

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS ELECTRICAL ENGINEERING DEPARTMENT

EE204 - Fundamentals of Electric Circuits SECOND SEMESTER 2009-2010

Instructor	Office	Sec	Phone	E-mail	Office Hours
Dr. Oualid Hammi	59/0012-5	4 & 10	7394	ohammi@kfupm.edu.sa	SUMT: 11:00 – 12:00

EE 204 Fundamentals of Electric Circuits

2, 3, 3

Basic laws: Ohm's, KVL,KCL. Resistive networks, mesh and node equations. Network theorems. Inductance and capacitance. Sinusoidal analysis and phasor methods. Power concepts of AC circuits. Polyphase circuits.

Pre-requisite: MATH 102 and PHYS 102

Textbook: Clayton R. Paul, *FUNDAMENTALS OF ELECTRIC CIRCUIT ANALYSIS*, 1st Edition, Wiley & Sons.

Inc. 2001.

Other reference: James Nilsson and Susan Riedel, *Electric Circuits*, 8th edition, Prentice Hall, 2008.

Tentative Schedule:

	Tentauve Scheuule:							
Wk	Date	Topics	Text	Laboratory/Tutorial				
1	Feb 20	Voltage, Current, Power, KCL, KVL	1.2 - 1.6	No Meeting				
2	Feb 27	Conservation of power, Series & Parallel Connection of Elements, Ohm's Law	1.7 - 1.8, $2.1 - 2.2$	No Meeting				
3	Mach 6	Single loop and single node-pair circuits Resistors in Series and in Parallel, Voltage and Current Division	2.3 – 2.5	Exp #1 Resistors and Ohm's Law				
4	Mach 13	Direct Method, Source Transformation	2.6, 2.7	Exp #2 Kirchhoff's Laws				
5	Mach 20	Principle of Superposition, Review	3.1	Problem Session # 1				
Major Exam I, Wed. 24 March (7:00-9:00 PM) (1.2-2.7) Location set by Section Instructor								
6	Mach 27	Thevenin Theorem, Norton Theorem, Maximum Power Transfer	3.2 – 3.4	Exp#3a Computer Simulation of DC Circuits				
7	April 3	Node Voltage Method, System of Equations	3.5	Exp #3b Experimental Part				
8	April 10	Mesh Current Method, System of Equations	3.6	Exp #4 Current & Voltage Divider				
	Midterm Vacation 17-21 April 2010.							
9	April 24	Capacitors, Inductors, Series and Parallel Connections	5.1 – 5.2, 5.4	Exp#5 Superposition, Thevinin & Norton Theorems				
10	May 1	Sinusoidal Source, Complex Numbers, review	6.1 – 6.2	Problem Session # 2				
Major Exam II, Wed, 5 th May (7:00-9:00 PM) (3.1-5.4) Location set by Section Instructor								
11	May 8	Frequency Domain Analysis	6.3 – 6.5	Exp #6a Frequency Domain Analysis				
12	May 15	Power Concepts, Power Factor	6.6; 6.6.1; 6.6.2	Exp #6 b Frequency Domain Analysis				
13	May 22	Superposition of Average power	6.6.4	Exp #7 Max. Power Transfer				
14	May 29	Maximum power transfer, RMS Values	6.6.3; 6.6.5	Exp #8 Average and RMS Values				
15	June 5	Commercial Power Distribution, Three Phase Circuits, Star-Delta Connections, review	6.9; 6.9.1; 6.9.2	Final Lab Exam				
	Final Exam (Comprehensive) 7: 30 AM June 13, 2010 Sunday							
-								

Course Outcomes:

Outcome1: An ability to apply knowledge of mathematics, science, and engineering to the analysis and design of

electric circuits

Outcome 2: An ability to identify, formulate, and solve engineering problems in the area of circuits.

Outcome 3: An ability to use the techniques, skills, and modern programming tools such as PSPICE, necessary for

engineering practice.

Outcome 4: An ability to function on multi-disciplinary teams

Outcome 5: An ability to design a system, components or process to meet desired needs within realistic constraints

Grading:

Class work (15 %): 4 homework problems (6 marks), 4 quizzes (6 marks), and one design problem

(3 marks).

Two Major Exams (15%+15%=30%): Common exams. Location of major exams will be reserved and posted

by each section instructor.

Laboratory (20%): reports (7 marks), prelab (3 marks), performance (2 marks), theoretical final

exam (4 marks), experimental final exam (4 marks).

Final Exam (35%): Common and Comprehensive

Suggested Practice problems:

ed i idence pi obiems.					
HW # 1	Ch. 1:	1.3-1, 1.4-5, 1.5-5, 1.6-2, 1.6-6, 1.7-2, 1.8-2			
HW # 2	Ch. 2:	2.2-5, 2.2-7, 2.3-2, 2.3-8, 2.4-3, 2.4-10, 2.5-7, 2.5-11			
HW # 3	Ch. 2: & Ch. 3:	Ch.2: 2.6-4, 2.7-3, 2.7-5, Ch.3: 3.1-2, 3.1-4, 3.2-2, 3.2-4			
HW # 4	Ch. 3:	3.2-6, 3.2-12, 3.3-2, 3.3-4, 3.3-6, 3.3-12			
HW # 5	Ch. 3:	3.5-2, 3.5-7, 3.6-2, 3.6-7			
HW # 6	Ch. 5:	5.1-3, 5.1-6, 5.1-8, 5.2-3, 5.2-6, 5.2-8, 5.4-2			
HW # 7	Ch. 6:	6.1-1(b,f), 6.1-2(a,f,g), 6.2-1(d,f), 6.2-5(b,d)			
HW # 8	Ch. 6:	6.3-4, 6.3-7, 6.4-4, 6.4-7, 6.4-12			
HW # 9	Ch. 6:	6.4-16, 6.4-17, 6.5-1, 6.5-4, 6.5-8			

Important Points to Remember:

- 1. <u>Practice Problems:</u> Practice problems are to be solved completely by the students (they are not for submission). Solutions will be posted in *Blackboard CE8*.
- 2. <u>Homework</u>: Your Instructor will provide you with 4 homework sets to be submitted for grading
- 3. **Problem Sessions**: All problem sessions will be held during the lab periods.
- 4. **Lab. Makeup:** No lab makeup will be allowed without an official excuse from students affairs.
- 5. <u>Attendance</u>: According to the university regulations, any student that exceeds 20% of the scheduled class meeting without an official excuse will receive a grade of DN in the course.
- 6. <u>Official excuses</u>: All official excuses must be submitted to the instructor no later than one week of the date of the official excuse. The instructor may not accept late excuses.