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Abstract

Accurate channel state information is important in communication systems. This is

especially challenging in a wireless environment where the channel exhibits strong frequency

and time selectivity. The literature is full with ingenious works devoted to the design and

analysis of algorithms for channel estimation. In general, these works have approached

the various algorithms distinctly obscuring commonalities that might exist among them.

This dissertation presents two contributions related to the analysis and design of adaptive

channel estimation algorithms.

The first part of the dissertation performs an analysis of a large class of adaptive al-

gorithms for channel estimation. Adaptive filters are, by design, time-variant, nonlinear,

and stochastic systems. For this reason, it is common to study different adaptive schemes

separately due to the differences that exist in their update equations. The dissertation

presents a unified approach to the analysis of adaptive filters that employ general data or

error nonlinearities. In addition to deriving earlier results in a unified manner, the approach

presented also leads to new stability and performance results without imposing restrictions

on the color or statistics of the input sequence.

The second part of the dissertation presents an expectation-maximization (EM) based

class of algorithms for joint channel and data recovery in OFDM (orthogonal frequency

division multiplexing). The algorithms make use of the rich structure of the underlying

communication problem– a structure induced by the data and channel constraints. These

constraints include pilots, the cyclic prefix, the code, and the finite alphabet constraints on

the data; sparsity, finite delay spread, and the statistical properties of the channel (time and

frequency correlation). The algorithms become progressively more sophisticated as more

iv



data and channel constraints are incorporated, with each new version of the algorithm

subsuming the previous version as a special case, culminating in an EM-based forward

backward Kalman filter. The dissertation finally scales up the algorithm design to support

OFDM transmission over multiple-input multiple-output (MIMO) systems.
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Chapter 1

Introduction

The radio revolution started with the invention of the telegraph by Guglielmo Marconi over

100 years ago. Today, and as we enter the new millennium, we notice a rapid growth in

wireless network technology and a convergence of voice, data, and video technology. This

is creating new services at lower costs and resulting in increased number of users, air-time

usage and revenues, which are increasing at 40% per year.

The wireless channel, however, can significantly limit the performance of such a system.

The transmitted signal suffers from propagation loss, macroscopic fading due to blocking,

and macroscopic fading due to the movement of the transmitter, the receiver, or objects in

the environment. This makes channel estimation a critical part of the wireless receiver.

This dissertation explores the analysis and design of adaptive and iterative algorithms

for the estimation of linear and time-invariant wireless channels. The first –the analysis–

part of the dissertation presents a unified analysis of a large class of adaptive algorithms

that have been extensively used for channel estimation. The second –the design– part of the

dissertation derives an iterative algorithm for channel estimation 1 that makes an intelligent

use of the constraints that underly the communication problem.

This introductory chapter sets the stage for the dissertation. It starts by elaborating on

the nature of the wireless channel. The chapter then describes the convenience of modelling

the channel as a linear time-invariant system and the usefulness of employing adaptive and

iterative algorithms for its estimation. The chapter then presents an overview of available

adaptive filtering algorithms and previous work on channel estimation. This provides a
1We confine our attention to OFDM (orthogonal frequency division multiplexing) systems but the results

apply in more general context.

1
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context for the analysis and design parts of the dissertation. The chapter concludes by

laying out the contributions of the subsequent chapters which also serve to outline the

dissertation organization.

1.1 The Wireless Channel

A signal propagates in a wireless channel along a number of different paths. These paths

arise from scattering, reflection, refraction, and drift by objects in the environment. As

the signal propagates, its power drops due to three effects: propagation loss, macroscopic

fading, and microscopic fading. We address each of these effects in the following. [73]

Path Loss

The power of the transmitted signal is inversely proportional to the square of the distance

it travels. This reduction in power is caused by water absorption, foliage, and ground

reflection. Path loss thus causes a steady drop in signal power. In contrast, macroscopic

and microscopic fading (described next) cause the signal power to fluctuate.

Macroscopic Fading

Macroscopic fading results in long-term (or long-distance) variation in the signal level. It

results from blockage effects caused by buildings and other natural features.

Microscopic Fading

Macroscopic fading causes short-term or rapid fluctuations of the received signal. Specifi-

cally, objects between the transmitter and receiver scatter the signal in different directions.

Fading results from the superposition of a large number of these scattered components, and

by the central limit theorem, the resulting signal can be assumed to be an independent

Gaussian process. The signal will be be zero mean unless there is a direct line of sight

(LOS) between the transmitter and receiver. Microscopic fading affects the signal in time,

frequency, and space, as we explain next.

Doppler spread–time selective fading Time selective fading happens due to the move-

ment of scatterers, the transmitter, or the receiver. In this type of fading, a tone at

frequency νc spreads over a finite bandwidth (νc ± νmax), creating a Doppler power
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spectrum (the Fourier transform of the time correlation of the channel response to a

CW wave). Time selective fading is measured by the coherence time-width which is

the time lag at which the signal autocorrelation reduces to 0.7 of its peak value.

Delay spread–frequency selective fading As we mentioned earlier, the signal in a wire-

less channel travels along multiple paths. Scaled and time shifted versions of the signal

arrive to the receiver along these paths. This delay spread results in frequency se-

lective fading as the channel acts as a tapped-delay line. Frequency selective fading

is characterized in terms of the coherence bandwidth, which is the frequency lag at

which the channel autocorrelation drops to 0.7 of its peak value.

Angle spread–space selective fading Angle spread at the receiver refers to the spread

of angles of arrivals of the multi-path components at the receiver (a similar definition

can be made for the angle spread at the transmitter). Angle spread results in space

selective fading. This type of fading is characterized by the coherence distance, which

is the distance lag at which the channel autocorrelation function drops to 0.7 of its

peak value.

1.2 Linear Time-Invariant Models

As noted above, we concentrate in this dissertation on linear and time-invariant (LTI) models

for two reasons: [11]

Simplicity of description: LTI systems are easier to describe mathematically than time-

variant systems. An LTI system is completely characterized by its (one-dimensional)

impulse response. When the system becomes time-variant, however, the impulse re-

sponse becomes 2-dimensional and hence more difficult to deal with.

Availability of powerful signal processing techniques: The eigenvalues of LTI sys-

tems are complex exponentials, and the corresponding eigenvalues are given by the

frequency domain transfer function. This means that time-invariant systems always

commute (while time-invariant systems do not). These and other properties of linear

systems allow the use of powerful signal processing techniques such as the Fourier

transform and its discrete implementation.

LTI systems also have significant signal processing applications. This includes linear

prediction, acoustic and line echo cancellation, channel estimation, receiver design for CDMA
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Table 1.1: Common channel and data constraints used for channel estimation
Constraints Assumptions Reference

Finite alphabet constraint [88], [7]
Code [9], [80]

Transmit precoding
(e.g., cyclic prefix, silent gaurad band)

[20], [44], [40], [68], [52], [99], [9]

Data
Constraints

Pilots [21], [56], [71],[95],[72],[53]
Finite delay spread [20], [9], [71]

Sparsity:
Channel has a few active taps

[102], [48], [97]

Frequency correlation:
Taps are Gaussian distributed

[54],[32], [9], [79]

Time correlation [94], [50], [45], [1], [58]

Channel
Constraints

Uncertainty information [81], [54]

and OFDM transmission. Moreover, time-invariance is not as limiting as it sounds because

we can still use time-invariant systems to model systems that vary with time on a block-

by-block manner. For example, in a wireless mobile environment with reasonable vehicle

speeds, we can assume that the channel response is approximately constant over a small

time window.

1.3 Leverages for Channel Estimation

All algorithms for channel estimation rely on some inherent structure of the communication

problem to perform channel (and data) recovery. This structure is created by constraints

on the transmitted data or constraints on the channel itself, as described below (see also

Table 1.1):

Data Constraints:

Finite alphabet constraint: Data is usually drawn from a finite alphabet [88], [7].

Code: Data usually exhibits some form of redundancy, such as a channel code that helps

reduce the probability of error [9], [80].

Transmit precoding: The data might also contain some form of precoding (to facilitate

equalization at the receiver) such as a cyclic prefix [44], silent guard bands [40], [68]

and known symbol precoding [52].
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Pilots: Pilots represent the most primitive form of redundancy and are usually inserted

to perform channel estimation or simply to initialize the estimation process [21], [56],

[71],[95],[72],[53].

Channel Constraints:

Finite delay spread: The channel impulse response has a finite duration [20], [9], [71]. 2

Sparsity: The channel impulse response is usually sparse, dominated by a few strong paths

at some delays with a near zero arrivals at other delays [102], [48], [97]. The number of

paths and their delays are usually stationary. However, their amplitudes and relative

phases usually vary much more rapidly with time. This essentially reduces the number

of parameters to be estimated to that of the number of multipaths in the channel.

Frequency correlation: In addition to the information about which of the channel taps

are inactive, we usually have additional statistical information about the active ones.

This is usually captured by the frequency correlation of the frequency response [54],[32],

[9], [79].

Time correlation: As channels vary with time, they exhibit some form of time correlation.

The time-variant behavior could also be more structured, e.g., following a state-space

model [94], [50], [45], [1], [58]. 3

Uncertainty information: Channels also suffer from non-ideal effects such as nonlinear-

ities and rapid time-variations that are difficult to model. The aggregate effect of this

nonideal behavior could be represented as uncertainty information that can be used

to build robust receivers (e.g., as in [81], [54]).

1.3.1 Channel Estimation Techniques

Several algorithms were suggested in literature for channel and data recovery for OFDM

(orthogonal frequency division multiplexing). Each of these algorithms makes use of a subset

of the constraints above. We summarize in what follows some of the main approaches for

channel estimation (or generally, receiver design).
2This information is even assumed available at the transmitter as this knowledge is essential in designing

the transmitted sequence, e.g., the length of the cyclic prefix in OFDM.
3By speaking of time correlation separately from frequency correlation, we are basically assuming that

the channel autocorrelation function is separable (i.e., a product of time and frequency functions). While
this might not be exact, it is much more convenient.
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Training-Based Estimation

Assuming that the channel is time-invariant, pilots are transmitted along with data symbols

and are used for channel estimation (see [71], [72], [56], [95], [53]). The number of pilots

needed in the noiseless case is equal to the length of the impulse response (In the presence

of noise, however, more pilots are needed to improve the estimation accuracy).

Blind Estimation

Blind algorithms rely completely on natural constraints underlying the communication prob-

lem to perform channel recovery. For example, [9] used frequency correlation, [9] and [79]

used the outer code, [20] used the cyclostationarity induced by the cyclic prefix and trans-

mitter precoding, [108] used a subspace constraint, [68] and [44] used the cyclic prefix.

Semi-Blind Estimation

Semi-blind techniques are a hybrid of blind and training based techniques, utilizing pilots

and other natural constraints to perform channel estimation. Thus, in addition to pilots,

[99], [9], and [8] used the cyclic prefix, [9] and [32] used frequency correlation, [94], [50],

[45], [1], [58], [80] used frequency and time correlation, and [9], [10] , [65] and [80] used the

outer code.

Data-Aided Channel Estimation

The main and perhaps the only reason to perform channel estimation is to use the estimate

along with the channel output to recover the transmitted data. One can, in turn, use

the detected data to enhance the channel estimate giving rise to an iterative technique

for channel and data recovery. With this in mind, it is natural for the two operations,

of channel and data recovery, to be considered jointly, especially since one operation can

be used to enhance the performance of the other. This intuitive idea is the basis of joint

channel estimation and data detection proposed in [50], [45], [57], [39]. Other works, like [2],

[58], [24], [55], [101], and [7], arrived at iterative techniques more rigorously by employing

the expectation-maximization (EM) algorithm. The data-aided approach seems the most

sensible for channel estimation. However, just like many other works on channel estimation,

the aforementioned works utilize only a subset of the constraints on the channel and the

data.
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The designer can implement most of the techniques above using batch processing or

using adaptive/iterative techniques. The latter approach has clear advantages as we discuss

below.

1.4 Why Make Channel Estimation Adaptive/Iterative?

There are several advantages to estimating a channel adaptively or iteratively. First, the

optimum estimator might be too prohibitively complex to implement directly. The designer

can alternatively implement the same algorithm adaptively or iteratively, which makes it

possible to trade off complexity for speed. One such example is the recursive implementation

of a least-squares problem, using the recursive least-squares (RLS) algorithm.

Secondly, complexity might be so much an issue that the designer would be willing to

trade performance for lower complexity. The least-mean squares (LMS) algorithm and its

family offer this flexibility. For example, some least-squares problems can be approximately

solved using the LMS algorithm through some form of stochastic approximation.

Thirdly, it is easier to modify an adaptive algorithm to incorporate an additional con-

straint about a given problem than it is to modify the corresponding batch implementation

of the same problem. For example, the RLS implementation of a least-squares channel esti-

mation problem can be easily modified to deal with the case where the channel is varying

slowly with time.

Finally, a closed form solution might not even be available and so an adaptive or iterative

implementation might be the best solution that the designer can provide. A typical example

is joint channel and data recovery from received data in a communication problem, where

the only practical possibility is iterative recovery.

1.5 Overview of Available Adaptive Algorithms

Many adaptive algorithms have been proposed in literature. These algorithms can be clas-

sified into three main categories [82], [43].

The LMS algorithm and its family: The least-mean squares (LMS) algorithm and its

family are one of the most important and ubiquitous classes of adaptive filters. They

are usually built around transversal (taped-delay line) structures and are well known
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for their simplicity, low complexity, and robustness. More details about this class of

algorithms can be found in Chapters 2 and 3.

Recursive least squares (RLS) adaptive filter: As its name suggests, the RLS is a re-

cursive implementation of the least-squares problem. This adaptive filter overcomes

some limitations of the LMS family of filters as it is an order of magnitude faster and

its behavior is insensitive to the color of the input. This is, however, achieved at a

higher computational coast and an inherent computational instability.

The Kalamn filter: The Kalman filter is a generalization of the RLS filter and is of com-

parable complexity. It emphasizes the notion of a state and hence is more suited to

time-variant environments.

These filters are usually built around transversal (taped-delay line) filters. Some adap-

tive filters are built around an infinite impulse response, but the choices here are much more

limited and the filters involved are much less understood.

1.6 Motivation of this Work

The motivation of this thesis is to develop a unified framework to the problem of adaptive

channel estimation. In particular, this thesis considers two aspects of this problem:

Analysis: There is extensive literature on the performance of adaptive filters with many

ingenious results and approaches (see Chapters 2 and 3 and the references therein). How-

ever, most of these works study individual algorithms separately. Moreover, each study

uses its own set of assumptions and approximations that fit the specific class of algorithms

that it studies. This is because different adaptive schemes have different nonlinear update

equations, and the particularities of each case tend to require different arguments and as-

sumptions. The first objective of this thesis is thus to provide a unified analysis of adaptive

algorithms with data and error nonlinearities.

Design: There are many algorithms proposed in the literature for channel estimation and

equalization. Each of these algorithms rely on a particular set of assumption or a priori

information on the channel or transmitted data. The second objective of the thesis is to

provide a unified channel estimation method for the single and multiple antenna cases.
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Although the thesis demonstrates the design for OFDM transmission, the design principles

apply to a more general context.

