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Scaling Laws of
Multiple Antenna Group-Broadcast Channels

Tareq Y. Al-Naffouri, Amir F. Dana, and Babak Hassibi

Abstract—Broadcast (or point to multipoint) communication
has attracted a lot of research recently. In this paper, we
consider the group broadcast channel where the users’ pool
is divided into groups, each of which is interested in common
information. Such a situation occurs for example in digital audio
and video broadcast where the users are divided into various
groups according to the shows they are interested in. The paper
obtains upper and lower bounds for the sum rate capacity in the
large number of users regime and quantifies the effect of spatial
correlation on the system capacity. The paper also studies the
scaling of the system capacity when the number of users and
antennas grow simultaneously. It is shown that in order to achieve
a constant rate per user, the number of transmit antennas should
scale at least logarithmically in the number of users.

Index Terms—MIMO systems, transmit diversity, broadband
mobile communication systems, wireless personal communication
systems.

I. INTRODUCTION

FUTURE breakthroughs in wireless communications will
be mostly driven by applications that require high data

rates [1]. While increasing the link budget and/or bandwidth
can accommodate this increase in data rate, such a solution
would not be economical. A more cost effective solution is to
exploit the spacial dimension by employing multiple antennas
at the transmitter and receiver. Multiple input multiple output
(MIMO) communication has thus been the focus of a lot of
research [1], [2], [3] which basically demonstrated that the
capacity of a point to point MIMO link increases linearly with
the number of transmit and receive antennas (an excellent
overview of the research on this problem can be found in [4]).

Research focus has shifted recently to the role of multiple
antennas in multiuser systems, especially broadcast scenarios
(i.e., point to multipoint communication) as downlink schedul-
ing is the major bottleneck for future broadband wireless
networks. The broadcast channel resembles downlink com-
munication in a cellular system, where the base station is to
transmit to a group of users. In these and other broadcast
scenarios, one is usually interested in 1) quantifying the
system capacity or the maximum possible sum rate to all users,
2) quantifying the scaling behavior of the sum rate for large
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number of users, and 3) devising computationally efficient
algorithms for capturing most of the sum rate in the large
number of users regime. In this paper, we distinguish between
two types of broadcast scenarios depending on whether the
users are interested in common information or not.

A. Broadcasting to Independent Users

In this problem, users are interested in independent infor-
mation. Much work has been devoted to answer the three
questions raised above for this problem. The capacity region
question was recently settled by a technique similar to writing
on dirty paper and hence bearing the name dirty paper coding
(DPC). Specifically, [5] and [6] have shown that DPC is
capable of achieving the maximum possible sum-rate capacity.
Subsequently, [7] showed that DPC is able to achieve any point
in the capacity region.

While DPC solves the broadcast problem optimally, it is
computationally expensive and requires a great deal of feed-
back as the transmitter needs perfect channel state information
of all users [8]. Thus, there has been increased interest to
match the DPC capacity for large number of users using
simple techniques. In [9] and [10], Sharif and Hassibi showed
that the sum rate capacity behaves like M log n logn for large
n (where n is the total number of users and M is the number of
transmit antennas). They also showed that opportunistic beam
forming matches this limit. Other promising techniques for
capturing most of the DPC capacity were proposed in [7], [10],
[11], [12]. They all rely on multiuser diversity to match the
DPC for large number of users. Here, each user experiences
a different channel and therefore the transmitter can exploit
this diversity and choose the set of users that have the best
channel conditions.

B. Broadcasting to Groups of Users

The broadcast scenario considered above assumes that the
various users are interested in independent streams of data.
More common is the situation that one group of users would
be interested in one stream of data, another group with another
stream, and so on. An example where this might occur is
digital audio and video broadcast where there is a limited
number of shows and users are classified according to the
shows they are interested in [13], [14], [15]. Here, similar
questions to the (independent user) broadcast problem would
be relevant.

To make the discussion more rigorous, assume that there
are n users each equipped with a single antenna. The users
are partitioned into K groups where each group is interested
in the same stream of data. The transmitter, which is equipped
with M antennas, is to schedule transmission to these groups
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so as to maximize the sum-rate capacity of the system. If
the transmitter had one antenna only, this would be a trivial
problem. For in this case, all channels involved would be
single input single output. Thus, to transmit to any group
of users, one simply needs to take care of the user with the
weakest link (i.e., the one with the least channel gain). Such
ordering of users, however, is not possible in the multiple
antenna case and the problem becomes more challenging.

The group broadcast problem includes the (independent
users) broadcast problem as a special case. Specifically, the
independent users broadcast is a group broadcast problem in
which each group consists of one user only. The other extreme
is when all users belong to one group and are all interested in
the same information. This is known as a multicast problem
and has started to attract some attention recently. In [16],
Khitsi et. al. characterized the system capacity for the two
user binary multicast problem. When multicasting to more
than 2 users or for Gaussian multicast, [16] was only able to
obtain upper and lower bounds. In [17], Steinberg and Shamai
considered a two user situation with a hybrid of broadcast and
multicast in which the two users can have common as well as
independent messages.

By examining the techniques used in [16] and [17] and the
results arrived at, one can be convinced that finding the exact
capacity region for the multicast problem (let alone the more
general group broadcast problem) can be quite challenging.
As such, several authors have resorted instead to evaluate
the capacity asymptotes. In his Masters Thesis [18], Khitsi
considered the multicast problem where there is exactly one
group of n users interested in a common message transmitted
from a base station with M antennas. He showed that for
large n, the capacity decreases in proportion to n− 1

M . In a
recent paper [19], Jindal and Luo built on the work of Khisti
and obtained the scaling order of various techniques when
used in a multicast scenario. These techniques include transmit
beamforming and group broadcast using spatially white or
orthogonal signaling.

In this paper, we consider the multiple group broadcast in
the large number of users and antennas regime. In contrast
to the scaling analysis of [18] and [19], we don’t just obtain
order relationships but rather obtain upper and lower bounds
that more tightly characterize the system sum-rate capacity.

The paper is organized as follows. In Section III, we present
a general theory for the scaling behavior of the minimum
of a number of iid random variables. The rest of the paper
is divided into two parts. In the first part, we consider the
large number of users (n) case and obtain upper bounds (in
Section IV) and lower bounds (in Section V). In the second
part, we consider the scaling for the large number of antennas
(M) regime. We do so for fixed n (Section VI), for n = βM
(Section VII) and for n = eM (Section VIII). We set the stage,
however, by introducing the system model.

II. SYSTEM MODEL AND FORMAL DEFINITION OF

CAPACITY

A. System Model

Consider a broadcast channel with a base station equipped
with M antennas and n users each equipped with a single
receive antenna. The n users are partitioned into K groups

each of which is interested in the same stream of data.
Specifically, we assume there are αkn users in the kth group
k = 1, 2, . . . , K where

∑K
k=1 αi = 1, αk > 0. We also let α

denote mink{αk} since many of our results will depend on
this minimum. Moreover, to get more insights, we will often
times specialize our findings to the case where α = αk = 1

K .
The received signal at the ikth user is given by

yik
= h∗

ik
s + νik

where s is the transmitted signal and is subject to an average
power constraint E[ss∗] ≤ PI and νik

∼ CN(0, 1) is the
additive white complex Gaussian noise. The vector hik

is the
channel matrix between the base station and user ik. The
users’ channels are independent and identically distributed as
CN(0, IM ). At times, we will assume that hik

exhibits some
spatial correlation so that hik

∼ CN(0, R) where R is full
rank with Tr(R) = M.

B. Group Sum-Capacity Expression

In this paper we are interested in the sum-capacity of the
group broadcast systems. Let Wi be the information stream of
rate Ri intended for users in group i for each i = 1, . . . , K .
Then (R1, . . . , RK) is an achievable rate vector if each user
in each group can decode its intended information stream
with arbitrary small probability of error using long enough
block codes. We define the sum-capacity of the system as the
supremum of sum of rates among all achievable rate vectors.

Consider a multicast system (i.e., a group broadcast with
only one group). Given a total power budget P, the base station
can transmit to one user at the following maximum rate

Coneuser = E max
B≥0 Tr(B)≤P

log det
(
1 + ‖h‖2

B

)
where ‖hi‖2

B
Δ= h∗

i Bhi and B is the correlation of the input.
Since each user in the group is interested in the same data,
we have to appeal to all users, particularly the weakest one,
by minimizing the log det over all users, i.e.

Csingle = E max
B≥0 Tr(B)≤P

min
i

log det
(
1 + ‖hi‖2

B

)
(1)

The above expression is the sum-capacity of a multicast sys-
tem. However the sum-capacity of group broadcast problems
in general is not known. If the transmitter had one antenna
only, this would be a trivial problem. For in this case, all
channels involved would be single input single output. Thus,
to transmit to the kth group of users, one simply needs to take
care of the user with the weakest link, i.e. the link for which
|hik

| ≤ |hjk
| for all j. Such ordering of users, however, is not

possible in the multiple antenna case and the problem becomes
more challenging. Hence, we resort in this paper to bounding
the capacity in the large number of users and antennas regime.

III. SCALING LAW FOR THE MINIMUM OF A NUMBER OF

RANDOM VARIABLES

Group broadcast is intuitively limited by the worst of
otherwise identical users. As such, we present in this section
a theorem for finding the minimum of a large number of
random variables. To this end, let x1, x2, · · · , xn be iid
nonnegative random variables with pdf f(x), CDF F (x), and
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characteristic function φ(s). We would like to find the scaling
law of the minimum of these random variables, xmin(n) =
min {x1, x2, · · · , xn} . The CDF of the minimum is given by
Fmin(x) = 1 − (1 − F (x))n. Let’s first illustrate the direct
method of finding the scaling of the minimum through the
following example.

a) Example 1: Beamforming for multicast: In beam-
forming [10], the transmitter sends M orthonormal beams
φ1, φ2, . . . , φM , and asks each user to feedback the SINR
associated with each beam. For example the SINR associated
with beam φ1 for user i is given by

SINRi =
|h∗

i φ1|2
1
ρ +

∑M
m=2 |h∗

i φm|2

where ρ = M
P is the signal to noise ratio. Since the base station

has to appeal to all users in the group, we are constrained by
the worst user. For a given beam, the SINRi’s are iid with
CDF [10]

FSINR(x) = 1 − e−
x
ρ

(1 + x)M−1
x ≥ 0

So the CDF of the minimum of n such SINR’s is given by

Fmin SINR(x) = 1 − (1 − FSINR(x))n

= 1 − e−
nx
ρ

(1 + x)n(M−1)
x ≥ 0

Note that limn→∞ Fmin SINR( x
n ) = 1 − e−x(1/ρ+M−1). This

shows that for large n, mini SINRi scales as 1
( 1

ρ +M−1)n
.

