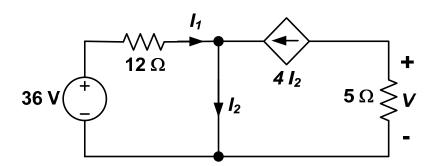
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS ELECTRICAL ENGINEERING DEPARTMENT

SECOND SEMESTER 2009-2010 (0)

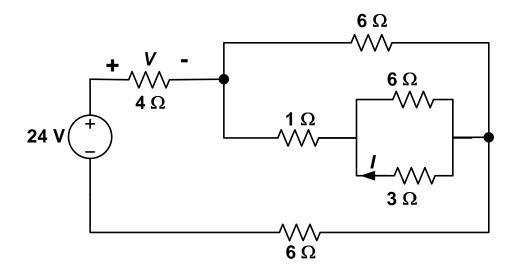
Course Title:	Electric Circuits I
Course Number:	EE 201

Exam Type:	MAJOR EXAM I
Date:	March 24, 2010
Time:	07:00 pm – 8:30 pm (1 & 1/2 hours)


Student Name:	
Student ID:	
Section:	
Serial Number:	

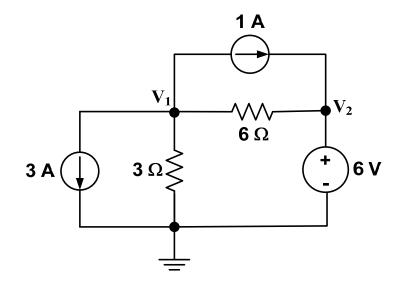
GRADING				
Question 1	6			
Question 2	6			
Question 3	9			
Question 4	9			
Total:	30			

Be neat, organized, and show all your work and results.


Question 1:

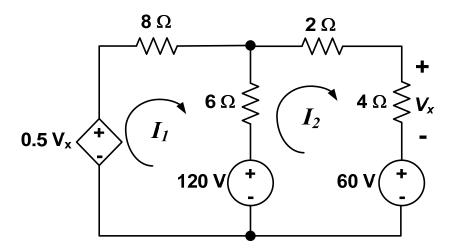
- a) Use Ohm's law and Kirchhoff's laws to find the voltage ${\it V}$.
- b) What is the power <u>absorbed by</u> the dependent current source.

Question 2:


- a) Use voltage division to determine the voltage ${\bf \emph{V}}$ across the 4Ω resistor.
- b) Use V from part (a) to find the current through the 4Ω resistor, and use this current and current division to find the current I in the 3Ω resistor.

Question 3:

Use the nodal analysis for the circuit shown below with the indicated reference node to obtain:


- a) The node voltages V_1 and V_2 .
- b) The power <u>delivered by</u> the 6 volt voltage source.

Question 4:

Use Mesh analysis for the circuit shown below to obtain:

- a) The mesh currents I_1 and I_2 .
- b) The power <u>delivered by</u> the 120 volt voltage source.