1.7 Overview of Contributions

1.7.1 Chapter 2

In Chapter 2, we present a framework for the transient analysis of adaptive filters with

general data nonlinearities (both scalar-valued and matrix-valued). The framework relies on

energy conservation arguments and avoids the need for explicit recursions for the covariance

matrix of the weight-error vector. Among other results, the derivation characterizes the

transient behavior of such filters in terms of a linear time-invariant state-space model. In

addition to deriving earlier results in a unified manner, the approach leads to stability and

performance results without restricting the regression data to being Gaussian or white.

1.7.2 Chapter 3

In Chapter 3, we extend the same energy-based approach of Chapter 2 to the transient

analysis of adaptive filters with error nonlinearities. This class of algorithms is among

the most difficult to analyze, and it is not uncommon to resort to different methods and

assumptions with the intent of performing tractable analyses for any member of this class.

In addition to deriving earlier results in a unified manner, the approach also leads to new

performance results without restricting the regression data to being Gaussian or white and

without relying on any linearization arguments.

1.7.3 Chapter 4

In Chapter 4, we propose an expectation-maximization (EM) class of algorithms for joint

channel and data recovery in OFDM. The algorithms make use of the rich structure of the un-

derlying communication problem–a structure induced by the data and channel constraints.

These constraints include pilots, the cyclic prefix, and the finite alphabet constraints on

the data, and sparsity, finite delay spread, and the statistical properties of the channel

(frequency and time correlation). The algorithms become progressively more sophisticated

as more data and channel constraints are incorporated, with each new version of the al-

gorithm subsuming the previous version as a special case, culminating in an EM-based

forward-backward Kalman filter.
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1.7.4 Chapter 5

In Chapter 5, we build on the previous chapter and scale up the receiver design to OFDM

transmission over mutli-input multi-output (MIMO) systems. The receiver makes use of the

rich structure of the underlying communication problem. Thus, in addition to aforemen-

tioned channel and data constraints, the receiver also makes use of the spatial correlation

and of the space-time code used.

Finally, Chapter 6 overviews the thesis and point out some future directions of research.



Chapter 2

Transient Analysis of

Data-Normalized Adaptive Filters

2.1 Introduction

1 Adaptive filters are, by design, time-variant and nonlinear systems that adapt to variations

in signal statistics and that learn from their interactions with the environment. The success

of their learning mechanism can be measured in terms of how fast they adapt to changes

in the signal characteristics, and how well they can learn given sufficient time (e.g., [100,

43, 60]). It is therefore typical to measure the performance of an adaptive filter in terms of

both its transient performance and its steady-state performance. The former is concerned

with the stability and convergence rate of an adaptive scheme, while the latter is concerned

with the mean-square error that is left in steady-state.

There have been extensive works in the literature on the performance of adaptive filters

with many ingenious results and approaches (e.g., [100, 43, 60, 46, 36, 63, 92, 34, 27, 76, 90]).

However, it is generally observed that most works study individual algorithms separately.

This is because different adaptive schemes have different nonlinear update equations, and

the particularities of each case tend to require different arguments and assumptions.

This chapter and the next present a unified energy-based approach to the mean-square

analysis of adaptive filters. The energy approach makes it possible not only to treat algo-

rithms uniformly, but also to arrive at new performance results. This approach is based on
1A major part of this chapter is reproduced, with permission, from T. Y. Al-Naffouri and A. H. Sayed,

“Transient analysis of data-normalized adaptive filters,” IEEE Transactions on Signal Processing, vol. 51,
No. 3, pp. 639-652, Mar. 2003.

11
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studying the energy flow through each iteration of an adaptive filter, and it relies on an exact

energy conservation relation that holds for a large class of adaptive filters. This relation has

been originally developed in [84, 77, 85, 78] in the context of robustness analysis of adaptive

filters within a deterministic framework. It has since then been used in [61, 105, 106, 103]

as a convenient tool for studying the steady-state performance of adaptive filters within a

stochastic framework as well. In this Chapter, we show how to extend the energy-based ap-

proach to the transient analysis (as opposed to the steady-state analysis) of adaptive filters

that employ data-nonlinearities in their update equation.

2.1.1 Organization of the Chapter

This chapter is organized as follows. In the next section we introduce weighted estimation

errors as well as weighted energy norms and relate these quantities through a fundamental

energy relation. In Sections 2.3 and 2.4, we illustrate the mechanism of our approach

for transient analysis by applying it to the LMS algorithm and its normalized version for

Gaussian regressors. In Section 2.5, we study the general case of adaptive algorithms with

data nonlinearities without imposing restrictions on the color of the regression data (i.e.,

without requiring the regression data to be Gaussian or white). The analysis leads to

stability results and closed-form expressions for the mean-square error (MSE) and mean-

square deviation (MSD). We further generalize our study in Section 2.6 to adaptive filters

that employ matrix data nonlinearities. We again derive stability results and closed-form

expressions for the MSE and MSD.

In the next chapter, we extend the energy-conservation approach to study the transient

behavior of adaptive filters with error nonlinearities.

2.1.2 Notation

We focus on real-valued data, although the extension to complex-valued data is immediate.

Small boldface letters are used to denote vectors, e.g., w. Also, the symbol T denotes

transposition. The notation ‖w‖2 denotes the squared Euclidean norm of a vector, ‖w‖2 =

wT w, while ‖w‖2
Σ denotes the weighted squared Euclidean norm, ‖w‖2

Σ = wTΣw. All

vectors are column vectors except for a single vector, namely the input data vector denoted

by ui, which is taken to be a row vector. The time instant is placed as a subscript for

vectors and between parentheses for scalars, e.g., wi and e(i).
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2.1.3 Adaptive Filters with Data Nonlinearities

Consider noisy measurements {d(i)} that arise from the model

d(i) = uiw
o + v(i)

for some M × 1 unknown vector wo that we wish to estimate, and where v(i) accounts

for measurement noise and modelling errors, and ui denotes a row regression vector. Both

ui and v(i) are stochastic in nature. Many adaptive schemes have been developed in the

literature for the estimation of wo in different contexts. Most of these algorithms fit into

the general description:

wi+1 = wi + µf [e(i),ui]uT
i , i ≥ 0 (2.1)

where wi is an estimate for wo at iteration i, µ is the step-size,

e(i) = d(i)− uiwi = uiw
o − uiwi + v(i) (2.2)

is the estimation error, and f [e(i),ui] denotes a generic function of e(i) and the regression

vector ui.

In terms of the weight-error vector w̃i = wo − wi, the adaptive filter equations (2.1)

and (2.2) can be equivalently rewritten as

w̃i+1 = w̃i − µf [e(i),ui]uT
i (2.3)

and

e(i) = uiw̃i + v(i) (2.4)

We restrict our attention in this chapter to nonlinearities f [·] that can be expressed in

the separable form

f [e(i),ui] = e(i)
g[ui]

(2.5)

for some positive scalar-valued function g[ui]. In the latter part of this chapter (see Sec-

tion 2.6), matrix nonlinearities H[ui] will also be considered, i.e., functions f [·] of the form

f [e(i),ui] = H[ui]e(i)
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Table 1 lists some examples of data nonlinearities {g[·],H[·]} that appear in the literature.

In the table, the notation {ui1 , ui2 , . . . , uiM} refers to the entries of the regressor vector ui.

Table 2.1: Examples of data nonlinearities g[·] or H[·]
Algorithm g[·] or H[·]

LMS 1
NLMS ‖ui‖2

ε-NLMS ε + ‖ui‖2

NLMS family 1

‖ui‖q

diag
(|ui1 |q−1sgn(ui1), |ui2 |q−1sgn(ui2), . . . , |uiM |q−1sgn(uiM )

)

Power normalized diag (p1(i), p2(i), . . . , pM (i))
LMS pk(i + 1) = βpk(i) + (1− β)|uik |2, 0 ¿ β < 1

Sign regressor diag
(

sgn(ui1
)

ui1
,

sgn(ui2
)

ui2
, . . . ,

sgn(uiM
)

uiM

)

Multiple step-sizes diag(µ1, µ2, . . . , µM )

2.2 A Weighted Energy Relation

The adaptive filter analysis in future sections is based on an energy-conservation relation

that relates the energies of several error quantities. To derive this relation, we first define

some useful weighted errors. Thus, let Σ denote any symmetric M ×M weighting matrix

and define the weighted a-priori and a-posteriori error signals:

eΣ
a (i) ∆= uiΣw̃i, eΣ

p (i) ∆= uiΣw̃i+1 (2.6)

For Σ = I, we use the more standard notation

ea(i)
∆= eI

a(i) = uiw̃i, ep(i)
∆= eI

p(i) = uiw̃i+1

The freedom in selecting Σ will enable us to perform different kinds of analyses. For now,

Σ will simply denote an arbitrary weighting matrix.
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2.2.1 Energy-Conservation Relation

The energy relation that we seek is one that relates the energies of the following error

quantities:

{ w̃i, w̃i+1, e
Σ
a (i), eΣ

p (i) } (2.7)

To arrive at the desired relation, we pre-multiply both sides of the adaptation equation

(2.3) by uiΣ and incorporate the definitions (2.6). This results in an equality that relates

the estimation errors eΣ
a (i), eΣ

p (i), and e(i), namely,

eΣ
p (i) = eΣ

a (i)− µ

µΣ(i)
f [e(i),ui] (2.8)

where we introduced, for compactness of notation, the scalar quantity

µΣ(i) ∆=

{
1/uiΣuT

i if uiΣuT
i 6= 0

0 otherwise
(2.9)

Using (2.8), the nonlinearity f [e(i),ui] can be eliminated from (2.3), yielding the following

relation between the errors in (2.7):

w̃i+1 = w̃i − µΣ(i)uT
i [eΣ

a (i)− eΣ
p (i)]

From this equation, it follows that the weighted energies of these errors are related by

w̃T
i+1Σw̃i+1 =

(
w̃i − µΣ(i)uT

i [eΣ
a (i)− eΣ

p (i)]
)T

Σ
(
w̃i − µΣ(i)uT

i [eΣ
a (i)− eΣ

p (i)]
)

or, more compactly, after expanding and grouping terms, by the following energy-conservation

identity:

‖w̃i+1‖2
Σ + µΣ(i)

∣∣eΣ
a (i)

∣∣2 = ‖w̃i‖2
Σ + µΣ(i)

∣∣eΣ
p (i)

∣∣2 (2.10)

This result is exact for any adaptive algorithm described by (2.3), i.e., for any nonlinearity

f [·, ·], and it has been derived without any approximations. Also, no restrictions have been

imposed on the symmetric weighting matrix Σ.

The result (2.10) with Σ = I was developed in [84, 77, 85] in the context of robustness

analysis of adaptive filters, and it was later used in [61, 105, 106, 103] in the context of

steady-state and tracking analysis. The incorporation of a weighting matrix Σ allows us to

perform transient analyses as well, as we shall discuss in future sections.
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2.2.2 The Algebra of Weighted Norms

Before proceeding, it is convenient for the subsequent discussion to list some algebraic

properties of weighted norms. So let a1 and a2 be scalars and let Σ1 and Σ2 be symmetric

matrices of size M . Then the following properties hold:

1) Superposition.

a1‖w̃i‖2
Σ1

+ a2‖w̃i‖2
Σ2

= ‖w̃i‖2
a1Σ1+a2Σ2

(2.11)

2) Polarization.

(uiΣ1w̃i) (uiΣ2w̃i) = ‖w̃i‖2
Σ1uT

i uiΣ2
(2.12)

= ‖w̃i‖2
Σ2uT

i uiΣ1

3) Independence. If ui and w̃i are independent random vectors, then the polarization

property gives

E [(uiΣ1w̃i) (uiΣ2w̃i)] = E
[
‖w̃i‖2

Σ1uT
i uiΣ2

]
= E

[
‖w̃i‖2

Σ1E[uT
i ui]Σ2

]

where the last equality is true when Σ1 and Σ2 are constant matrices.

4) Linear transformation. For any N ×M matrix A,

‖Aw̃i‖2
Σ = ‖w̃i‖2

AT ΣA

5) Orthogonal transformation. If Q is orthogonal, it is easy to see that

‖QT w̃i‖2 = ‖w̃i‖2 (2.13)

6) Blindness to asymmetry. The weighted sum of squares is blind to any asymmetry in

the weight A, i.e.,

‖w̃i‖2
A = ‖w̃i‖2

AT = ‖w̃i‖2
1
2
A+ 1

2
AT (2.14)

7) Notational convention. We shall often write

‖w̃i‖2
vec(Σ1)

∆= ‖w̃i‖2
Σ1



CHAPTER 2. DATA-NORMALIZED ADAPTIVE FILTERS 17

where vec (Σ1) is obtained by stacking all the columns of Σ1 into a vector. For the

special case when Σ1 is diagonal, it suffices to collect the diagonal entries of Σ1 into

a vector and we thus write

‖w̃i‖2
diag(Σ1)

∆= ‖w̃i‖2
Σ1

2.2.3 Data-Normalized Filters

We now examine the simplifications that occur when f [·, ·] is restricted to the form (2.5).

Upon replacing eΣp (i) in (2.10) by its equivalent expression (2.8) and expanding we get

‖w̃i+1‖2
Σ = ‖w̃i‖2

Σ − 2µ
e(i)eΣ

a (i)
g[ui]

+
µ2

µΣ(i)
e2(i)
g2[ui]

(2.15)

To proceed, we replace e(i), as defined in (2.4), by

e(i) = ea(i) + v(i)

Then (2.15) becomes

‖w̃i+1‖2
Σ = ‖w̃i‖2

Σ − 2µ
ea(i)eΣ

a (i)
g[ui]

+
µ2

µΣ(i)
e2
a(i)

g2[ui]
(2.16)

−2µ

(
eΣ
a (i)

g[ui]
− µ

µΣ(i)
ea(i)
g2[ui]

)
v(i) +

µ2

µΣ(i)
v2(i)
g2[ui]

Now note that eΣ
a (i)ea(i) and e2

a(i) can be expressed as some weighted norms of w̃i. Indeed,

from (2.12), we have

ea(i)eΣ
a (i) = (uiw̃i) (uiΣw̃i) = ‖w̃i‖2

uT
i uiΣ (2.17)

and, subsequently,

e2
a(i) = ea(i)eI

a(i) = ‖w̃i‖2
uT

i ui
(2.18)
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Upon substituting (2.17) and (2.18) into (2.16), we get

‖w̃i+1‖2
Σ = ‖w̃i‖2

Σ − 2µ
1

g[ui]
‖w̃i‖2

uT
i uiΣ + µ2 ‖ui‖2

Σ
g2[ui]

‖w̃i‖2
uT

i ui

−2µ

(
eΣ
a (i)

g[ui]
− µ

µΣ(i)
ea(i)
g2[ui]

)
v(i) + µ2v2(i)

‖ui‖2
Σ

g2[ui]

This relation can be written more compactly by using the superposition property (2.11) to

group the various weighted norms of w̃i into one term, namely,

‖w̃i+1‖2
Σ = ‖w̃i‖2

Σ
′ − 2µ

(
eΣ
a (i)

g[ui]
− µ

µΣ(i)

ea(i)
g2[ui]

)
v(i) + µ2v2(i)‖ui‖2

Σ
g2[ui]

(2.19)

where

Σ′ ∆= Σ− 2µ
uT

i ui

g[ui]
Σ + µ2 ‖ui‖2

Σ
g2[ui]

uT
i ui (2.20)

The only role that Σ′ plays is a weight in the quadratic form ‖w̃i‖2

Σ
′ . Hence, and in view

of (2.14), we can replace the defining expression (2.20) for Σ′ by its symmetric part

Σ′ ∆= Σ− µ
uT

i ui

g[ui]
Σ− µΣuT

i ui

g[ui]
+ µ2 ‖ui‖2

Σ
g2[ui]

uT
i ui (2.21)

Finally, it is straightforward to conclude from the weight-error recursion

w̃i+1 = w̃i − µ
uT

i

g[ui]
[ea(i) + v(i)]

and from ea(i) = uiw̃i that

w̃i+1 =
(

I − µ
uT

i ui

g[ui]

)
w̃i − µ

uT
i

g[ui]
v(i) (2.22)

2.2.4 Weighted Variance Relation

A few comments are in place:

1. First, the pair (2.19) and (2.21) is equivalent to the energy relation (2.10) and hence

is exact.

2. This pair represents the starting point for various types of analyses of adaptive filters
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with data normalization.

3. As it stands, the energy relation (2.19)–(2.21) cannot be propagated in time since it

requires a recursion describing the evolution of ea(i). However, this complication can

be removed by introducing the following reasonable assumption on the noise sequence:

AN. The noise sequence v(i) is zero-mean, iid, and is independent of ui.

This assumption renders the third term of (2.19) zero-mean and relation (2.19) sim-

plifies under expectation to

E
[
‖w̃i+1‖2

Σ
]

= E
[
‖w̃i‖2

Σ
′
]

+ µ2σ2
vE

[
‖ui‖2

Σ
g2(ui)

]
(2.23)

Likewise, recursion (2.22) simplifies to

Ew̃i+1 = E

[(
I − µ

uT
i ui

g[ui]

)
w̃i

]
(2.24)

While the iterated relation (2.23) is compact, it is still hard to propagate since Σ′ is

dependent on the data ui, so that the evaluation of the expectation E
[
‖w̃i‖2

Σ
′
]

is

not trivial in general.

d) For this reason, we shall contend ourselves with the independence assumption:

AI. The sequence of vectors ui is independent and identically distributed.

This condition enables us to the split the expectation in (2.23) as

E
[
‖w̃i+1‖2

Σ
]

= E

[
‖w̃i‖2

E[Σ
′
]

]
+ µ2σ2

vE

[
‖ui‖2

Σ
g2(ui)

]
(2.25)

Observe that the weighting matrix for w̃i is now given by the expectation E[Σ′]. As we

shall see soon, the above equality renders the issue of transient and stability analyses

of an adaptive filter equivalent to a multivariate computation of certain moments.

In order to emphasize the fact that the weighting matrix changes from Σ to E[Σ′]

according to (2.21), we shall attach a time index to the weighting matrices and use
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(2.21) and (2.25) to write more explicitly:

E
[
‖w̃i+1‖2

Σi+1

]
= E

[
‖w̃i‖2

Σi

]
+ µ2σ2

vE

[‖ui‖2Σi+1

g2[ui]

]

where we replaced Σ by Σi+1 and E[Σ′] by Σi, which is now defined by

Σi
∆= Σi+1 − µE

[
uT

i ui

g[ui]

]
Σi+1 − µΣi+1E

[
uT

i ui

g[ui]

]
+ µ2E

[‖ui‖Σi+1

g2[ui]
uT

i ui

]

Note that this recursion runs backwards in time, and its boundary condition will

therefore be specified at ∞.

Likewise, applying the independence assumption AI to the right-hand side of (2.24),

we find that

Ew̃i+1 = E

(
I − µ

uT
i ui

g[ui]

)
· Ew̃i

with the expectation on the right-hand side of (2.24) split into the product of two

expectations.

e) Inspection of recursions (2.19) and (2.23) reveals that the iid assumption (AN) on the

noise sequence is critical. Indeed, while (2.23) can be propagated in time without the

independence assumption AI, it is not possible to do the same for (2.19). Fortunately,

assumption AN is in general reasonable.

We summarize in the following statement the variance and mean recursions that will form

the basis of our transient analysis.

Theorem 1 (Weighted-variance relation) Consider an adaptive filter of the form

wi+1 = wi + µ
uT

i

g[ui]
e(i), i ≥ 0 (2.26)

where e(i) = d(i)− uiwi and d(i) = uiw
o + v(i). Assume that the sequences {v(i),ui} are

iid and mutually independent. For any given Σi+1, it holds that

E
[
‖w̃i+1‖2

Σi+1

]
= E

[
‖w̃i‖2

Σi

]
+ µ2σ2

vE

[‖ui‖2
Σi+1

g2[ui]

]
(2.27)
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where Σi is constructed from Σi+1 via

Σi = Σi+1 − µE

[
uT

i ui

g[ui]

]
Σi+1 − µΣi+1E

[
uT

i ui

g[ui]

]
+ µ2E

[‖ui‖Σi+1

g2[ui]
uT

i ui

]
(2.28)

It also holds that the mean weight-error vector satisfies

Ew̃i+1 = E

(
I − µ

uT
i ui

g[ui]

)
· Ew̃i (2.29)

♦

The purpose of the sections that follow is to show how the above variance and mean

recursions can be used to study the transient performance of adaptive schemes with data

nonlinearities. In particular, we shall show how the freedom in selecting the weighting

matrix Σi+1 can be used advantageously to derive several performance measures.

First, however, we shall illustrate the mechanism of our analysis by considering two

special cases for which results are already available in the literature. More specifically, we

shall start with the transient analysis of LMS and normalized LMS algorithms for Gaussian

regression data in Sections 2.3 and 2.4. Once the main ideas have been illustrated in

this manner, we shall then describe our general procedure in Section 2.5, which applies to

adaptive filters with more general data normalization and also to regression data that are

not restricted to being Gaussian or white.

2.2.5 A Change of Variables

In the meantime, we remark that sometimes it is useful to employ a convenient change of

coordinates, especially when dealing with Gaussian regressors. Thus let R = EuT
i ui denote

the covariance matrix of ui and introduce its eigen-decomposition,

R = QTΛQ

where Q is orthogonal and Λ is a positive diagonal matrix with entries {λk}. Define further

wi
∆= Qw̃i, ui

∆= uiQ
T , Σi

∆= QΣiQ
T (2.30)
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In view of the orthogonal transformation property (2.13), we have

‖w̃i‖2
Σi

= ‖wi‖2

Σi

and ‖ui‖2
Σi

= ‖ui‖2

Σi

Moreover, assuming that the nonlinearity g[·] is invariant under orthogonal transformations,

i.e., g[ui] = g[ui] (e.g., g[ui] = 1 or g[ui] = ‖ui‖2), we find that the variance relation (2.27)

retains the same form, namely

E

[
‖wi+1‖2

Σi+1

]
= E

[
‖wi‖2

Σi

]
+ µ2σ2

vE

[‖ui‖2Σi+1

g2[ui]

]
(2.31)

By pre-multiplying both sides of (2.28) by Q and post-multiplying by QT , we similarly see

that (2.28) also retains the same form:

Σi = Σi+1 − µE
[
uT

i ui

g[ui]

]
Σi+1 − µΣi+1E

[
uT

i ui

g[ui]

]
+ µ2E

[‖ui‖Σi+1

g2[ui]
uT

i ui

]
(2.32)

Likewise, (2.29) becomes

Ewi+1 = E

(
I − µ

ui
Tui

g[ui]

)
· Ewi (2.33)

2.3 LMS with Gaussian Regressors

Consider the LMS algorithm for which g[ui] = 1 and assume that:

AG. The regressors {ui} arise from a Gaussian distribution with covariance matrix R.

In this case, the data dependent moments that appear in (2.31)–(2.33) are given by

E
[
uT

i ui

]
= Λ, E

[
‖ui‖2

Σi

uT
i ui

]
= 2ΣiΛ2 + Tr

(
ΣiΛ

)
Λ

Therefore, for LMS, recursions (2.31) and (2.32) simplify to

E
[
‖wi+1‖2

Σi+1

]
= E

[
‖wi‖2

Σi

]
+ µ2σ2

vE
[
‖ui‖2

Σi+1

]
(2.34)
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and

Σi = Σi+1 − µΛΣi+1 − µΣi+1Λ + 2µ2Σi+1Λ2 + µ2Tr
(
Σi+1Λ

)
Λ (2.35)

while (2.33) becomes

Ewi+1 = E (I − µΛ) · Ewi (2.36)

Now observe that in recursion (2.35), Σi will be diagonal if Σi+1 is. Therefore, in order

for all successive Σi’s to be diagonal it is sufficient to assume that the boundary condition

for the recursion for Σi is taken as diagonal. In this way, the Σi’s will be completely

characterized by their diagonal entries. This prompts us to define the column vectors

σi
∆= diag(Σi) and λ

∆= diag(Λ)

In terms of these vectors, the matrix recursion (2.35) can be replaced by the more compact

vector recursion

σi =
(
I − 2µΛ + 2µ2Λ2

)
σi+1 + µ2

(
λT σi+1

)
λ

or

σi = Fσi+1 (2.37)

where

F
∆=

(
I − 2µΛ + 2µ2Λ2

)
+ µ2λλT

The matrix F describes the dynamics by which the weighting matrices Σi evolve in time,

and its eigen-structure turns out to be essential for filter stability. Using the fact that

σi = Fσi+1, we can rewrite (2.34) using a compact vector weighting notation:

E‖wi+1‖2
σi+1

= E‖wi‖2
Fσi+1

+ µ2σ2
vE‖ui‖2

σi+1
(2.38)

Recursions (2.36), (2.37), and (2.38) describe the transient behavior of LMS, and conclusions

about mean-square stability and mean-square performance are now possible.

In transient analysis we are interested in the time evolution of the expectations {Ew̃i, E‖w̃i‖2}
or, equivalently, {Ewi, E‖wi‖2} since wi and w̃i are related via the orthogonal matrix Q.

We start with the mean behavior.
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2.3.1 Mean Behavior and Mean Stability

From (2.36) we find that the filter is convergent in the mean if, and only if, the step-size µ

satisfies

µ <
2

λmax
(2.39)

where λmax is the largest eigenvalue of R.

2.3.2 Mean-Square Behavior

The evolution of E‖w̃i‖2 = E‖wi‖2 can be deduced from the variance recursion (2.34) if

Σi+1 is chosen as Σi+1 = I (or, equivalently, Σi+1 = I). This corresponds to choosing σi+1

in (2.38) as a column vector with unit entries, denoted by

σi+1 = 1 ∆= col{1, 1, . . . , 1}

Now we can see from (2.38) that

E‖wi+1‖2 = E‖wi‖2
F1

+ µ2σ2
v

(
M∑

k=1

λk

)
(2.40)

which shows that in order to evaluate E‖wi+1‖2 we need E‖wi‖2
F1

with a weighting matrix

equal to F1. Now E‖wi+1‖2
F1

can be deduced from (2.38) by setting σi+1 = F1, i.e.,

E‖wi+1‖2
F1

= E‖wi‖2

F
2
1

+ µ2σ2
v

(
λT F1

)
(2.41)

Again, in order to evaluate E‖wi+1‖2
F1

we need E‖wi‖2

F
2
1
, with weighting F

21. This term

can be deduced from (2.38) by choosing σi+1 = F
21:

E‖wi+1‖2

F
2
1

= E‖wi‖2

F
3
1

+ µ2σ2
v

(
λT F

21
)

(2.42)

and a new term with weighting matrix F
31 appears. Fortunately, this procedure termi-

nates in view of the Cayley-Hamilton theorem. Thus let p(x) = det(xI − F ) denote the

characteristic polynomial of F ; it is an M−th order polynomial in x,

p(x) = xM + pM−1x
M−1 + pM−2x

M−2 + . . . + p1x + p0
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with coefficients {pk}. The Cayley-Hamilton theorem states that every matrix satisfies its

characteristic equation, i.e., p(F ) = 0, which allows us to conclude that

E‖wi+1‖2

F
M

1
=

M−1∑

k=0

−pkE‖wi+1‖2

F
k
1

(2.43)

We can now collect the above results into a single recursion by writing (2.40)–(2.43) as:




E‖wi+1‖2
1

E‖wi+1‖2
F1

E‖wi+1‖2

F
2
1

...

E‖wi+1‖2

F
(M−2)

1

E‖wi+1‖2

F
(M−1)

1




︸ ︷︷ ︸
=Wi+1

=




0 1

0 0 1

0 0 0 1
...

0 0 0 1

−p0 −p1 −p2 . . . −pM−1




︸ ︷︷ ︸
=F




E‖wi‖2
1

E‖wi‖2
F1

E‖wi‖2

F
2
1

...

E‖wi‖2

F
(M−2)

1

E‖wi‖2

F
(M−1)

1




+ µ2σ2
v




λT1

λT F1

λT F
21

...

λT F
M−11




︸ ︷︷ ︸
Y

If we define the vector and matrix quantities {Wi,F ,Y} as indicated above, then the re-

cursion can be rewritten more compactly as

Wi+1 = FWi + µ2σ2
vY (2.44)

We therefore find that the transient behavior of LMS is described by the M−dimensional

state-space recursion (2.44) with coefficient matrix F .2 The evolution of the top entry ofWi

corresponds to the mean-square deviation of the filter. Observe further that the eigenvalues

of F coincide with those of F .

It is worth remarking that the same derivation that led to (2.44) with Wi defined in
2To be more precise, the transient behavior of LMS is described by the combination of both (2.44) and

recursion (2.36).
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terms of the unity vector 1, can be repeated for any other choice of σi+1, say σi+1 = σ

for some σ, to conclude that the same recursion (2.44) still holds with 1 replaced by σ.

For instance, if we choose σ = λ, then the top entry of the resulting state vector Wi

will correspond to the learning curve of the adaptive filter. In Subsection 2.5.2 we shall

use this remark to describe more fully the learning behavior of adaptive filters with data

normalization.

2.3.3 Mean-Square Stability

From the results in the above two subsections, we conclude that the LMS filter will be stable

in the mean and mean-square senses if, and only if, µ satisfies (2.39) and guarantees the

stability of the matrix F (i.e., all the eigenvalues of F should lie inside the unit circle).

Since F is easily seen to be nonnegative definite in this case, we only need to worry about

guaranteeing that its eigenvalues be smaller than unity.

Let us write F in the form

F = I − µA + µ2B

where the matrices A and B are both positive-definite and given by

A
∆= 2Λ, B

∆= 2Λ2 + λλT (2.45)

It follows from the argument in Appendix A that the eigenvalues of F will be upper bounded

by one if, and only if, the parameter µ satisfies

0 < µ <
1

λmax

(
A−1B

) (2.46)

in terms of the maximum eigenvalue of A−1B (all eigenvalues of A−1B are real and posi-

tive). The above upper bound on µ can also be interpreted as the smallest positive scalar

η that makes (I − ηA−1B) singular. Let us denote this value of η by ηo. Combining (2.46)

with (2.39) we find that µ should satisfy

0 < µ < min{2/λmax(R), ηo}

We can be more specific about ηo and show that it is smaller than 1/λmax(R). Actually, we

can characterize ηo in terms of the eigenvalues of R as follows. Using the definitions (2.45)
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for A and B, it can be verified that for all η ∈ (0, 1/λmax),

det
(
I − ηA−1B

)
=

(
1− λT

2
[
η−1I −Λ

]−1 1
)
· det (I − ηΛ)

The values of η ∈ (0, 1/λmax) that result in det
(
I − ηA−1B

)
= 0 should therefore satisfy

λT

2
(
2η−1I −Λ

)−1 1 = 1

i.e.,
1
2

M∑

k=1

λkη

1− ηλk
= 1

This equality has a unique solution ηo inside the interval (0, 1/λmax). This is because the

function

f(η) ∆=
1
2

M∑

k=1

λkη

1− ηλk
= 1

is monotonically increasing in the interval (0, 1/λmax). Moreover, it evaluates to 0 at η = 0

and becomes unbounded as η → 1/λmax. We therefore conclude that LMS is stable in the

mean- and mean-square senses for all step-sizes µ satisfying

1
2

∑M
k=1

(
λkµ

1− µλk

)
< 1

2.3.4 Steady-State Performance

Once filter stability has been guaranteed, we can proceed to derive expressions for the

steady-state value of the mean-square error (MSE) and the mean-square deviation (MSD).

To this end, note that in steady-state, we have that for any vector σ

lim
i→∞

E‖wi+1‖2
σ = lim

i→∞
E‖wi‖2

σ

Thus, in the limit, (2.38) leads to

lim
i→∞

E‖wi‖2
(I−F )σ∞ = µ2σ2

vE‖ui‖2
σ∞ (2.47)
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Here, Σ∞ = diag(σ∞) denotes the boundary condition of the recursion (2.32), which we

are free to choose.

Now, in order to evaluate the MSE, we first recall that it is defined by

MSE = lim
i→∞

Ee2
a(i)

which, in view of the independence assumption AI, is also given by

MSE = lim
i→∞

E‖wi‖2
λ

This is because

Ee2
a(i) = E‖w̃i‖uT

i ui
= E‖w̃i‖R = E‖wi‖2

λ

Therefore, to obtain the MSE, we should choose σ∞ in (2.47) so that
(
I − F

)
σ∞ = λ, in

which case we get

MSE = µ2σ2
vE

[
‖ui‖2

(I−F )−1λ

]
(2.48)

A more explicit expression for the MSE can be obtained by using the matrix inversion

lemma to evaluate the matrix inverse that appears in (2.48). Doing so leads to the well-

known result:

MSE =
σ2

v

∑M
i=1

µλi
2−2µλi

1−∑M
i=1

µλi

2−2µλi

The MSD can be calculated along the same lines by noting that

MSD = lim
i→∞

E‖w̃i‖2 = lim
i→∞

E‖wi‖2
I = lim

i→∞
E‖wi‖2

1

The above means that in order to obtain an expression for the MSD we should now choose

σ∞ in (2.47) such that σ∞ =
(
I − F

)−1 1, which yields

MSD = µ2σ2
vE

[
‖ui‖2

(I−F )−11

]

Just like the expression for the MSE, we can use the matrix inversion lemma to get an

explicit expression for (I − F )−1 1 and subsequently for the MSD,

MSD =
σ2

v

∑M
i=1

µ
2−2µλi

1−∑M
i=1

µλi

2−2µλi
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Both of these steady-state expressions were derived in [36]. Here we arrived at the ex-

pressions as a byproduct of a framework that can also handle a variety of data-normalized

adaptive filters (see Section 2.5). In addition, observe how the expressions for MSE and

MSD can be obtained simply by conveniently choosing different values for the boundary

condition σ∞.

2.4 Normalized LMS with Gaussian Regressors

We now consider the normalized LMS algorithm, for which g(ui) = ε + ‖ui‖2 with ε ≥ 0.

For this choice of g(ui), recursion (2.32) becomes

Σi = Σi+1 − µE

[
uT

i ui

ε + ‖ui‖2

]
Σi+1 (2.49)

−µΣi+1E

[
uT

i ui

ε + ‖ui‖2

]
+ µ2E




‖ui‖2

Σi+1

(ε + ‖ui‖2)2
uT

i ui




Progress in the analysis is now pending on the evaluation of the moments

A ∆= 2E

[
uT

i ui

ε + ‖ui‖2

]
, B′ ∆= E



‖ui‖2

Σi+1

uT
i ui

(ε + ‖ui‖2)2


 (2.50)

Although the individual elements of ui are independent, no closed form expressions for A

and B′ are available. However, we can carry out the analysis in terms of these matrices as

follows. First, we argue in Appendix B that A is diagonal. We also show that if Σi+1 is

diagonal, then so is B′ and that

diag
(
B′) = B diag

(
Σi+1

)

where B is the diagonal matrix

B = E

[
(ui ¯ ui)

T (ui ¯ ui)
(ε + ‖ui‖2)2

]
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Here, the notation ¯ denotes an element-by-element (Hadamard) product.3 Thus, the

successive Σi’s in recursion (2.49) will also be diagonal if the boundary condition is. Sub-

sequently, as in the LMS case, we can again obtain a recursive relation for their diagonal

entries of the form σi = Fσi+1, where F retains the same form, namely,

F = I − µA + µ2B

Mean-square stability now requires that the step-size µ be chosen such that F is a stable

matrix (i.e., all its eigenvalues should be strictly inside the unit circle). For NLMS, it can

be verified that µ < 2 is a sufficient condition for this fact to hold, as can be seen from the

following argument.

Choosing Σi+1 = I we have

E‖wi+1‖2 = E‖wi‖2

Σi

+ µ2σ2
vE

[ ‖ui‖2

(ε + ‖ui‖2)2

]

and

Σi = I − µA + µ2B′

Obviously, B′ ≤ A/2 so that

Σi ≤ I − µA + µ2A/2

and, hence,

E‖wi+1‖2 ≤ E
[
wT

i (I − µA + µ2A/2)wi

]
+ µ2σ2

vE

[ ‖ui‖2

(ε + ‖ui‖2)2

]

Now it is clear that 0 < λ(A/2) < 1. Moreover, over the interval 0 < µ < 2, it holds that

I − µA + µ2A/2 ≤ (1− 2µλmin(A/2) + µ2λmin(A/2))︸ ︷︷ ︸
α

I

from which we conclude that

E‖wi+1‖2 ≤ αE‖wi‖2 + µ2σ2
vE

[ ‖ui‖2

(ε + ‖ui‖2)2

]

3For two row vectors {x,y}, the quantity x¯ y is a row vector with elementwise products — see [59].
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where the scalar coefficient α is positive and strictly less than one for 0 < µ < 2. It follows

that E‖wi‖2 remains bounded for all i, as desired. It is also straightforward to verify from

Ewi+1 =
[
I − µE

(
ui

Tui

ε + ‖ui‖2

)]
· Ewi

that µ < 2 guarantees filter stability in the mean as well (just note that ui
Tui/(ε + ‖ui‖2)

is a rank-one matrix whose largest eigenvalue is smaller than one).

Finally, repeating the discussion we had for the steady-state performance of LMS, we

arrive at the following expressions for the MSE and MSD of normalized LMS:

MSE = µ2σ2
vE

[‖ui‖2
(I−F )−1λ

ε + ‖ui‖2

]

MSD = µ2σ2
vE

[‖ui‖2
(I−F )−11

ε + ‖ui‖2

]

These expressions hold for arbitrary colored Gaussian regressors.

The presentation so far illustrates how the energy-conservation approach can be used to

perform transient analysis of LMS and its normalized version. Our contribution lies in the

ability to perform the analysis in a unified manner. This can be appreciated, for example,

by comparing the analysis of the normalized LMS algorithm in [92, 76, 90, 15, 13] with

the analysis in the previous section. A substantial part of prior studies is often devoted

to studying the multivariate moments of (2.50), and as a result, eventually resort to some

whiteness assumption on the data. Our derivation bypasses this requirement. Moreover,

earlier approaches do not seem to handle non-Gaussian regression data, which is discussed

later in Section 2.5.

2.5 Data-Normalized Filters

We now consider general data-normalized adaptive filters of the form (2.26) and drop the

Gaussian assumption AG. The analysis that follows shows how to extend the discussions of

the previous two sections to this general scenario.

Our starting point are the mean and variance relations (2.27), (2.28), and (2.29).
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2.5.1 Mean-Square-Analysis

For arbitrary regression data, we can no longer guarantee that the data moments

E

[
uT

i ui

g[ui]

]
, E

[‖ui‖2
ΣuT

i ui

g2[ui]

]

are jointly diagonalizable (as we had, for example, in the case of LMS with Gaussian re-

gressors). Consequently, Σi need not be diagonal even if Σi+1 is, i.e., these matrices can no

more be fully characterized by their diagonal elements alone. Still, we can perform mean-

square analysis by replacing the diag operation with the vec operation, which transforms a

matrix into a column vector by stacking all its columns on top of each other.

Let

σi+1
∆= vec (Σi+1)

Then using the Kronecker product notation (e.g., [59]) and the following property, for

arbitrary matrices {P , Q,Σ},

vec(PΣQ) = (QT⊗P)vec(Σ)

it is straightforward to verify that the recursion (2.28) for Σi transforms into the linear

vector relation

σi = Fσi+1

where the coefficient matrix F is now M2 ×M2 and is given by

F
∆= I − µA + µ2B (2.51)

with the M2 ×M2 symmetric matrices {A, B} defined by

A =
(

E

[
uT

i ui

g[ui]

]
⊗IM

)
+

(
IM⊗E

[
uT

i ui

g[ui]

])

B = E

[
uT

i ui⊗uT
i ui

g2[ui]

]

In particular, A is positive-definite and B is nonnegative-definite. Introduce also the M×M

matrix

P
∆= E

[
uT

i ui

g[ui]

]
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which appears in the mean weight-error recursion (2.29) and in the expression for A.

It follows that, in terms of the vec notation, the variance relation (2.27) becomes

E
[
‖w̃i+1‖2

σi+1

]
= E

[
‖w̃i‖2

Fσi+1

]
+ µ2σ2

vE

[
‖ui‖2

σi+1

g2[ui]

]
(2.52)

Now, contrary to the Gaussian LMS case, the matrix F is no longer guaranteed to be

nonnegative-definite. It is shown in Appendix A that the condition −1 < λ(F ) < 1 can be

enforced for values of µ in the range:

0 < µ < min

{
1

λmax(A−1B)
,

1
max

{
λ(L) ∈ IR+

}
}

(2.53)

where the second condition is in terms of the largest positive real eigenvalue of the following

block matrix,

L
∆=

[
A/2 −B/2

IM 0

]

when it exists. Since L is not symmetric, its eigenvalues may not be positive or even real. If

L does not have any real positive eigenvalue, then the corresponding condition is removed

from (2.53) and we only require µ < 1/λmax(A−1B). Condition (2.53) can be grouped

together with the requirement µ < 2/λmax(P ), which guarantees convergence in the mean,

so that

µ < min

{
2

λmax(P )
,

1
λmax(A−1B)

,
1

max
{
λ(L) ∈ IR+

}
}

(2.54)

Moreover, the same argument that we used in the LMS case in Section 2.3 would show that

the transient behavior of data-normalized filters is characterized by the M2-dimensional

state-space model:4

Wi+1 = FWi + µ2σ2
vY (2.55)

4Observe how the order of the model, in the general case, is M2 and not M as was the case in the previous
two sections with Gaussian regressors.
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where

F =




0 1

0 0 1

0 0 0 1
...

0 0 0 1

−p0 −p1 −p2 . . . −pM2−1




with

p(x) ∆= det(xI − F ) = xM2
+

M2−1∑

k=0

pkx
k

denoting the characteristic polynomial of F . Also, Wi and Y are the M2 × 1 vectors

Wi
∆=




E‖w̃i‖2
σ

E‖w̃i‖2
Fσ

E‖w̃i‖2
F 2σ

...

E‖w̃i‖2
F (M2−1)σ




, Y =




E
(‖ui‖2

σ/g2[ui]
)

E
(‖ui‖2

Fσ/g2[ui]
)

E
(‖ui‖2

F 2σ/g2[ui]
)

...

E
(
‖ui‖2

F (M2−1)σ
/g2[ui]

)




for any σ of interest, e.g., more commonly, σ = 1 or σ = r, where r = vec(R).

Moreover, steady-state analysis can be carried out along the same lines of Subsec-

tion 2.3.4. Thus, assuming the filter reaches steady-state, recursion (2.52) becomes in

the limit

lim
i→∞

E‖w̃i‖2
(I−F )σ∞ = µ2σ2

vE

[
‖ui‖2

σ∞
g2[ui]

]

in terms of the boundary condition σ∞, which we are free to choose. This expression

allows us to evaluate the steady-state value of E‖w̃i‖2
S for any symmetric weighting S, by

choosing σ∞ such that (I − F )σ∞ = vec(S). In particular, the EMSE corresponds to the

choice S = R, i.e., σ∞ = (I − F )−1vec(R). Likewise, the MSD is obtained by choosing

S = I, i.e., σ∞ = (I−F )−1vec(I). We summarize these results in the following statement,

which holds for arbitrary input distributions and scalar data nonlinearities.

Theorem 2 (Scalar nonlinearities) Consider an adaptive filter of the form

wi+1 = wi + µ
uT

i

g[ui]
e(i), i ≥ 0
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where e(i) = d(i)− uiwi and d(i) = uiw
o + v(i). Assume that the sequences {v(i),ui} are

iid and mutually independent. Then the filter is stable in the mean and mean-square senses

if the step-size µ satisfies (2.54). Moreover, the resulting EMSE and MSD are given by

EMSE = µ2σ2
vE

[‖ui‖2
(I−F )−1vec(R)

g2[ui]

]

MSD = µ2σ2
vE

[‖ui‖2
(I−F )−1vec(I)

g2[ui]

]

where F is defined by (2.51).

♦

2.5.2 Learning Curves

The learning curve of an adaptive filter refers to the time evolution of Ee2
a(i); its steady-

state value is the MSE. Now since Ee2
a(i) = E‖w̃i‖2

R, the learning curve can be evaluated

by computing E‖w̃i‖2
R for each i. This task can be accomplished recursively from relation

(2.52) by choosing the boundary condition σi+1 as r = vec(R). Indeed, iterating (2.52)

with this choice of σi+1, and assuming wo = 0, we find that

E‖w̃i+1‖2
r = ‖wo‖2

F i+1r + µ2σ2
vE

[‖ui‖2
(I+F+···+F i)r

g2[ui]

]

that is,

E‖w̃i+1‖2
r = ‖wo‖2

ai
+ µ2σ2

vbi

where the vector ai and the scalar bi satisfy the recursions

ai = Fai−1, a−1 = r

bi = bi−1 + E

[
‖ui‖2

ai−1

g2[ui]

]
, b−1 = 0

Using these definitions for {ai, bi}, it is easy to verify that

Ee2
a(i) = Ee2

a(i− 1) + ‖wo‖2
F i(F−I)r

+ µ2σ2
vE

[
‖ui‖2

F ir

g2[ui]

]
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which describes the learning curve of a data-normalized adaptive filter.