The method of Example 1 might not apply all the time as
it is difficult to find the CDF in closed form sometimes. The
following theorem provides a more general method for finding
the scaling of the minimum. The proof is omitted due to space
limitations.

Theorem 1: Let x1, x2, · · · , xn be iid nonnegative random
variables with CDF F (x), and characteristic function φ(s).
Let xmin(n) denote the minimum of these random variables
min {x1, x2, · · · , xn} . Then anxmin(n) converges in distribu-
tion to a random variable y with CDF Fy(y) = 1−exp

(−yi0
)

where i0 is the first non-zero derivative of F (x) at zero, i.e.,
F (i0)(0) �= 0 and F (j)(0) = 0 for all j < i0 and where

an =
i0!

1
i0

F (i0)(0)
1
i0

1

n
1
i0

Furthermore, we can find F (i0)(0) using the initial value
theorem

limx→0 F (i0)(x) = lims→∞ si0φ(s)

b) Example 2: Scaling of spatially correlated channel
norms: Let’s find the scaling law for minhi ‖hi‖2 when hi

are iid CN(0, R). The pdf and CDF of ‖hi‖2 will both have
different forms depending on whether some of the eigenvalues
λl of R are the same or different, and so the direct method
for scaling can be quite challenging. On the other hand, the
characteristic function takes one form and is given by φ(s) =∏M

l=1
1

1+λls
. From this, it is easy to see that

lim
s→∞ siφ(s) = F (i)(0) =

{
0 for i < M

1∏
M
l=1

1
λl

for i = M

We thus conclude that

min
i

‖hi‖2 scales as CM det(R)
1

M
1

n
1

M

where CM = (M !)
1

M .

IV. UPPER BOUNDS

A. An Upper Bound Using the MAC-BC Duality

Consider the group broadcast problem with K groups. To
obtain an upper bound, we consider all possible broadcast
systems with exactly one user chosen from each group. This
is a typical broadcast scenario for which the sum-rate capacity
is given by dirty paper coding. Using the MAC-BC duality
[20], the sum-capacity is given by

CK users = max
bk ≥ 0∑
bk = P

log det(I +
K∑

k=1

hik
bkh∗

ik
) (2)

Now, sweeping over all the possible selections of the K users
(one user from each group) we can write

Cu = min
hi1

· · ·min
hiK

max
bk ≥ 0∑
bk = P

log det(I +
K∑

k=1

hik
bkh∗

ik
) (3)

This is an upper bound on the sum-rate because the bk’s are
optimized for each set of K users when in the group broadcast
problem the bk’s should be the same for all user groups. To
get rid of the determinant in (3), we use the arithmetic-mean
geometric-mean (AM-GM) inequality

det(A) ≤
(

tr(A)
M

)M

to write

Cu ≤ M log(1 + min
hi1

· · ·min
hiK

max
bk

1
M

K∑
k=1

bk‖hik
‖2) (4)

= M log(1 +
P

M
min
hi1

· · ·min
hiK

max
k

{‖hi1‖2, · · · , ‖hiK‖2}) (5)

= M log(1 +
P

M
max

k
min
hi1

· · ·min
hiK

{‖hi1‖2, · · · , ‖hiK‖2}) (6)

i.e.

Cu ≤ M log(1 +
P

M
CM max

k

1

α
1

M

k n
1

M

) (7)

where the third line follows from exchanging the order of
minimum and maximum. Thus, we can write

Cu ≤ M log
(

1 +
P

M
CM

1
α

1
M n

1
M

)
(8)

In the equal number of users case, αk = 1
K , and the upper

bound becomes

Cu ≤ M log

(
1 +

P

M
CM

K
1

M

n
1

M

)
(9)

An alternative upper bound can be obtained as follows.
Starting with the MAC-BC inequality (3), let

Hi =
[ √

b1hi1 · · · √
bKhiK

]
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then,
∑K

k=1 hik
bkh∗

ik
= HiH

∗
i and the upper bound can be

equivalently expressed as

Cu = min
hi1

· · ·min
hiK

max
bk ≥ 0∑
bk = P

log det (IK + H∗
i Hi)

Note that the matrix inside the determinant is now of size K.
So applying the AM-GM inequality this time yields

Cu ≤ K log
(

1 +
P

K
CM

1
α

1
M n

1
M

)
(10)

