King Fahd University of Petroleum & Minerals Electrical Engineering Department

EE204 Fundamentals of Electric Circuits

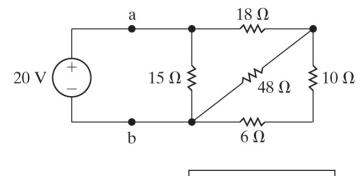
Semester 092

Final Exam 7:30 AM June 13, 2010 Sunday Time: 2 hours and 30 minutes

Student Name	
Student ID	
Serial #	
Section #	DR. M ABDUL HALEEM
	DR. AHMED MASOUD
(or circle your	DR. HAMMI OUALID
instructor's name)	DR. AL-SAYYED AL-AKHDAR
	DR. AHMED YAMANI
	DR. K QURESHI
Lab Section number or	
Lab Instructor's Name	

Problem 1	10	
	10	
Problem 2	10	
	10	
Problem 3	10	
	10	
Problem 4	10	
Problem 5	10	
Problem 6	10	
	10	
Total	100	

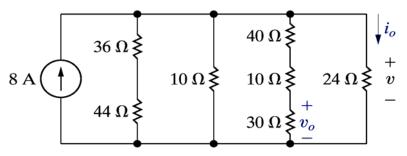
Solve all problems


Put your final results in the provided text boxes

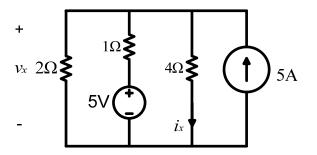
Organize and clearly show the steps of your work and results.

- Problem 1:

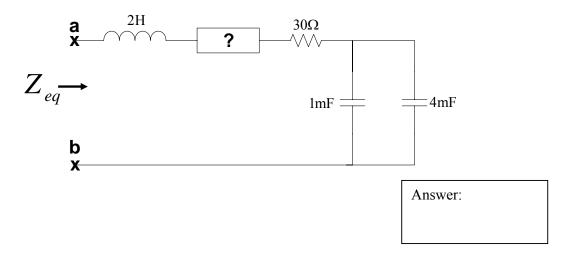
 a) For the given circuit find:


 1. The equivalent resistance R_{ab} as seen by the voltage source.
 - 2. The power delivered by the voltage source.

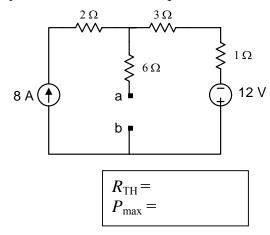
 $R_{ab} =$


 $P_{20V} =$

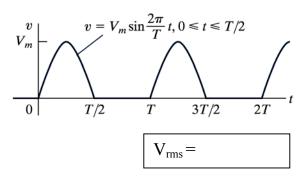
- b) For the circuit shown,
 1. Use current division to find the current i_o
 2. Use voltage division of v to find the voltage v_o.


$$i_o = v_o = v_o = v_o$$

Problem 2: a) Determine the voltage v_x and the current i_x in the circuit shown using node-equation method.

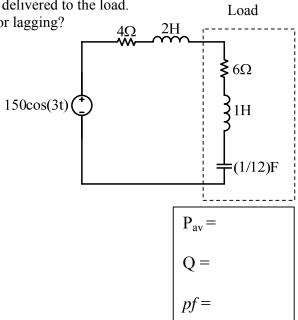

$$v_x = i_x = i_x$$

b) In the circuit shown $\omega = 50$ rad/s, and the equivalent impedance $Zeq = 30 + j76~\Omega$. Find the type of the missing element indicated by the question mark (is it a resistor, a capacitor or an inductor) and its value.

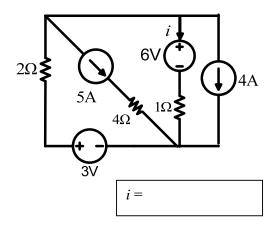


Problem 3:

- a) For the following circuit,
 - 1. Find the resistor to be connected between terminals a-b that gets the maximum power transfer.
 - 2. Calculate the maximum power absorbed by the resistor found in part 1.

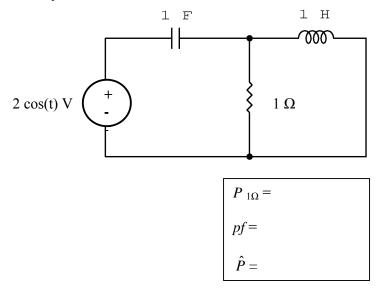


b) Calculate the effective (RMS) value for the periodic voltage waveform shown.

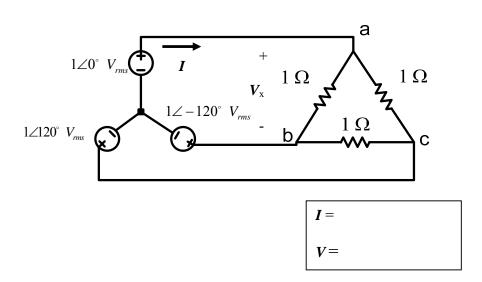


Problem 4:
For the circuit shown

- 1. Calculate the average power and the reactive power delivered to the load.
- 2. Calculate the power factor of the load. Is it leading or lagging?



Problem 5: Find the current *i* in the circuit shown using superposition principle.



Problem 6:

- a) For the following circuit use mesh-currents equation method to:
 - 1- compute the power dissipated by the 1Ω resistor
 - 2- compute the power factor at the voltage source.
 - 3- compute the complex power absorbed by the circuit connected to the source.

b) Compute I and V_x in the three-phase circuit shown.