2.6 Matrix Nonlinearities

In this section we extend the earlier results to the case in which the function g[ui] is matrix-

valued rather than scalar-valued. To motivate this extension, consider the sign-regressor

algorithm (e.g., [34]):

wi+1 = wi + µsgn[ui]T e(i)

where the sgn operates on the individual elements of ui. This is in contrast to the discussions

in the previous sections where all the elements of ui were normalized by the same data

nonlinearity. Other examples of matrix nonlinearities can be found, e.g., in [14, 33, 42].

The above update is a special case of more general updates of the form:

wi+1 = wi + µH[ui]uT
i e(i) (2.56)

where H[ui] denotes an M ×M matrix nonlinearity.

2.6.1 Energy Relation

We first show how to extend the energy relation of Theorem 1 to the more general class

of algorithms (2.56) with matrix data nonlinearities. Our starting point is the adaptation

equation (2.56), which can be written in terms of the weight error vector w̃i as

w̃i+1 = w̃i − µH[ui]uT
i e(i) (2.57)

By pre-multiplying both sides of (2.57) by uiΣ, we see that the estimation errors eΣ
a (i),

eΣ
p (i), and e(i) are related by

eΣ
p (i) = eΣ

a (i)− µ‖ui‖2
ΣH

e(i) (2.58)

Moreover, the two sides of (2.57) should have the same weighted-energy, i.e.,

w̃T
i+1Σw̃i+1 =

(
w̃i − µH[ui]uT

i e(i)
)T

Σ
(
w̃i − µH[ui]uT

i e(i)
)
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so that

‖w̃i+1‖2
Σ = ‖w̃i‖2

Σ − 2µe(i)uiH[ui]Σw̃i + µ2e2(i)uiH[ui]ΣH[ui]uT
i

= ‖w̃i‖2
Σ − 2µeHΣ

a (i)e(i) + µ2e2(i)‖ui‖2
HΣH

(2.59)

This form of the energy relation is analogous to (2.15). As it stands, (2.59) is just what

we need for mean-square analysis. For completeness, though, we develop a cleaner form

of (2.59) – a form similar to (2.10). To this end, notice that upon replacing Σ by HΣ in

(2.58), we get

µ‖ui‖2
HΣH

e(i) = eHΣ
a (i)− eHΣ

p (i)

or, by incorporating the defining expression (2.9) of µ(·)(i),

µe(i) = µHΣH(i)
(
eHΣ
a (i)− eHΣ

p (i)
)

(2.60)

Substituting (2.60) into (2.59) produces the desired energy relation form

‖w̃i+1‖2
Σ + µHΣH(i)

∣∣eHΣ
a (i)

∣∣2 = ‖w̃i‖2
Σ + µHΣH(i)

∣∣eHΣ
p (i)

∣∣2

2.6.2 Mean-Square Analysis

To perform mean-square analysis, we start with (2.59). Bearing in mind the independence

assumption on the noise AN and the fact that e(i) = ea(i) + v(i), (2.59) reads under

expectation

E‖w̃i+1‖2
Σi+1

= E‖w̃i‖2
Σi+1

− 2µE
[
e
HΣi+1
a (i)ea(i)

]
+

µ2E
[
e2
a(i)‖ui‖2

HΣi+1H

]
+ µ2σ2

vE
[
‖ui‖2

HΣi+1H

]

where the weight Σ was replaced by the time-indexed weight Σi+1. If we further invoke the

polarization identity (2.12), we get

e
HΣi+1
a (i)ea(i) = ‖w̃i‖2

Σi+1HuT
i ui

= ‖w̃i‖2
uT

i uiHΣi+1
and e2

a(i) = ‖w̃i‖2
uT

i ui

These equations, together with the linearity property (2.11) and the independence assump-

tion AI, yield the following result.
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Theorem 3 (Matrix nonlinearities) Consider an adaptive filter of the form

wi+1 = wi + µH[ui]uT
i e(i), i ≥ 0

where e(i) = d(i)− uiwi and d(i) = uiw
o + v(i). Assume that the sequences {v(i),ui} are

iid and mutually independent. Then it holds that

E‖w̃i+1‖2
Σi+1

= E‖w̃i‖2
Σi

+ µ2σ2
vE

[
‖ui‖2

HΣi+1H

]
(2.61)

where

Σi = Σi+1 − µΣi+1E
[
HuT

i ui

]− µE
[
uT

i uiH
]
Σi+1 + µ2E

[
‖ui‖2

HΣi+1H
uT

i ui

]
(2.62)

In addition, the stability condition and the MSE and MSD expressions of Theorem 2 apply

here as well with {A, B} replaced by

A =
(
E[uT

i uiH]⊗I
)

+
(
I⊗E[uT

i uiH]
)

B = E[uT
i uiH⊗uT

i uiH]

Moreover, the construction of the learning curve in Subsection 2.5.2 also extends to this

case.

♦

Compared with some earlier studies (e.g., [34, 27, 14]), the above results hold without

restricting the regression data to being Gaussian or white.

2.6.3 The Sign-Regressor Algorithm

To illustrate the application of the above results, we return to the sign-regressor recursion

wi+1 = wi + µsgn[ui]T e(i)

In this case, the matrix nonlinearity H[ui] is implicitly defined by the identity:

uiH[ui] = sgn[ui]
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which in turn means that relations (2.61) and (2.62) become

E‖w̃i+1‖2
Σi+1

= E‖w̃i‖2
Σi

+ µ2σ2
vE

[
‖sgn[ui]‖2

Σi+1

]
(2.63)

and

Σi = Σi+1 − µΣi+1E
[
sgn[ui]Tui

] − µE
[
uT

i sgn[ui]
]
Σi+1 + µ2E

[
‖sgn[ui]‖2

Σi+1
uT

i ui

]

Assume that the individual entries of the regressor ui have variance σ2
u. Assume also that

ui has a Gaussian distribution. Then it follows from Price’s theorem [74] that5

E
[
sgn[ui]Tui

]
=

√
2

πσ2
u

R

which leads to

Σi = Σi+1 − µ

√
2

πσ2
u

Σi+1R− µ

√
2

πσ2
u

RΣi+1 + µ2E
[
‖sgn[ui]‖2

Σi+1
uT

i ui

]
(2.64)

Now observe that ‖sgn[ui]‖2
Σi+1

= Tr(Σi+1) whenever Σi+1 is diagonal. Thus assume we

choose Σi+1 = I. Then the expression for Σi becomes

Σi = I + µ

(
µM − 2

√
2

πσ2
u

)
R

while (2.63) becomes

E‖w̃i+1‖2 = E‖w̃i‖2
Σi

+ µ2σ2
vM (2.65)

It is now easy to verify that E‖wi+1‖2 converges provided that λmax(Σi) < 1 or, equiva-

lently,

µ <

√
8

πσ2
u

1
M

This is the same condition derived in [34].
5The theorem can be used to show that for two jointly zero-mean Gaussian real-valued random variables

x and y, it holds that E (xsgn(y)) =
√

2
π

1
σy

E (xy).



CHAPTER 2. DATA-NORMALIZED ADAPTIVE FILTERS 40

To evaluate the MSE we observe from (2.65) that, in steady-state,

µ

(
2

√
2

πσ2
u

− µM

)
lim
i→∞

E‖wi‖2
R = µ2σ2

vM

so that

MSE =
µσ2

vM√
8

πσ2
u
− µM

which is again the same expression from [34].

2.7 Simulations

Throughout this section, the system to be identified is an FIR channel of length 4. The

input u(i) is generated by passing an iid uniform process x(i) through a first-order model,

u(i) = au(i− 1) + x(i) (2.66)

By varying the value of a, we obtain processes u(i) of different colors. We simulate the

choices a = 0.2 and a = 0.9. The input sequence that is feeding the adaptive filter therefore

has a correlated uniform distribution. The output of the channel is contaminated by an iid

Gaussian additive noise at an SNR level of 30 dB.

Figures 2.1 and 2.2 show the resulting theoretical and simulated learning and MSD

curves for both cases of a = 0.2 and a = 0.9. The simulated curves are obtained by

averaging over 200 experiments, while the theoretical curves are obtained from the state-

space model (2.55). It is seen that there is a good match between theory and practice.

Figure 2.3 examines the stability bound (2.54); it plots the filter EMSE as a function of

the step-size using the theoretical expression from Theorem 2, in addition to a simulated

EMSE. The bound on the step-size is also indicated.

2.8 Concluding Remarks

In this chapter, we developed a framework for the transient analysis of adaptive filters with

general data nonlinearities (both scalar-valued and matrix-valued). The approach relies

on energy conservation arguments. By suitably choosing the boundary condition of the
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Figure 2.1: Theoretical and simulated learning and MSD curves for LMS using correlated uniform
input data and a = 0.2
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Figure 2.2: Theoretical and simulated learning curves for LMS using correlated uniform input data
and a = 0.9

weighting matrix recursion, we can obtain MSE and MSD results, and also conditions for

mean-square stability. We may add that extensions to leaky algorithms and to tracking
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Figure 2.3: Theoretical and simulated EMSE vs. µ for LMS as a function of the step-size for
correlated uniform input with a = 0.2

analysis are possible and are treated in, e.g., [4, 83].

2.9 APPENDIX A: Condition for Mean-Square Stability

Consider the matrix form F = I − µA + µ2B with A > 0, B ≥ 0, and µ > 0. We would

like to determine conditions on µ in order to guarantee that the eigenvalues of F satisfy

−1 < λ(F ) < 1.

First, in order to guarantee λ(F ) < 1, the step-size µ should be such that F < I or,

equivalently, A−µB > 0. This condition is equivalent to requiring I−µA−1/2BA−∗/2 > 0.

But since the matrices A−1B and A−1/2BA−∗/2 are similar, we conclude that µ should

satisfy µ < 1/λmax(A−1B).

In order to enforce λ(F ) > −1, the step-size µ should be such that G(µ) = 2I − µA +

µ2B > 0. When µ = 0, the eigenvalues of G are positive and equal to 2. As µ increases, the

eigenvalues of G vary continuously with µ. Therefore, an upper bound on µ that guarantees

G(µ) > 0 is determined by the smallest µ that makes G(µ) singular.
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Now the determinant of G(µ) is equal to the determinant of the block matrix

K(µ) ∆=

[
2I − µA µB

−µI I

]

Moreover, since

K(µ) =

[
2I 0

0 I

] ([
I 0

0 I

]
− µ

[
A/2 −B/2

I 0

])

the condition det(K(µ)) = 0 is equivalent to det(I − µL) = 0, where

L
∆=

[
A/2 −B/2

I 0

]

In this way, the smallest positive µ that results in det(K(µ)) = 0 is given by

µ <
1

max
{
λ(L) ∈ IR+

}

This condition is in terms of the largest positive real eigenvalue of L when it exists. It

follows that the following range of µ guarantees a stable F ,

0 < µ < min

{
1

λmax(A−1B)
,

1
max

{
λ(L) ∈ IR+

}
}

2.10 APPENDIX B: A and B′ of (2.50) are Diagonal

An off-diagonal entry of A has the form

Ajk = E

[
2uijuik

ε + ‖ui‖2

]
i 6= k

Now
2uT

ij
uik

ε+‖ui‖2 is an odd function of uik which has an even (Gaussian) pdf and is independent

of the other elements of ui. Thus, E
[

uik
uik

ε+‖ui‖2 | uij

]
= 0 and hence Ajk is zero too. So, A

is diagonal. A similar argument can be used to prove that B′ is diagonal. Now the kth
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diagonal entry of B′ can be written as

B′
kk = E




u2
ik
‖ui‖2

Σi

(ε + ‖ui‖2)2




= E

[
u2

ik

(ε + ‖ui‖2)2
ui ¯ ui

]
diag

(
Σi+1

)

It follows that

diag
(
B′) = B diag

(
Σi+1

)

where

B = E

[
(ui ¯ ui)

T (ui ¯ ui)
(ε + ‖ui‖2)2

]



Chapter 3

Transient Analysis of Adaptive

Filters with Error Nonlinearities

3.1 Introduction

1In this chapter, we show how to extend the same energy-based approach employed in Chap-

ter 2 to the transient analysis of adaptive filters that involve error nonlinearities in their

update equations (e.g., [43, 100, 60]). This class of algorithms is among the most difficult

to analyze, and it is not uncommon to resort to different methods and assumptions with

the intent of performing tractable analyses. Before discussing the features of the approach

proposed herein and its contributions, we provide, as a motivation, a summary of selected

techniques that have been employed earlier in the literature for the study of such algorithms.

a) Linearization (e.g., [31, 98, 41, 86]). In this method of analysis, the error nonlinearity is

linearized around an operating point and higher-order terms are discarded. Analyses that

are based on this technique fail to accurately describe the adaptive filter performance for

large values of the error, e.g., at early stages of adaptation.

b) Restricted classes of nonlinearities (e.g., [63, 16, 17, 35, 23, 91, 22]). Here, the anal-

ysis is restricted to particular classes of algorithms such as the sign-LMS algorithm, the

least-mean mixed-norm (LMMN) algorithm, the least-mean fourth (LMF) algorithm, and
1A major part of this chapter is reproduced, with permission, from T. Y. Al-Naffouri and A. H. Sayed,

“Transient analysis of adaptive filters with error nonlinearities,” IEEE Transactions on Signal Processing,
vol. 51, No. 3, pp. 653-663, Mar. 2003.

45
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error saturation nonlinearities. By limiting the study to a specific nonlinearity or to a class

of nonlinearities, it is possible to avoid linearization and the analysis results become more

accurate.

c) Assumptions on the statistics of the errors. While it is common to impose statistical

assumptions on the regression and noise sequences, similar conditions can also be imposed

on error quantities. For example, in studying the sign-LMS algorithm, it was assumed in

[49] that the elements of the weight-error vector are jointly Gaussian. This assumption was

shown in [87] to be valid asymptotically. More accurate is the assumption that the residual

error is Gaussian [31, 17], or that its conditional value is [63, 16]. By central limit argu-

ments, this assumption is justified for long adaptive filters [31, 17]. More importantly, this

assumption is as valid in the early stages as in the final stages of adaptation. For shorter

filters, exact expectation analysis can be employed as in [37, 30, 69].

d) A restricted class of inputs. It is common to assume that the input sequence is white

and/or has a Gaussian distribution (e.g., [31, 41, 63, 16, 17, 35, 23, 38, 36, 76]).

e) Independence assumption. It is even more common to assume that the successive regres-

sors are independent in what is widely known as the independence assumptions [43], [64].

Despite being unrealistic, the independence assumptions are among the most heavily used

assumptions in adaptive filtering analysis.

f) Gaussian noise. Noise is sometimes restricted to be iid Gaussian as in [31], [63], [49],

and [12], although Gaussianity is not as common as the previous assumptions. Surprisingly

perhaps, the iid assumption on the noise is almost indispensable even for the analysis of the

simplest of adaptive algorithms.

3.1.1 The Approach of this Chapter

In this chapter, we develop an approach that applies to arbitrary error nonlinearities irre-

spective of the input color and statistics. The arguments assume that the adaptive filter is

long enough to justify the following approximations:

(i) The residual error ea(i), to be defined in (3.5) further ahead, can be assumed to be

Gaussian.
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(ii) The norm of the input regressor can be assumed to be uncorrelated with f2[e(i)], the

square of the error nonlinearity to be defined in (3.1) further ahead.

Both of these assumptions are realistic for longer adaptive filters (see, e.g., the simulation

results in Subsection 3.5.1). Fortunately, they are also realistic in all stages of adaptation

(including the early stages).

3.1.2 Organization of the Chapter

The outline of this chapter is as follows. We set the stage in the next section by introducing

adaptive filters that employ error nonlinearities. The energy relation is used in Section 3.3

to derive a general recursion that describes the mean-square evolution (i.e., learning curve)

of an adaptive filter with error nonlinearity. To achieve this result, we rely on the long filter

assumptions, which are formally introduced in this section. The independence assumption

turns out to be useful in constructing the dynamical relation. In Section 3.4, we show that

the excess mean-square error (EMSE) of an adaptive filter with error nonlinearity can be

obtained as the fixed point of a nonlinear function. We present our simulations in Section 3.5

and conclude in Section 3.6.

3.2 Adaptive Algorithms with Error Nonlinearity

As described in Chapter 2, an adaptive filter attempts to identify a weight vector wo, of

length M , by using a sequence of row regressors {ui}, also of length M , and output samples

{d(i)} that are related via

d(i) = uiw
o + v(i)

where v(i) accounts for measurement noise and modelling errors. In this chapter, we con-

tinue to consider the class of adaptive algorithms described by (2.1) and (2.2) and repro-

duced here for convenience

wi+1 = wi + µuT
i f [e(i)], i ≥ 0 (3.1)

e(i) ∆= d(i)− uiwi = uiw
o − uiwi + v(i) (3.2)

where wi is the estimate of w at time i, µ is the step size. However, we restrict our attention

here to pure error nonlinearities, as one can infer from the adaptation equation. Table 3.1
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Table 3.1: Examples of error nonlinearities f [e(i)]
Algorithm Error nonlinearities f [e(i)]

LMS e(i)
LMF e3(i)

LMF family e2k+1(i)
LMMN ae(i) + be3(i)

Sign error sgn[e(i)]

Sat. nonlin.
∫ e(i)
0 exp

(
− z2

2σ2
sat

)
dz

lists some common adaptive algorithms and their corresponding error nonlinearities.2

Given an adaptive filter of the family (3.1), we are interested in studying the time-

evolution and the steady-state values of the variances

E|e(i)|2 and E‖w̃i‖2 (3.3)

where w̃i stands for the weight-error vector

w̃i = wo −wi

As explained in Subsection 2.2.1, we perform this study by relying on the energy conserva-

tion relationship (2.10) reproduced here for convenience

‖w̃i+1‖2
Σ + µΣ(i)

∣∣eΣ
a (i)

∣∣2 = ‖w̃i‖2
Σ + µΣ(i)

∣∣eΣ
p (i)

∣∣2 (3.4)

where the weighted errors eΣa (i) and eΣp (i) are the a priori and posteriori errors respectively

and are defined by

eΣa (i) ∆= uiΣw̃i, eΣp (i) ∆= uiΣw̃i+1 (3.5)

We can show that the estimation errors eΣa (i), eΣp (i), and e(i) are related by

eΣp (i) = eΣa (i)− µ
µ̄Σ(i)f [e(i)] (3.6)

2In this table, LMF stands for the least-mean fourth algorithm [98] while LMMN stands for the least-mean
mixed-norm algorithm [91], [22].
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where

µ̄Σ(i) ∆=

{
1/‖ui‖2

Σ if ‖ui‖2
Σ 6= 0

0 otherwise
(3.7)

We can also show that

e(i) = ea(i) + v(i) (3.8)

3.3 Dynamical Behavior of the Weight-Error Vector

Our first step is to examine how the energy relation (3.4) can be used to characterize the

time-evolution of the weighted variance E‖w̃i‖2
Σ, for any Σ. Thus consider (3.4) and replace

the a-posteriori error eΣp (i) by its equivalent expression (3.6). This yields

‖w̃i+1‖2
Σ = ‖w̃i‖2

Σ − 2µeΣa (i)f [e(i)] + µ2‖ui‖2
Σf2[e(i)]

or, upon taking the expectation of both sides,

E
[
‖w̃i+1‖2

Σ
]

= E
[
‖w̃i‖2

Σ
]
− 2µ

1©︷ ︸︸ ︷
E

[
eΣa (i)f [e(i)]

]
+µ2

2©︷ ︸︸ ︷
E

[
‖ui‖2

Σf2[e(i)]
]

(3.9)

Now, two expectations call for evaluation. This is facilitated by the following assumption

on the noise sequence:

AN: The noise sequence v(i) is iid and independent of ui.

3.3.1 Evaluating the Term 1©
To evaluate the first expectation,

1© = E
[
eΣa (i)f [e(i)]

]

we shall assume that the adaptive filter is long enough such that the random variables ea(i)

and eΣa (i) are jointly Gaussian:

AG: For any constant matrix Σ and for all i, ea(i) and eΣa (i) are jointly Gaussian.
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As mentioned in the introduction, this assumption is reasonable for longer filters by

central limit arguments (see also the simulation results in Subsection 3.5.1). A similar

assumption was adopted in [31, 16, 17] and its usefulness can be understood from the

following result and from the subsequent discussion (see, e.g., [16, 17]).

Lemma 1 (Price’s result) Let x and y be jointly Gaussian random variables that are

independent from a third random variable z. Then

E [xf [y + z]] =
E[xy]
E[y2]

E [yf [y + z]]

♦

With Price’s theorem at hand, we can use assumption AG together with the standing

assumption on the noise AN and (3.8) to write 1© as

E
[
eΣa f [e(i)]

]
= E

[
eΣa f [ea(i) + v(i)]

]
= E

[
eΣa (i)ea(i)

] E [ea(i)f [ea(i) + v(i)]]
E[e2

a(i)]
(3.10)

At first glance, it would appear that we have replaced the expectation E
[
eΣa (i)f [e(i)]

]

with a similar one, E[ea(i)f(e(i))]. However, this second form is more tractable. Indeed,
the expectation E[ea(i)f(e(i))] depends on ea(i) through the second moment E[e2

a(i)] only.3

This can be further seen by expanding it as (where we suppress the time index on the right
hand-side):

E [ea(i)f [ea(i) + v(i)]] =
∫ ∞

−∞

∫ ∞

−∞
eaf [ea + v]

1√
2πE[e2

a]
e
−e2

a
2E[e2

a] pv(v)deadv (3.11)

where pv is the pdf of the additive noise. The contribution of ea(i) to the result of the inte-

gration will depend solely on E[e2
a(i)]. Therefore, the ratio E [ea(i)f [e(i)]] /E[e2

a(i)], which

appears in (3.10), is a function of E[e2
a(i)]. This fact motivates the following definition:4

hG

[
E[e2

a(i)]
] ∆=

E [ea(i)f [e(i)]]
E[e2

a(i)]
(3.12)

3The expectation of any function of a Gaussian random variable will only depend on the variance of this
variable and not on any higher-order moments of it.

4The Gaussianity assumption AG is the main assumption leading to the defining expression (3.12) for
hG, hence the subscript G. The subscript U for hU, which is defined in (3.16) further ahead, is similarly
motivated.
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Table 3.2: hG[·] for the error nonlinearities of Table 3.1 (σ2
ea

∆= E[e2
a(i)])

Algorithm hG[σ2
ea

] (v(i) Gaussian) hG[σ2
ea

] (general case)
LMS 1 1
LMF 3(σ2

ea
+ σ2

v) 3(σ2
ea

+ σ2
v)

LMF family
(2k + 2)!

2k+1(k + 1)!
(σ2

ea
+ σ2

v)
k

∑k
j=0

(
2k + 1

j

)
σ2j

eaE
[
v2(k−j)(i)

]

LMMN a + 3b(σ2
v + σ2

ea
) a + 3b(σ2

v + σ2
ea

)

Sign error

√
2
π

1√
σ2

ea
+ σ2

v

√
2
π

1
σea

E

[
e
− v2(i)

2σ2
ea

]

Sat. nonlin.
σsat√

σ2
ea

+ σ2
v + σ2

sat

σsat√
σ2

ea
+ σ2

sat

E

[
e
− v2(i)

2(σ2
ea+σ2

sat)

]

For future reference, hG is evaluated for the algorithms of Table 3.1 and the results are

shown in Table 3.2 (for general noise distribution and for the Gaussian noise case as well).

Combining (3.10) and (3.12) yields

E
[
eΣa (i)f(e(i))

]
= E

[
eΣa (i)ea(i)

]
hG

[
E[e2

a(i)]
]

(3.13)

We finally use the polarization property ( see (2.12) in Subsection 2.2.2) to write the first

expectation in (3.13) as a weighted-norm of w̃i yielding

1© = E
[
eΣa (i)f(e(i))

]
= E

[
‖w̃i‖2

ΣuT
i ui

]
hG

[
E[e2

a(i)]
]

(3.14)

3.3.2 Evaluating the Term 2©
We turn our attention now to the second expectation in (3.9), 2© = E

[
‖ui‖2

Σf2[e(i)]
]
,

which is easier to handle. The long filter assumption is also useful here:

AU: The adaptive filter is long enough such that µ‖ui‖2
Σ and f2[e(i)] are uncorrelated.

The unweighted version of this assumption was used in [61], [105, 106]. It becomes more

realistic as the filter gets longer. The assumption enables us to split the expectation 2© as

E
[
‖ui‖2

Σf2[e(i)]
]

= E
[
‖ui‖2

Σ
]
E

[
f2[e(i)]

]
(3.15)

Moreover, since ea(i) is Gaussian and independent of the noise, we can show (as in (3.11))

that E
[
f2[e(i)]

]
depends on ea(i) through its second moment only. This prompts us to
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Table 3.3: hU[·] for the error nonlinearities of Table 3.1 (σ2
ea

∆= E[e2
a(i)])

Algorithm hU[σ2
ea

] (v(i) Gaussian) hU[σ2
ea

] (general case)
LMS σ2

ea
+ σ2

v σ2
ea

+ σ2
v

LMF 15(σ2
ea

+ σ2
v)

3 15σ6
ea

+ 45σ4
ea

σ2
v+

15σ2
ea

E
[
v4(i)

]
+ E

[
v6(i)

]

LMF family
(4k + 2)!

22k+1(2k + 1)!
(σ2

ea
+ σ2

v)
2k+1

∑2k+1
j=0

(
4k + 2

2j

)
(2j)!
2jj!

σ2j
ea×

E
[
v2(2k−j+1)(i)

]

LMMN
a2(σ2

ea
+ σ2

v) + 6ab(σ2
ea

+ σ2
v)

2

+15b2(σ2
ea

+ σ2
v)

3

15b2σ6
ea

+ (45b2σ2
v + 6ab)σ4

ea

+(15b2E
[
v4(i)

]
+ 12abσ2

v + a2)σ2
ea

+E
[
(bv2(i) + a)2v2(i)

]
Sign error 1 1

Sat. nonlin. σ2
satsin

−1

(
σ2

ea
+ σ2

v

σ2
ea

+ σ2
v + σ2

sat

) 2πσ2
sat

(
1
4 − 1

π

∫ π/2
π/4

√
σ2

satsin
2(θ)

σ2
ea+σ2

satsin
2(θ)

×

E[e
− v2(i)

2(σ2
ea+σ2

satsin
2(θ)) ]

)

define

hU

[
E[e2

a(i)]
] ∆= E

[
f2[e(i)]

]
(3.16)

which together with (3.15) yields

E
[
‖ui‖2

Σf2[e(i)]
]

= E
[
‖ui‖2

Σ
]
hU

[
E

[
e2
a(i)]

]]
(3.17)

The function hU is evaluated for the algorithms of Table 3.1 and the results are shown in

Table 3.3 for general noise and for the Gaussian noise special case (the last entry in the

table is derived in the appendix).

3.3.3 Weight-Error Recursion

By substituting (3.14) and (3.17) into (3.9), we obtain

E
[
‖w̃i+1‖2

Σ
]

= E
[
‖w̃i‖2

Σ
]
− 2µhG

[
E[e2

a(i)]
]
E

[
‖w̃i‖2

ΣuT
i ui

]
+ µ2E

[
‖ui‖2

Σ
]
hU

[
E[e2

a(i)]
]

Upon replacing the mean-square error E
[
e2
a(i)

]
with the equivalent expression E

[
‖w̃i‖2

uT
i ui

]
,

the recursion takes the more homogeneous form shown in the statement below.
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Theorem 4 (Weighted-energy relation) Consider an adaptive filter of the form

wi+1 = wi + µuT
i f [e(i)], i ≥ 0

where e(i) = d(i) − uiwi and d(i) = uiw
o + v(i). Assume the noise sequence v(i) is iid

and independent of ui, and that the filter is long enough so that ea(i) and eΣa (i) are jointly

Gaussian and that µ‖ui‖2
Σ and f2[e(i)] are uncorrelated. Then the following recursion holds

for the weighted weight-error variance, E‖w̃i‖2
Σ:

E
[
‖w̃i+1‖2

Σ
]

= E
[
‖w̃i‖2

Σ
]
− 2µhG

[
E

[
‖w̃i‖2

uT
i ui

]]
E

[
‖w̃i‖2

ΣuT
i ui

]

+µ2E
[
‖ui‖2

Σ
]
hU

[
E

[
‖w̃i‖2

uT
i ui

]]
(3.18)

where the functions hG[·] and hU[·] are defined by

hU = E
[
f2[e(i)]

]
, hG = E[ea(i)f [e(i)]]/E[e2

a(i)]

♦

Remarks

1. What we have achieved so far is to transform recursion (3.9) into (3.18), which de-

pends on various weighted Euclidean norms of the weight-error vector – thanks to

assumptions AG and AU.

2. Assumptions AG and AU eventually get translated into some mixing conditions on the

signal statistics. In particular, the Gaussian assumption AG on ea(i) = uiw̃i requires

that the process of individual summands ui(l)wi(l) be mixing [18, Theorem 27.4].

Similarly, the AU assumption is justified by the law of large numbers which in turn

requires that the input ui be mixing [19].

3. The independence assumption on the noise AN is equally essential in developing (3.14),

(3.17), and, hence, (3.18). It is a reasonable assumption that allows us to express the

expectations in (3.9) in terms of the weight-error energy.

4. Recursion (3.18) as it stands is difficult to propagate in time. The reason is that the

recursion is not self-contained as the right-hand side is dependent on E‖w̃i‖2
ΣuT

i ui
and

E‖w̃i‖2
uT

i ui
, in addition to E‖w̃i‖2

Σ.
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5. Note that only a weak form of the independence assumption, namely AU, has been

used so far. Contrast this with the standard (stronger)5 independence assumption:

AI: The sequence ui is zero-mean, independent, and identically distributed, with autocor-

relation matrix R = E
[
uT

i ui

]
.

In this case, recursion (3.18) reduces to the following.

Corollary 1 (Energy recursion with independence) Consider the same setting

of Theorem 1. If, in addition, the sequence ui is zero-mean, iid, and has covariance

matrix R, then (3.18) becomes

E
[
‖w̃i+1‖2

Σ
]

= E
[
‖w̃i‖2

Σ
]
− 2µhG

[
E[‖w̃i‖2

R]
]
E

[
‖w̃i‖2

ΣR

]

+µ2E
[
‖ui‖2

Σ
]
hU

[
E[‖w̃i‖2

R]
]

(3.19)

♦

3.3.4 Constructing the Learning Curves

The learning curve of the filter refers to the time-evolution of the variance Ee2(i); its

steady-state value is the mean-square error, MSE. Clearly, in view of (3.8), we have that

Ee2(i) = Ee2
a(i) + σ2

v

so that studying the evolution of Ee2(i) is equivalent to studying the evolution of Ee2
a(i);

the steady-state value of the latter is called the excess mean-square error, EMSE.

Now under the independence assumption we have

Ee2
a(i) = E|uiw̃i|2 = E

[‖w̃i‖2
R

]

This suggests that the learning curve can be evaluated by computing E[‖w̃i‖2
R] for each i.

This task can be accomplished recursively from (3.19) by essentially choosing Σ = R, as

we now verify.
5For example, when the input is of constant modulus, assumption AU is true while AI is not.
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The Case of White Regression Data

Consider first the case of white input data for which R = σ2
uI, so that E[e2

a(i)] = σ2
uE‖w̃i‖2.

Restricting the input in this manner is a common practice in the literature (e.g., as in

[31],[17], [23], [29], [5]).

Thus setting Σ = I in (3.19) we get

E
[
‖w̃i+1‖2

]
= E

[
‖w̃i‖2

]
− 2µσ2

uhG

[
σ2

uE[‖w̃i‖2]
]
E

[
‖w̃i‖2

]
+ (3.20)

µ2σ2
uMhU

[
σ2

uE
[
‖w̃i‖2

]]

Note that the right-hand side now depends on E‖w̃i‖2 only and (3.20) can be propagated

in time. We have thus obtained a recursion for the evolution of the variance E‖w̃i‖2 for

adaptive filters with error nonlinearities and white input regression data.

The Case of Correlated Regression Data

The result (3.19), however, allows us to evaluate the time-evolution of E‖w̃i‖2 and Ee2
a(i)

even without the whiteness assumption on the regression data (i.e., for general matrices R).

The key idea is to take advantage of the free parameter Σ. Let us in particular write (3.19)

for the choices Σ = I,R, · · · , RM−1 (the arguments of the functions hG and hU remain

the same (i.e., E
[
‖w̃i‖2

R

]
) regardless of the choice of Σ and are therefore suppressed for

convenience of notation):





E
[
‖w̃i+1‖2

I

]
= E

[
‖w̃i‖2

I

]
− 2µhGE

[
‖w̃i‖2

R

]
+ µ2E

[
‖ui‖2

I

]
hU

E
[
‖w̃i+1‖2

R

]
= E

[
‖w̃i‖2

R

]
− 2µhGE

[
‖w̃i‖2

R2

]
+ µ2E

[
‖ui‖2

R

]
hU

...

E
[
‖w̃i+1‖2

RM−1

]
= E

[
‖w̃i‖2

RM−1

]
− 2µhGE

[
‖w̃i‖2

RM

]
+ µ2E

[
‖ui‖2

RM−1

]
hU

(3.21)

The problem now is that the left-hand side of (3.21) is always one variable short of the

number of variables on the right-hand side. Fortunately, we do not have to continue in this

manner indefinitely since the additional variable E
[
‖w̃i‖2

RM

]
can be expressed in terms of

the “lower-order” variables. Using the Cayley-Hamilton theorem, we have

RM = −p0I − p1R− · · · − pM−1R
M−1
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where

p(x) ∆= det (xI −R)

= p0 + p1x + · · ·+ pM−1x
M−1 + xM

is the characteristic polynomial of R. This induces the desired relation

‖w̃i‖2
RM = −p0‖w̃i‖2 − p1‖w̃i‖2

R − · · · − pM−1‖w̃i‖2
RM−1

and enables us to rewrite the last equation in (3.21) as

E
[
‖w̃i+1‖2

RM−1

]
= E

[
‖w̃i‖2

RM−1

]
+ 2µ

(
p0‖w̃i‖2 + p1‖w̃i‖2

R + · · ·+ pM−1‖w̃i‖2
RM−1

)
hG

+ µ2E
[
‖ui‖2

RM−1

]
hU

The system (3.21) now becomes truly self-contained and as such can be put into the state-

space form shown in the statement below.

Theorem 5 (Transient behavior with independence) Consider an adaptive filter of

the form

wi+1 = wi + µuT
i f [e(i)], i ≥ 0

where e(i) = d(i)−uiwi and d(i) = uiw
o+v(i). Assume that {v(i),ui} are iid and mutually

independent, that the filter is long enough so that ea(i) and eΣa (i) are jointly Gaussian and

that µ‖ui‖2
Σ and f2[e(i)] are uncorrelated. Then, regardless of the statistics of the regression

data, the transient behavior of the filter is characterized by the state-space recursion

Wi+1 = AWi + µ2Y (3.22)

where the state vector Wi and the input vector Y are defined by

Wi =




E
[
‖w̃i‖2

]

E
[
‖w̃i‖2

R

]

...

E
[
‖w̃i‖2

RM−1

]




, Y = hU ·




E
[
‖ui‖2

]

E
[
‖ui‖2

R

]

...

E
[
‖ui‖2

RM−1

]



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and the coefficient matrix A is given by

A =




1 −2µhG 0 · · · 0 0

0 1 −2µhG · · · 0 0
...

...
...

...
...

...

0 0 0 · · · 1 −2µhG

2µp0hG 2µp1hG 2µp2hG · · · 2µpM−2hG 1 + 2µpM−1hG




in terms of {hG, hU} and the {pi}.
♦

Remarks:

1. Since A and Y depend on {hU, hG}, they are also functions of E
[
‖w̃i‖2

R

]
and hence

of the state vector Wi. Thus, the state-space model (3.22) is generally nonlinear, yet

time-invariant.

2. Stability and steady-state analysis of the adaptive filter can now be characterized by

studying the properties of the state-space model (3.22).

3. The top entry of the state vector Wi characterizes the evolution of E‖w̃i‖2 (mean-

square deviation curve), while the second entry of Wi characterizes the evolution of

Ee2
a(i) (learning curve).

3.4 Steady-State Analysis

Now that the transient behavior of adaptive filters of the class (3.1) has been characterized,

we move on to show how the results so far can be used to evaluate the steady-state per-

formance of this same class of filters. Actually, the discussion that follows does not require

the independence assumption AI any longer.

We refer again to the averaged energy relation (3.18), which we rewrite using (3.5) as

E
[
‖w̃i+1‖2

Σ
]

= E
[
‖w̃i‖2

Σ
]
− 2µhG

[
E[e2

a(i)]
]
E

[
eΣa (i)ea(i)

]
+ µ2E

[
‖ui‖2

Σ
]
hU

[
E[e2

a(i)]
]

(3.23)

Assuming that the weight-error vector reaches a steady-state mean-square value, i.e.,

lim
i→∞

E
[
‖w̃i+1‖2

Σ
]

= lim
i→∞

E
[
‖w̃i‖2

Σ
]
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the energy relation (3.23) becomes in the limit:

lim
i→∞

hG

[
E[e2

a(i)]
]

lim
i→∞

E
[
eΣa (i)ea(i)

]
=

µ

2
E

[
‖ui‖2

Σ
]

lim
i→∞

hU

[
E[e2

a(i)]
]

or

lim
i→∞

E[eΣa (i)ea(i)] =
µ

2
E

[
‖ui‖2

Σ
] limi→∞ hU

[
E[e2

a(i)]
]

limi→∞ hG[E[e2
a(i)]]

(3.24)

Now, let ζ denote the EMSE, i.e.,

ζ = lim
i→∞

E[e2
a(i)] (3.25)

which, assuming the filter is mean-square stable, exists and is finite. Then,

lim
i→∞

hG[E[e2
a(i)]] = hG[ζ] and lim

i→∞
hU[E[e2

a(i)]] = hU[ζ]

and, accordingly, (3.24) can be written more compactly as shown below.

Theorem 6 (Steady-state performance) Consider the same setting of Theorem 1. Then,

assuming a mean-square stable filter with EMSE denoted by ζ, the following equality holds

limi→∞E
[
eΣa (i)ea(i)

]
= µ

2 E
[
‖ui‖2

Σ
]

hU[ζ]
hG[ζ] (3.26)

♦

The above relation has been derived for general memoryless error nonlinearities. We

now show how it can be used to evaluate various steady-state quantities such as the excess

mean-square error and the mean-square deviation.

3.4.1 Excess Mean-Square Error

To calculate the excess mean-square error, we employ (3.26) with Σ set to the identity

matrix:

lim
i→∞

E[e2
a(i)] =

µ

2
E

[
‖ui‖2

] hU[ζ]
hG[ζ]

=
µ

2
Tr (R)

hU[ζ]
hG[ζ]

Or, since ζ = limi→∞E[e2
a(i)], we arrive at the following statement.
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Corollary 2 (EMSE) Consider the same setting of Theorem 1. Then the EMSE is a posi-

tive solution of the equation

ζ =
µ

2
Tr (R)

hU[ζ]
hG[ζ]

(3.27)

i.e., the EMSE is a fixed point of the function (µ/2)Tr (R) hU[ζ]/hG[ζ].

♦

In the following we show how (3.27) specializes for some nonlinearities.

The LMS Algorithm

In the LMS case, (3.27) reads

ζ =
µ

2
Tr (R)

(
ζ + σ2

v

)

or, upon solving for ζ, we obtain the well-known result [38]:

ζ =
µσ2

vTr (R)
2− µTr (R)

The Sign Algorithm

We start from (3.27) again. With the aid of Tables 3.2 and 3.3, we see that

ζ =
µ

2
Tr (R)

hU[ζ]
hG[ζ]

= µ

√
π

8
Tr (R)

√
ζ

E

[
e
−v2(i)

2ζ

] (3.28)

It is worth noting in the sign algorithm case, that assumption AU is not needed. In other

words, we only need the Gaussian assumption AG to establish (3.28). This was the same

conclusion arrived at in [105] but the study there was limited to the Gaussian noise case.

Further progress is pending the evaluation of E

[
e
−v2(i)

2ζ

]
, which calls for specifying the

noise statistics. Our findings are summarized in the Table 3.4. In particular, we arrive at

the same EMSE expressions of [23] derived there under the independence assumption for

iid input. In the second line of Table 3.4, the noise is assumed to be equal to ±σv with

probability 1/2, while in the third line the noise is assumed to be uniformly distributed

inside the interval (−√3σv,
√

3σv). The erf function is defined by

erf(x) =
2√
π

∫ x

0
e−t2dt
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Table 3.4: EMSE for the sign algorithm for various noise statistics
Noise EMSE

Gaussian [63, 105] ζ = α
α +

√
α2 + 4σ2

v

2
, α = µ

√
π

8
Tr (R)

Binary [23] ζ = α2e
σ2

v
ζ , α = µ

√
π

8
Tr (R)

Uniform [23] ζ =
µ

2

√
3σ2

v

erf

(√
3σ2

v

2ζ

)Tr (R)

Error-Saturation Algorithm

Consider the saturation nonlinearity in Table 3.1. The associated expectations hG and hU

are relatively easy to establish in the Gaussian noise case (see Tables 3.2 and 3.3):

hG[ζ] =
σsat√

ζ + σ2
v + σ2

sat

, hU[ζ] = σ2
satsin

−1

(
ζ + σ2

v

ζ + σ2
v + σ2

sat

)

which upon substitution in (3.27) yield the following relation for the EMSE

ζ√
ζ + σ2

v + σ2
sat

= σsat
µ

2
Tr (R) sin−1

(
ζ + σ2

v

ζ + σ2
v + σ2

sat

)

This is the same result arrived at in [17] under the independence assumption for iid input.

In the general noise case, we have

hG[ζ] =
σsat√

ζ + σ2
sat

E

[
e
− v2(i)

2(ζ+σ2
sat)

]
(3.29)

which encompasses the binary noise case considered in [17] as a special case. Evaluating

hU is more difficult; this was attempted in [17] and the argument led to a complicated

expression involving double integrals and infinite limits. We arrive in the Appendix at the

expression

hU[ζ] = 2πσ2
sat

(
1
4
− 1

π

∫ π/2

π/4

√
σ2

satsin
2(θ)

σ2
ea

+ σ2
satsin

2(θ)
E[e

− v2(i)

2(σ2
ea+σ2

satsin
2(θ)) ]

)
(3.30)
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by relying on a convenient expression for the error function introduced [89]. Upon substi-
tuting (3.29) and (3.30) into (3.27), we obtain

ζ√
ζ + σ2

sat

E

[
e
− v2(i)

2(ζ+σ2
sat)

]
= µπσsatTr (R)

(
1
4
− 1

π

∫ π/2

π/4

√
σ2

satsin
2(θ)

σ2
ea

+ σ2
satsin

2(θ)
E[e

− v2(i)
2(σ2

ea
+σ2

satsin
2(θ)) ]

)

which can be numerically solved for ζ, the EMSE.

The LMF Algorithm

For the LMF algorithm, and with the aid of Tables 3.2 and 3.3, (3.27) takes the form

ζ =
µ

6
15ζ3 + 45σ2

vζ
2 + 15mv,4ζ + mv,6

ζ + σ2
v

Tr (R) (3.31)

where mv,4 and mv,6 denote the fourth and sixth moments of v(i). Finding the EMSE is

thus equivalent to finding the roots of a 3rd-order equation, which can be done numerically.

We can avoid this in the Gaussian case and obtain a closed formula for the EMSE.

Gaussian Noise. In the Gaussian noise case, (3.31) simplifies to

ζ =
5µ

2

(
ζ + σ2

v

)3

ζ + σ2
v

Tr (R) =
α

2
(
ζ + σ2

v

)2

where α = 5µTr (R) . This is a quadratic equation in ζ with two positive roots

ζ =
(1− ασ2

v)±
√

1− 2ασ2
v

α
(3.32)

Simulations show that only the smaller root is meaningful.