Combing (8) and (10) yields for the equal number of users
case

Cu ≤ min{M, K} log

(
1 +

P

min{M, K}CM
K

1
M

n
1

M

)
(11)

Using the expansion that for small x, log(1+x) = x+O(x2),
accurate for small x, we can write

Cu ≤ PCM
K

1
M

n
1

M

+ O(
1

n
2

M

) (12)

In the above, we assumed the hik
’s to be white. In the

correlated case, the minimization in (6) is done over hi’s with
autocorrelation matrix R and that results in a hit det(R)

1
M on

the upper bound 1

Cu, corr ≤ PCMdet(R)
1

M
K

1
M

n
1

M

+ O(
1

n
2

M

) (13)

B. How Loose is the Upper Bound?

The upper bounds obtained above come from two contri-
butions: the BC-MAC duality and the AM-GM inequality. It
is thus interesting to see how loose the upper bound becomes
due to the use of the AM-GM inequality. To this end, note that
for a positive semidefinite matrix A, det(I + A) ≥ 1 + tr(A)
which when applied to (3) yields the following lower bound
on Cu

Cu ≥ min
hi,1

· · ·min
hi,K

max
bk

log

(
1 + tr

K∑
k=1

hibkh∗
i

)
(14)

Following the steps (4)-(7), we obtain (assuming equal number
of users case for simplicity)

Cu ≥ log

(
1 + PCM

K
1

M

n
1

M

)
(15)

or using the log(1 + x) = x + O(x2) approximation

Cu ≥ PCM
K

1
M

n
1

M

+ O(
1

n
2

M

) (16)

which coincides with (12). So we don’t loose anything by
applying the AM-GM inequality for large number of users
and we thus conclude

Cu = PCM
K

1
M

n
1

M
+ O( 1

n
2

M
) (17)

1By the AM-GM inequality, we know that det(R)
1

M ≤ 1
M

tr(R) = 1.

V. LOWER BOUNDS

Having obtained an upper bound on the sum-rate, we now
quantify how various methods for scheduling (or resource
allocation) behave for large number of users. This gives us an
idea about the achievable rates and also provides lower bounds
on the group broadcast problem. Specifically, we consider
the following scheduling schemes 1) Opportunistic random
beamforming 2) Time sharing and 3) Scheduling by treating
interference as noise

A. Opportunistic Random Beamforming

Opportunistic beamforming is a broadcast technique pro-
posed in [9] that captures most of the capacity guaranteed
by DPC for large number of users while requiring much less
feedback and complexity. Here, the transmitter attempts to
choose the best M out of K users to transmit to. To do so,
the transmitter uses its M antennas to send M random beams.
Each user calculates the M SINR’s (signal to interference and
noise ratio), one SINR for each beam, and feeds back the
maximum SINR along with its index. The transmitter in turn
ranks the K users according to their SINR’s and transmits to
the M best ones. Not only does this method require much less
feedback than the DPC approach, but it also asymptotically
(i.e., in the presence of large number of users) achieves the
same performance [9].

To be more specific, the transmitter chooses M random
orthonormal beam vectors φm (of size M × 1) generated
according to an isotropic distribution. Now these beams are
used to transmit the symbols s1(t), s2(t), . . . , sM (t) by con-
structing the transmit vector

s(t) =
M∑

m=1

φm(t)sm(t), t = 1, . . . , T (18)

After T channel uses, the transmitter independently chooses
another set of orthonormal vectors {φm} and reconstructs the
signal vector s(t) again (according to (18)) and so on. From
now on and for simplicity, we will drop the time index t. The
signal yk received by the k’th user is given by

yk = h∗
ks + nk

=
M∑

m=1

h∗
kφmsm + nk, k = 1, . . . , K

Here E(ss∗) = PI since the sm’s are assumed to be
identically distributed and independently assigned to different
users. The k’th receiver estimates the effective channel gain
h∗

kφm, something that can be arranged by training, to calculate
M SINR’s, one for each transmitted beam

SINRk,m =
|hkφm|2

1
ρ +

∑
j �=m |hkφj |2

m = 1, . . . , M

where ρ = M
P is the signal to noise ratio. Each receiver

then feeds back its maximum SINR, i.e. max
1≤m≤M

SINRk,m,

along with the maximizing index m. Thereafter, the transmitter
assigns sm to the user with the highest corresponding SINR,
i.e. max

1≤k≤K
SINRk,m. If we perform the above scheduling, the
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throughput for large n can be written as [10] 2

RRBF = ME log
(

1 + max
1≤k≤K

SINRk,1

)
+ o(1) (19)

where the term o(1) accounts for the small probability that
user k may be the strongest user for more than one beam
φm [10].
In the group broadcast scenario, we replace each user with a
group of users of size αkn (the group of users interested in the
same data). In this case a beam is assigned to each group. In
order to maximize the throughput, each beam m is assigned
to the group with the best equivalent SINR. The equivalent
SINR of each group is the minimum of SINR’s of decoding
the particular beam among users in the group. Therefore, in
the group broadcast problem, random beamforming results in
the following max min problem

