King Fahd University of Petroleum & Minerals Electrical Engineering Department

EE 204_092 Fundamentals of Electric Circuits

Major Exam II 5 May, 2010 7:00 PM – 8:30 PM

Name (Capital Letters)	
ID Number	
Lecture Section Number	
Serial Number	
Lab Section Number	

Problem	Maximum	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total	60	

SHOW ALL OF YOUR WORK IN A CLEAR NEAT WAY

Good luck!

Problem 1:

Find the Thevenin's equivalent of the circuit connected to the 2 Ω resistor between terminals a-b and use it to compute the current I_{ab}.

Problem 2:

•

- a) For the circuit shown below, find the value of the resistor to be connected between terminals a-b such that maximum power is transferred to it.
- b) Determine the value of the maximum power that can be transferred to the resistor found in part a 3Ω 3Ω

Problem 3: Use the principle of superposition to compute the current *I* in the circuit shown below,

Problem 4: Calculate the current *i* in the circuit shown below using the node-voltage method.

Answer:	
i =	

Problem 5: Calculate the voltage v in the circuit below using the mesh-current method.

Problem 6: For the circuit shown, find $v_s(t)$ for all t, if i(t) is defined by:

