

King Fahd University of Petroleum & Minerals

Electrical Engineering Department

EE 203 (102) – Final Exam

Tuesday, Jun 14, 2011

7:00-9:30 PM

Name	
ID	

	Dr. Oualid	Dr. Al-Gahtani	Dr. Al-Zaher	Dr. Wessam
Section	1,2	3, 6	4,5	7,8

Question	Grade
1 [25 Marks]	
2 [10 Marks]	
3 [15 Marks]	
4 [15 Marks]	
5 [20 Marks]	
6 [15 Marks]	
Total [100 Marks]	

A. [15 Marks]

For the circuit shown in Fig. 1, the transistors parameters are: V_{TN} = 1V, $\mu_n C_{ox}$ = 44.4 μ A/ V^2 , λ =0, and L=1 μ m.

Assume Q1, Q2 and Q3 are identical.

- i) Determine the value of V1.
- ii) Design the transistors sizes (find W3) such that V2=3V.
- iii) Determine the mode of operation of each transistor.

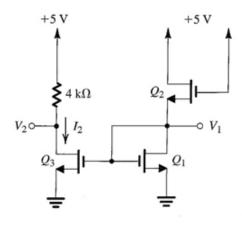


Fig 1

B. [10 Marks]

For the circuit shown in Fig 2,

- For the BJT assume V_{BE} =0.7V and neglect the base current (Large β)
- The NMOS transistor has $V_t=1V$, $\lambda = 0$ and $\mu C_{ox}W/L=2mA/V^2$.
- Assume Q1 is in saturation (pinch off) and Q2 is in active.
- i) Find the DC currents I1 and I2.
- ii) Verify the assumption made for the mode of operations.

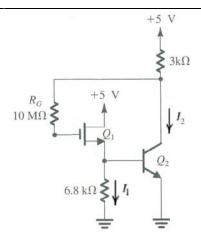
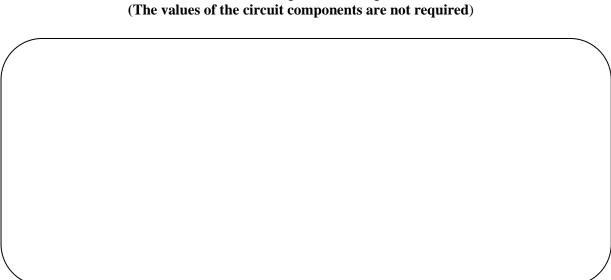
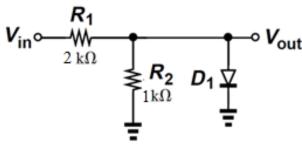
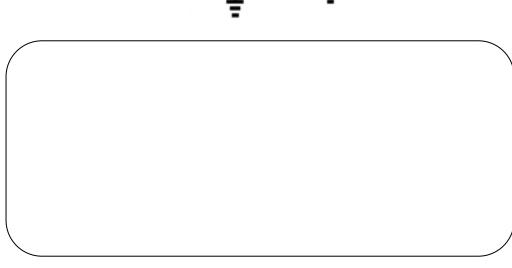



Fig 2

A. [5 Marks]

Draw a circuit that can convert 110V AC voltage to DC voltage of 10V.

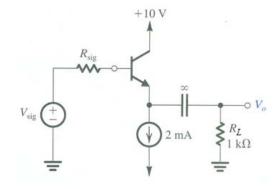



B. [5 Marks]

Using the constant voltage model with Vp = 0.7V plot the Input/output characteristics of the circuit

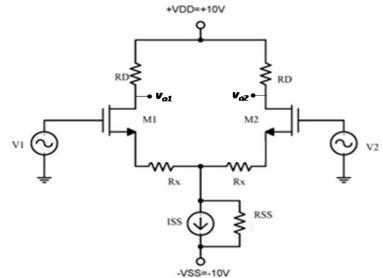
Using the constant-voltage model with $V_D = 0.7 V$ plot the Input/output characteristics of the circuit shown below.

(Label all the critical voltage levels)



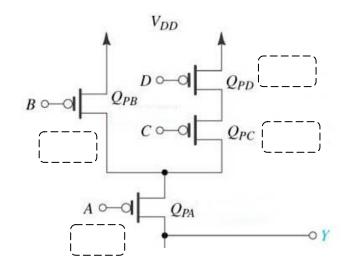
For the emitter follower shown, let $\beta \text{=}100$ and $R_{\text{sig}}\text{=}10k\Omega.$

[15 Marks]


- **A.** Calculate the collector current I_C .
- **B.** Draw its small signal equivalent circuit.
- C. Calculate the model parameters.
 D. Find the voltage gain v_o/v_{sig}.
 E. Find the input resistance.
 F. Find the output resistance

Question 4: [15 Marks]

For the shown differential amplifier assume identical transistors with $V_1 = v_{cm} + v_{id}/2$ & $V_2 = v_{cm} - v_{id}/2$. Assume $\lambda = 0$.


- **A.** Draw the small signal equivalent half-circuit for **the differential mode**
- **B.** Draw the small signal equivalent half-circuit for **the common mode.**
- C. If the output is taken single-ended $(\nu_{o2} \ \text{from} \ M_2 \ \text{drain})$, find the expressions of A_d , A_{cm} and CMRR.
- **D.** If the output is taken differentially $(v_{o2} v_{o1})$, find the expressions of A_d , and A_{cm} .

A. [15 Marks] For the shown pull-up network:

- i) Draw the corresponding pull-down network.
- ii) Write an expression for output Y in terms of the inputs A, B, C and D

iii) On each transistor, show the correct sizing $\frac{W}{L}$ of the pull-up network in terms of $p = \frac{W}{L}$ of the basic inverter

B. [5 Marks] Design a pass-transistor logic (transmission gate) circuit to realize the following function:

The output Y equals to the input A if the input C is high and the output Y equals the input B if the input C is low.

[Draw the complete transistor level circuit]

Question: 6 [15 Marks]

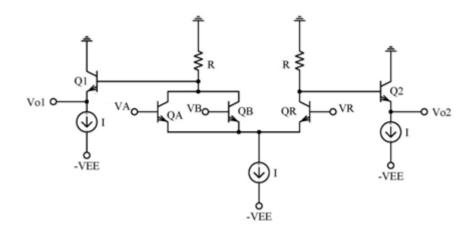
For the shown ECL gate, assume all transistors are in active and neglect the base currents. If V_R = -1.85V, I=1mA, R=2.3k Ω and the all the transistors have V_{BE} =0.7V for a 1mA emitter current.

	(a)	What is the	logic function	performed a	at V_0	1?
--	-----	-------------	----------------	-------------	----------	----

(

- (b) If V_B is sufficiently negative to turn Q_B off and V_A is connected to V_i , calculate
 - i. VIL, and VIH?

VIH=


ii. VOL, and VOH?

VOH=

iii. NMH, and NML?

```
NMH =
```

NML =