RRBF =

ME log
(

1 + max
k

{
min

i1
SINRi1 , . . . , min

iK

SINRiK

})
+ o(1)

In Example 1, we proved that the minimum SINR scales as

min
i

SINRi =
1

1
ρ + M − 1

1
n

From that, we conclude that the for large number of users, the
sum rate is given by

RRBF = M log

(
1 +

1
( 1

ρ + M − 1)
1

αn

)

or for the equal number of users per group case

RRBF = M log

(
1 +

1
( 1

ρ + M − 1)
K

n

)
+ o(1)

B. Time Sharing

Time sharing can achieve better performance even if we
force the groups to have an equal time share

RTS ≥ 1
K

K∑
k=1

max
Tr(Bk)=P Bk≥0

min
hik

log det
(
1 + ‖hik

‖2
Bk

)

=
1
K

K∑
k=1

log
(

1 + max
Tr(Bk)=P

min
hik

‖hik
‖2

Bk

)
(20)

We now relax the problem further by setting Bk = P
M I, from

which we conclude that

RTS ≥ log
(

1 +
P

M
CM

1
(αn)

1
M

)

or using the approximation log(1 + x) = x + O(x2), and
assuming equal number of users

RTS ≥ P

M
CM

K
1

M

n
1

M

+ O(
1

n
2

M

)

Just like the upper bound, correlation results in a hit det(R)
1

M

on the lower bound

RTS, corr ≥ P

M
CM det(R)

1
M

K
1

M

n
1

M

+ O(
1

n
2

M

)

2It turns out that all the beams behave equally. So the sum-rate is simply
M times the rate guaranteed by φ1 or any beam for that matter. As such, we
drop the beam dependence for notational convenience.

C. Treating Interference as Noise

The other extreme would be to allow all groups to be served
simultaneously. Each group would then ignore signals that are
meant for the other groups, treating them as additive noise.
The rate that the 1st group achieves with this strategy would
be

R1 = min
i1

log

(
h∗

i1B1hi1

1 + h∗
i1

∑K
k=2 Bkhi1

)

By choosing the Bk’s properly, we can maximize the sum rate∑
k Rk. Now, relax the problem further by assuming equal

isotropic covariances for all user groups, i.e. set Bk = 1
K

P
M I,

then we can show that

R1 = log min
i1

1
K

P
M ‖hi1‖2

1 + K−1
K

P
M ‖hi1‖2

=
1
K

P

M
CM

K
1

M

n
1

M

+ O(
1

n
2

M

)

Thus, the sum rate for K such user groups is upper bounded
according to

RInterf ≥ P

M
CM

K
1

M

n
1

M

+ O(
1

n
2

M

)

Correlation will again introduce a hit det(R)
1

M on the lower
bound

RInterf, corr ≥ det(R)
1

M
P

M
CM

K
1

M

n
1

M

+ O(
1

n
2

M

)

We summarize the findings of sections IV and V by the
following theorem.

Theorem 2: Consider the following group broadcast sce-
nario: A base station with M antennas is to broadcast to K
groups of n

K users each, under a total power constraint P.
Assume also that the users’ channels are iid Gaussian. Then
the sum-rate capacity behaves like

C = γPCM
K

1
M

n
1

M
+ O( 1

n
2

M
)

where 1
M ≤ γ ≤ 1. When the users’ channels exhibit

correlation R, the capacity scales as

Ccorr = γ det(R)
1

M PCM
K

1
M

n
1

M

+ O(
1

n
2

M

)

These are unfortunate results as they show that the sum-
rate decreases with the number of users. To counter this, we
increase the resources (i.e., number of antennas M ). In the
rest of this paper, we study the scaling of group broadcast
capacity with the number of antennas when 1) n is fixed,
2) M

n = β and 3) M = log n. To simplify the exposition, we
will only consider the equal number of users case, i.e. we set
αk = 1

K ∀k.

VI. SCALING WITH M , n FIXED

In this section, we study the scaling of the group broadcast
capacity for large number of antennas M and fixed number of
users n. We take the upper bound to be K times the maximum
rate that a single group achieves

C ≤ K max
B≥0 Tr(B)≤P

log(1 + min
i

‖hi‖2
B) (21)

≤ K log(1 + min
i

P‖hi‖2) (22)
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where the second line follows from the fact that B ≤ PI.

By the law of large numbers we have that limM→∞
‖hi‖2

M =
1 w.p.1. Since the minimization is taken over a fixed number
of users, we conclude that limM→∞ mini

‖hi‖2

M = 1 w.p.1
and

C ≤ K log(1 + PM) w.p.1

To obtain a lower bound, we use time sharing

C ≥ log(1 + max
B≥0 Tr(B)≤P

min
i

‖hi‖2
B)

To proceed, we need to find a lower bound for
maxB≥0 Tr(B)≤P mini ‖hi‖2

B (the lower bound mini
P
M ‖hi‖2

is too loose). In Appendix A, we show that for every hi in
the set {h1, h2, . . . , h n

