2. (a), assume β =74 and V_{EB}=0.7V, calculate I_E, I_B, I_C, V_E, V_B, V_C. (Verify any assumption you make about the operating mode of the transistor).

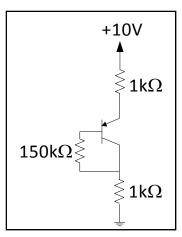
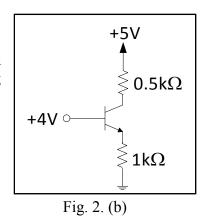



Fig. 2. (a)

Question 2 – Part B:

- b) For the circuit shown in Fig. 2. (b), β =100, and V_{BE}=0.7V. Assuming that the transistor is operating in the saturation mode: (V_{CEsat}=0.2V),
 - 1. Find the values of $I_{E},\,I_{B},\,I_{C},\,V_{E},\,V_{B},\,V_{C}.$
 - 2. Verify the assumption.

Question 3:

For the common-base amplifier shown in Fig. 3, dc current $I_E=0.5mA$ (given). Assume $\beta=100$ and Early voltage V_A is infinity, calculate:

- a) The overall voltage-gain.
- b) The amplifier's input-resistance.
- c) The amplifier's output resistance.

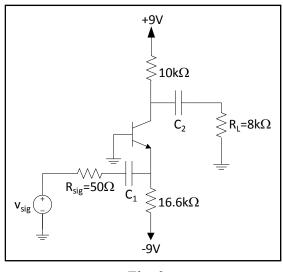


Fig. 3.