K
}

max
B≥0 Tr(B)≤P

‖hi‖2
B ≥ P

min{M, n
K }‖hi‖2 (23)

from which we conclude that

max
B≥0 Tr(B)≤P

min
i

‖hi‖2
B ≥ P

min{M, n
K } min

i
‖hi‖2

Now, for fixed n and large M , we have by the law of
large numbers limM→∞ mini

‖hi‖2

M = 1 and we can write
maxB≥0 Tr(B)≤P mini ‖hi‖2

B ≥ P K
n M. This yields the fol-

lowing lower bound on the sum rate

C ≥ log(1 + P
K

n
M) w.p.1 (24)

We thus have the following theorem.
Theorem 3: Consider the setting of Theorem 2 and assume

that the total number of users n is kept fixed. Then as the
number of antennas grows to infinity, the group broadcast
capacity satisfies the following bounds with probability one

log(1 + K
n PM) ≤ C ≤ K log(1 + PM)

VII. SCALING WITH M AND n, M
n = β

Here we consider the scaling of the upper and lower bounds
when both the number of users and antennas grow to infinity
while their ratio remains constant M

n = β. We rely on time
sharing to obtain a lower bound

C ≥ K max
B≥0 Tr(B)≤P

1
K

log(1 + min
i

h∗
i Bhi)

C ≥ log
(

1 + P min
i

‖hi‖2

M

)
(25)

where we have relaxed the problem by setting B = P
M I. We

now need to lower bound mini
‖hi‖2

M as M, n → ∞. To this
end, define the matrix

Hi = [ h1 h2 · · · h n
K

] (26)

and note that

diag(H∗
i Hi) =

[ ‖h1‖2 ‖h2‖2 · · · ‖h n
K
‖2
]T

Note also that

λmin(H∗
i Hi) ≤ min

i
‖hi‖2 ≤ λmax(H∗

i Hi) ≤ max
i

‖hi‖2 (27)

Moreover as n, M → ∞ with M
n = β (so that M

n/K = Kβ)

the eigenvalues of H∗
i Hi

M become uniformly distributed in the

range [(1−√
Kβ)2, (1+

√
Kβ)2] as shown in [21], [22]. We

can thus write

(1 −
√

Kβ)2 ≤ lim
n,M→∞

min
i

‖hi‖2

M
≤ (1 +

√
Kβ)2

Combining this with the time sharing bound (25) yields the
desired lower bound on the sum-rate capacity

C ≥ log
(
1 + P (1 −√

Kβ)2
)

(28)

To obtain an upper bound, we start with the bound

C ≤ K log(1 + max
B≥0 Tr(B)≤P

min
i

‖hi‖2
B) (29)

We now turn our attention to upper bound the log argument
(the bound maxB≥0 Tr(B)≤P mini h∗

i Bhi ≤ P mini ‖hi‖2 is
too loose). To do so, we will use the dual of the max-min
problem derived in Appendix B

max
B≥0 Tr(B)≤P

min
i

h∗
i Bhi = min

βi≥0,
∑

βi=1
Pλmax(

∑
i

βihih
∗
i )

≤ K

n
Pλmax(

∑
i

hih
∗
i ) (30)

=
K

n
Pλmax(H∗

i Hi) (31)

where Hi is as defined in (26). Now, as n, M → ∞ with M
n
K

=

Kβ, the eigenvalues of HiH
∗
i

n will be confined to the range
[(1− 1√

Kβ
)2, (1 + 1√

Kβ
)2]. We can thus obtain the following

upper bound on capacity

C ≤ K log(1 + P (1 + 1√
β
)2) (32)

From (28) and (32), we see that if we allow the number of
antennas to grow linearly with the number of users, we can
guarantee a constant sum rate and we can state the following
theorem.

Theorem 4: Consider the setting of Theorem 2 and assume
that the number of antennas M and the number of users n are
made large while maintaining a constant ratio M

n = β. Then
the sum-rate group broadcast capacity will be constant with
probability one. More precisely, we have

log
(
1 + P (1 −√

Kβ)2
) ≤ C ≤ K log(1 + P (1 + 1√

β
)2) (33)

But is it still possible to do so without straining the resources
as much? We answer this question in the next section.

VIII. SCALING WITH M AND n, M = log n

In the first part of the paper, we proved that the group

capacity scales as γ P
M CM

K
1

M

n
1

M
. Now for large M, it is easy to

prove that CM � M and the sum-rate scales as γ P

n
1

M
. Thus,

to guarantee a constant rate, we need to set M = log n. To
prove this rigorously, we first study the behavior of mini

‖hi‖2

M
for large n (and M ). We use the Chernoff bound in Appendix
C to show that

lim
M=log n,n→∞

P

(
min

i

‖hi‖2

M
∈ [1 − εl, 1]

)
= 1 (34)

where εl � .8414, i.e. for M = log n and for large n,

mini
‖hi‖2

M is a constant.
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A. Lower Bound for Sum-rate Capacity (M = log n)

We are now ready to derive the lower bound for the sum rate
capacity which we obtain through time sharing. Specifically,
we have

max
B≥0 Tr(B)≤P

log(1 + min
i

‖hi‖2
B) ≥ log(1 + P min

i

‖hi‖2

M
)

which follows by setting B = P
M I. Or with M = log n and

as n → ∞
C ≥ log(1 + PH) (35)

where H ∈ [1− εl, 1]. This lower bound shows that a growth
of M = log n will guarantee a constant capacity because for
M = βn the sum rate is upper bounded by a constant. This
is summarized in the following theorem.

Theorem 5: Consider the setting of Theorem 2 and assume
that the number of antennas M and the number of users n
are made large while maintaining the relationship M = log n.
Then the sum-capacity in such a system scales like a con-
stant and therefore, a constant capacity per user (stream) is
achievable in the system.

Theorem 5 suggests that if the number of antennas scale
logarithmically with the number of user, i.e. M = log n,
constant capacity per user is achievable. In the following
theorem we show that to obtain a constant rate per user in
the system the number of antennas should at least behave like
(log n)

1
2−ε(n) for a vanishing function ε(n).

Theorem 6: Consider the setting of Theorem 2 and assume
that the number of users n are made large. Then in order
to have a sum-capacity that scales like a constant and there-
fore, a constant capacity per user (stream) is guaranteed, the
number of transmit antennas, M , should grow faster than
(log n)

1
2−ε(n), where ε(n) = log log log n

log log n .
Proof: To obtain a constant capacity per user, the multicast
capacity of each group should be at least constant. Consider
one of the groups with αn users. Then the multicast capacity
is given by

log(1 + max
B≥0,TrB≤P

min
i

h∗
i Bhi)

Therefore, X = maxB≥0,TrB≤P mini ‖hi‖B should be con-
stant as we increase n. In Appendix B, we upper bound the
above max-min problem by

X ≤ Pλmax(
∑

i

βihih
∗
i ) (36)

for any choice of βi ≥ 0 such that
∑

i βi = 1. Now suppose
we partition the αn users into sets of size M . Then we have
S = αn

M sets of users. We can obtain an upper bound by
considering a uniform choice βi = 1

M for all the users in a
particular set s and set βi to zero for users in the remaining
S − 1 sets. For this choice of βi, (36) is valid, and we have

X ≤ P

M
λmax(HsH

∗
s )

where Hs is the channel matrix between the transmitter and
the users in the set s of our partition. Since this is true for
each of the S sets, we can write

X ≤ P

M
min(λmax(H1H

∗
1 ), . . . , λmax(HSH∗

S)) (37)

Note that Hs for different s are i.i.d. Hence, we have bounded
X by the minimum of S = αn

M i.i.d random variables. In
order for the sum-capacity to scale at least like a constant
with n, the right side of (37) should scale like a constant as
well. Let us denote the cumulative distribution function (CDF)
of λmax(HH∗) by FW (·), where H is a Gaussian M × M
random matrix. Then HH∗ is a Wishart Matrix [22], and we
can write

Pr(X ≥ 1
P log M

) ≤ (1 − FW (
M

log M
))S .

If X behaves like constant then the above probability should
approach one as n tends to infinity. Therefore we should have

(1 − FW (
M

log M
))S → 1 (38)

Using the large deviation result of [22] we know that FW (t)
behaves like exp(−M2Φ−(4M−t

M ; 1)) for t = O(M), where
Φ−(x; 1) is defined by

Φ−(x; 1) = (2 log 2 − log(4 − x) − x

4
− x2

32
)u(x)

and where u(x) is the step function. Applying the above large
deviation bound to our case yields

FW (
M

log M
) ≈ exp(−M2 log log M)

With this in mind, we conclude that for (38) to hold, we should
have that for large n, FW ( M

log M ) · S → 0. Alternatively, we
require that

log S − M2 log log M ≤ 0.

Substituting S = αn
M in the above inequality we get

log n ≤ (M2 + 1) log log M(1 + o(1))

This gives an upper bound on the maximum number of
supportable users, n. It can be verified that for M scaling like
(log n)(

1
2−ε(n)) where ε(n) = log log log n

log log n this inequality is not
satisfied. Therefore, the number of antennas should grow faster
than (log n)(

1
2−ε(n)) with n to guarantee a constant capacity

per stream.

IX. CONCLUSION

In this paper we considered the problem of multi-group
broadcast channels. As its name suggests, in group broadcast
there are different groups of user in the system, each group
of which is interested in common information. This problem
can be a good model for digital multimedia broadcasting in
wireless networks that is receiving increasing attention in
recent years. We specifically studied the scaling of multi-
group broadcast for large number of users. We obtained upper
and lower bounds for the sum-rate capacity in the large
number of users regime. We showed that the sum rate capacity
scales as γP CM

n
1

M
. We also quantified the effect of spatial

correlation on the sum-rate capacity which manifests itself as
a hit of det(R)

1
M on the SNR. This is an unfortunate result

as it shows that the capacity decreases with the number of
users. To go around this, we studied the scaling of the group
broadcast capacity with the number of users and antennas.
Specifically, two such regimes were studied 1) when the
number of antennas is linear in the number of users and 2)
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when the number of antennas is logarithmic in the number of
users. Both of these regimes guarantee a constant rate per user
but the logarithmic rate is more tight as we also proved that the
number of antennas should at least behave like (log n)(

1
2−ε)

for a constant rate to be maintained.
Some extensions of this work would be to evaluate scaling

of group broadcast in the presence of multiple antennas at
the users’ side and to study the scaling in the wideband case.
Another extension would be to study the scaling in the large
SNR regime to evaluate the group-broadcast multiplexing
gain.

X. APPENDIX A

Consider the set G = {h1, h2, . . . , hn}. We would like to
To prove that for every hi ∈ G

max
B≥0 Tr(B)≤P

h∗
i Bhi ≥ P

min{M, n}‖hi‖2 (39)

Now for B′ = P
M I, we have

max
B≥0 Tr(B)≤P

h∗
i Bhi ≥ h∗

i B
′hi (40)

=
P

M
‖hi‖2 (41)

which proves part of (39). Now for n ≤ M, let A =
{a1, a2, . . . , al} be an orthonormal basis for the space spanned
by the set G. Then l ≤ n ≤ M. Define the matrix B′ this time
as

B′ =
P

n
AA∗

where
A =

[
a1 a2 · · · al OM×M−l

]
then B′ ≥ 0 and Tr(B′) = lP

n ≤ P. Moreover, since each hi

is spanned by A, it is easy to see that

h∗
i B

′hi =
P

n
‖hi‖2

so that

max
B≥0 Tr(B)≤P

h∗
i Bhi ≥ P

n
‖hi‖2 (42)

Combining (40) and (42) yields the desired result.

XI. APPENDIX B

To obtain the dual form of the max-min problem of (29),
we introduce the dual variables and write the optimization
problem in the following form

max
B≥0,Tr(B)≤P

min
i

h∗
i Bhi = max

B ≥ 0, t :
Tr(B) ≤ P, t ≤ hiBh∗

i ∀i

t

= min
γ, βi ≥ 0 :

∑
i βi = 1,

γI ≥ ∑
i βihih∗

i

γP

= min
βi≥0:

∑
i βi=1

λmax(
∑

i

βihih
∗
i )

where the third line follows by first minimizing the cost
over γ. Since γI ≥ ∑

i βihih
∗
i , it readily follows that

γ ≥ λmax(
∑

i βihih
∗
i ), i.e. γ is greater equal to the maximum

eigenvalue of matrix
∑

i βihih
∗
i .

XII. APPENDIX C

Let Y = ‖hi‖2

M , and define g(Y ) by

g(Y ) =
{

1 if Y ≤ 1 − ε
0 if Y > 1 − ε

Then for ν ≥ 0

g(Y ) ≤ e−ν(Y −(1−ε))

which yields the Chernoff bound

E[g(Y )] = P (Y ≤ 1 − ε) ≤ eν(1−ε)E[e−νY ]

or

P (
‖hi‖2

M
≤ 1 − ε) = eν(1−ε) 1(

1 + ν
M

)M (43)

Now we can tighten the upper bound by choosing the optimum
ν, which, upon setting the first derivative to zero, turns out to
be

ν = M
ε

1 − ε
> 0

and the bound reads

P (
‖hi‖2

M
≤ 1 − ε) ≤ eMε(1 − ε)M

= eM(ε+log(1−ε))

We can use this to bound the probability P (mini
‖hi‖2

M ≤
1 − ε)

P (min
i

‖hi‖2

M
≤ 1 − ε) = 1 − (1 − P (

‖hi‖2

M
≤ 1 − ε))n

≤ 1 − (1 − eM(ε+log(1−ε)))n

= 1 − (1 − nε+log(1−ε))n

where the last line follows from the fact that M = log n. For
the above probability to vanish as n grows, we require that

ε + log(1 − ε) < −1

Let εl be the infimum of the set {ε : ε + log(1 − ε) < −1},
(i.e. εl satisfies εl + log(1 − εl) = −1 or εl � .8414). Then,

lim
n→∞ P (min

i

‖hi‖2

M
≥ 1 − εl) = 1 (44)

Now let’s obtain an upper bound for mini
‖hi‖2

M . Employing
Chernoff bound again, it is easy to show that for ν ≥ 0

P (
‖hi‖2

M
≥ 1 + ε) ≤ e−ν(1+ε)E[eν

‖hi‖2

M ] (45)

= e−ν(1+ε) 1
(1 − ν

M )M
(46)

Moreover, the upper bound is tightest for ν = M ε
1+ε We thus

have

P (
‖hi‖2

M
≥ 1 + ε) ≤ e−Mε(1 + ε)M

= eM(−ε+log(1+ε))

or

P (min
hi

‖hi‖2

M
≥ 1 + ε) ≤ (n(−ε+log(1+ε)))n
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where we used the fact that n = log M. This probability
vanishes provided that −ε + log(1 + ε) < 0 and the infimum
for which this is true is εu = 0. We can thus write

lim
n→∞P

(
min

i

‖hi‖2

M
≤ 1
)

= 1 (47)

From (44) and (47), we see that

limn→∞ P
(
mini

‖hi‖2

M ∈ [1 − εl, 1]
)

= 1 (48)
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