It appears that calculating the steady-state error for super nonlinearities (e.g., the LMF

algorithm, the LMF family, and the LMMN algorithm) has always involved some form of

linearization (e.g., [98], [91], [105], [29], [5], [104]). The LMF derivation above demonstrates

how the EMSE can be obtained for such algorithms without having to employ linearization

arguments.
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3.4.2 Mean-Square Deviation

The mean-square deviation (MSD), defined as

MSD = lim
i→∞

E‖w̃i‖2

can be related to the EMSE by invoking the independence assumption in the limit. More

specifically, by combining (3.26) and (3.27), we obtain

lim
i→∞

E
[
eΣa (i)ea(i)

]
= ζ ·

E
[
‖ui‖2

Σ
]

E
[
‖ui‖2

]

Assuming AI holds in the limit we have

lim
i→∞

E
[
eΣa (i)ea(i)

]
= lim

i→∞
E

[
‖w̃i‖2

ΣR

]

so that

lim
i→∞

E
[
‖w̃i‖2

ΣR

]
= ζ ·

E
[
‖ui‖2

Σ
]

E
[
‖ui‖2

] (3.33)

Since we are interested in E‖w̃i‖2, we choose Σ in (3.33) as R−1, which leads us to the

following conclusion

Corollary 3 (MSD) Consider the same setting of Theorem 1 and assume, in addition, that

the sequence ui is zero-mean iid. Then the MSD is given by

MSD = Mζ

Tr(R)

where ζ denotes the filter EMSE.

♦

Other steady-state measures can be similarly evaluated. Thus, for any symmetric matrix

A, we have

limi→∞E
[
‖w̃i‖2

A

]
=

E
[‖ui‖2

AR−1

]

E
[‖ui‖2

] EMSE
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3.5 Simulations

Throughout this section, the system to be identified is an FIR channel of length 16. The

input u(i) is generated by passing an iid (uniform or Gaussian) process x(i) through a

first-order model,

u(i) = au(i− 1) + x(i) (3.34)

By varying the value of a, we obtain processes u(i) of different colors. Here we set a = 0.3.

The output is contaminated by an iid (uniform or Gaussian) additive noise at an SNR level

of 10 dB.

3.5.1 Testing the Gaussianity of ea(i)

We start by running a simulation to test the Gaussian assumption AG on ea(i) for the sign

algorithm. We choose the sign algorithm because it was argued in [62] that ea(i) can never

be Gaussian under the independence assumption. The signals involved are chosen to be

non-Gaussian. Thus, the input is generated by (3.34) and the processes x and v are both

taken to be iid uniform.

The Gaussian hypothesis is tested by running the adaptive algorithm 1000 times and

plotting the histogram of ea(i) at the equi-spaced instants i = 0, 200, . . . , 1000. The his-

tograms, depicted in Figure 3.1, suggest that the Gaussian assumption on ea(i) is a rea-

sonable approximation. The only exception is the histogram for ea(0), which is almost

uniformly distributed (as it should be since ea(0) is generated by one data point for which

the central limit theorem does not apply).

3.5.2 Learning Curves

Next, we study the match between the theoretical (Theorem 2) and simulated learning

curves. We test the match for the sign and LMF algorithms. In both cases, the input is

assumed to be a Gaussian correlated process with a = 0.3. As depicted in Figures 3.2 and

3.3, the experimental and theoretical learning curves agree very well. This agreement occurs

despite the fact that large values of the step-size are used.
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Figure 3.1: Histogram of ea(i) for the sign algorithm at different time instants (uniform noise,
uniform input with a = 0.3, µ = 0.01, SNR = 10dB)
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Figure 3.2: Theoretical and simulated learning curves for the sign algorithm (Gaussian noise,
Gaussian input with a = .1, µ = .01, SNR = 10dB)

3.5.3 Steady-State Behavior

Here, we simulate the steady-state behavior of the sign and LMF algorithms and compare

the results to theory. We test the sign algorithm for correlated uniform input (with a = 0.3)
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Figure 3.3: Theoretical and simulated learning curves for the LMF algorithm (Gaussian noise,
Gaussian input with a = 0.1, µ = .0044, SNR = 10dB)

and uniform noise. Figure 3.4 shows an excellent match between the EMSE generated by

simulation and that predicted by theory (see Table 3.4).
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Figure 3.4: Theoretical and simulated EMSE vs. µ for the sign algorithm (uniform noise, Gaussian
input with a = 0.3, SNR = 10dB)
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The LMF is tested for correlated Gaussian input (with a = 0.3) and Gaussian noise.

Figure 3.5 demonstrates the excellent match between simulation and theoretical values

(predicted by (3.32)). In this figure, we also plot the value of the steady-state error as

predicted by [105] which eventually employs some sort of linearization. The predictions of

(3.32) are more accurate.
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Figure 3.5: Theoretical and simulated EMSE vs. µ for the LMF algorithm (Gaussian noise, Gaussian
input with a = 0.3, SNR = 10dB)

3.6 Concluding Remarks

In this chapter we employed energy-conservation arguments to study the transient perfor-

mance of adaptive filters with error nonlinearities. The arguments of this chapter and the

previous one demonstrate the convenience of working with the energy relation. In develop-

ing the energy relation, we basically push the algebraic operations to the limit before we

undertake any averaging operation. We do so because our ability to maneuver algebraically

under the expectation operator is usually limited. As a result, we are able to do away with

assumptions that are otherwise necessary for algebraic operations only.

The main contributions of this chapter are Theorems 1, 2, and 3; the first relates to the

energy conservation result, the second relates to the learning curve behavior, and the third

relates to a nonlinear equation for EMSE calculation.
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3.7 APPENDIX A: Evaluating hU for the Error Saturation

Nonlinearity (3.30)

To evaluate the expectation

hU

[
E

[
e2
a(i)

]∣∣ v(i)
]

= E
[
f [e2(i)]

∣∣ v(i)
]

for the error saturation nonlinearity f [e(i)] =
∫ e(i)
0 e

− z2

2σ2
sat dz, we rely on the equivalent

representation

f [e(i)] =
√

2πσ2
sat

(
− 1

π

∫ π
2

0
e
− e2(i)

2σ2
satsin

2(θ) dθ

)
sign(e(i)) (3.35)

Powers of f are obtained by changing the integration limits in (3.35) (in addition to other

minor changes [89]). Thus,

f2[e(i)] = 2πσ2
sat

(
1
4
− 1

π

∫ π
2

π
4

e
− e2(i)

2σ2
satsin

2(θ) dθ

)
(3.36)

Thanks to (3.36), in evaluating Ef2[e(i)] given v(i), the expectation operator can move

inside the integral and operate on its integrand and we can show that

E

[
e
− e2(i)

2σ2
satsin

2(θ)

∣∣∣∣∣ v(i)

]
=

√
σ2

satsin
2(θ)

σ2
ea

+ σ2
satsin

2(θ)
e
− v2(i)

2(σ2
ea+σ2

satsin
2(θ)) (3.37)

where σ2
ea

= E
[
e2
a(i)

]
. This yields the desired result.



Chapter 4

An EM-Based OFDM Receiver for

Time-Variant Channels

4.1 Introduction

1Having performed mean-square analysis of well-known adaptive algorithms for channel esti-

mation, we move our attention here into designing our own algorithm for channel estimation

(and equalization). In a communication system, the sole purpose of channel estimation is to

recover the transmitted data. As such, it is best to consider the two problems (of channel

and data recovery) jointly. In other words, to come up with an optimum algorithm for

channel estimation, one needs to consider the full problem of receiver design, which is the

approach that this chapter adopts.

Moreover, we confine our attention to receiver design for orthogonal frequency division

multiplexing (OFDM) although the basic structure of the receiver remains valid in the

general case. We focus on OFDM systems because data recovery in OFDM is so simple that

it makes it easier to understand the fundamentals of channel estimation (paving the way

to eventually design a receiver for the more general case). Moreover, OFDM transmission

is so widespread in communications applications that restricting the focus to it constitutes

no limitation in practice.
1A major part of this chapter is reproduced, with permission, from T. Y. Al-Naffouri and A. Bahai “An

EM-based OFDM receiver for time-variant channels,” submitted to IEEE Transactions on Signal Processing.

68
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Table 4.1: Common channel and data constraints used for channel estimation
Constraints Assumptions Reference

Finite alphabet constraint [88], [7]
Code [9], [80]

Transmit precoding
(e.g., cyclic prefix, silent gaurad band)

[20], [44], [40], [68], [52], [99], [9]

Data
Constraints

Pilots [21], [56], [71],[95],[72],[53]
Finite delay spread [20], [9], [71]

Sparsity:
Channel has a few active taps

[102], [48], [97]

Frequency correlation:
Taps are Gaussian distributed

[54],[32], [9], [79]

Time correlation [94], [50], [45], [1], [58]

Channel
Constraints

Uncertainty information [81], [54]

4.1.1 What is OFDM?

Orthogonal frequency division multiplexing (OFDM) is an effective technique for high bit

rate transmission. It has found widespread applications and is already part of many stan-

dards including digital audio and video broadcasting (DAB and DVB) in Europe and high

speed transmission over digital subscriber line (DSL) in the United States. It has been

proposed for local area mobile wireless broadband standards including IEEE 802.11a and

HIPERLAN/2 [107] and for broadband wireless metropolitan access networks (WiMax).

OFDM avoids intersymbol interference by inserting a guard band (cyclic prefix) into the

transmitted symbol. This effectively divides the channel into many narrowband channels

over which parallel streams of data are transmitted. Frequency selectivity can now be

mitigated using one tap equalizers. However, the receiver still needs accurate channel state

information. Alternatively, the receiver can avoid the need for this information by employing

differential modulation at the cost of 3 to 4 dB degradation in SNR. Otherwise, the receiver

should jointly recover both the channel information and its input. For rapidly time-variant

channels, the receiver faces the additional challenge of performing the recovery within the

same symbol.

In performing these two operations, the receiver takes advantage of the rich structure

of the underlying communication problem to enhance the performance of the receiver and

to perform the recovery with zero latency (i.e. within one OFDM symbol). This structure

can be either traced back to some inherent constraints on the data or on the channel itself,

as explained in Chapter 1 and summarized in Table 1.1, which is reproduced here for

convenience.
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However, since it is too computationally complex to recover the channel and the data

jointly, one can instead perform iterative recovery. Thus, the initial channel estimate is

used to detect the data. The detected data is used to enhance the channel estimate which

in turn is used to improve on the data estimate.

This intuitive idea is the basis of joint channel estimation and data detection proposed in

[50], [45], [57], [39]. Other works, like [2], [58], [24], [55], [101], and [7], arrived at iterative

techniques more rigorously by employing the expectation-maximization (EM) algorithm,

which we explain in the following.

The EM Algorithm

The EM algorithm is used in estimating a desired parameter when some of the data required

for the estimation is unobserved. The algorithm first performs an initial estimate of the un-

observed data and uses the information to compute the maximum-likelihood (ML) estimate

of the desired parameter. This is the maximization or M-step. The algorithm then uses

the parameter estimate to update (compute the conditional expectation) of the unobserved

data. This is the expectation or E-step. The process alternates between the M- and E-steps

till a convergence criterion is satisfied [26] [66] .

As mentioned above, the EM-algorithm has been applied to receiver design in [58], [24],

[55], [101]. These works consider the channel as the unobserved data and the transmitted

signal as the desired parameter. The M-step is a maximum likelihood hard decision of the

transmitted signal based on the previously calculated channel estimate and the E-step is

based on an MMSE estimate of the channel.

4.1.2 The Approach of this Chapter

In contrast to the prior approach, we here take a channel estimation centric viewpoint and

reverse the roles of the channel and the transmitted signal in employing the EM algorithm

(as done in [2] and [7]). In addition, and in further contrast to other approaches, we

make a collective use of the constraints induced by the data and channel that underly the

communication problem. Specifically, we are able to make use of all the constraints in

Table 4.1.

This chapter is organized as follows. After introducing our notation, we perform a careful

study of the elements of OFDM transmission. In particular, we show how the OFDM channel

can be decomposed into two channels, linear (represented in the time domain), and circular
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(represented in the frequency domain). In this section, we also introduce the time-variant

channel model. In Section 4.3, we use the expectation maximization algorithm for joint

channel estimation and data detection. We show how the algorithm becomes progressively

more sophisticated as more data and channel constraints are incorporated, with each new

version of the algorithm subsuming the previous version as a special case, culminating in an

EM-based Kalman filter. In Section 4.4, we extend the EM algorithm to the case where the

data can be processed non-causally, i.e. when the receiver can wait for all OFDM symbols

to arrive before performing the processing. This produces the most sophisticated version of

the algorithm, an EM-based forward-backward Kalman filter. We present our simulations

in Section 4.5 and our conclusions in Section 4.6.

4.1.3 Notation

We denote scalars with small-case letters, vectors with small-case boldface letters, and

matrices with uppercase boldface letters. Calligraphic notation (e.g., X ) is reserved for

vectors in the frequency domain. The individual entries of a variable like h are denoted

by h(l). A hat over a variable indicates an estimate of the variable (e.g., ĥ is an estimate

of h). When any of these variables becomes a function of time, the time index i appears

as a subscript (e.g., we write xi, hi(l), hi, and X i ). When the various indexed vectors

are concatenated, they induce a sequence of scalars (for example, the sequence of vectors

h0,h1, . . . induce the scalar sequence {hk}).
Now consider a length-N vector xi. We deal with three derivatives associated with this

vector. The first two are obtained by partitioning xi into a lower (trailing) part xi (usually

known as the cyclic prefix) and an upper (usually longer) vector x̃i. The third derivative,

xi, is created by concatenating xi with a copy of its prefix xi. The relationship among xi

and its derivatives is summarized by

xi =

[
xi

xi

]
=




xi

x̃i

xi


 (4.1)

We can extend this convention to matrices and partition a matrix Q according to

Q =

[
Q̃N−P

Q
P

]
(4.2)
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The subscripts N − P and P represent the number of rows in the partition and can be

omitted when they are understood. When the submatrix is constructed from rows in Q

that are not consecutive, we distinguish the submatrix by a subscript I corresponding to the

rows index set, and we write QI . Thus, with Ĩ = {1, · · · , N−P} and I = {N−P+1, · · · , N},
we can rewrite (4.2) in the equivalent form

Q =

[
QĨ

QI

]
(4.3)

We could also introduce similar notation to denote a submatrix constructed by choosing a

few columns (belonging to the index set Ic) from the mother matrix Q. We avoid the need

for another piece of notation and arrive at the same effect by forming the product QI∗Ic
– a

product between Q and the submatrix I∗Ic
of the identity matrix. This allows us to express

column selection in terms of row selection.

As we will see, the notation adopted herein turns out to be very natural and will make

it easy to write down various relationships almost by inspection.

4.2 Essential Elements of OFDM Transmission

Consider a sequence {Xk} that we wish to transmit. Data is collected and transmitted in

symbols X i of length N. In an OFDM system, the symbol vector X i undergoes an IDFT

operation to produce the transform vector xi. The two vectors are thus related by the

unitary transformation

xi =
1√
N

Q∗X i (4.4)

where Q is the N ×N DFT matrix

Q =
[
e−j 2π

N
(l−1)(m−1)

]

When juxtaposed, these symbols produce the sequence {xk}. 2 If this sequence is transmitted

through a channel hi, which we take as FIR of maximum length P + 1, it will be subject
2The time indices in the symbol sequence xi and the underlying scalar sequence {xk} are dummy variables.

Nevertheless, we chose to index the two sequences differently to avoid confusion as the two indices signify
different sampling rates.
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to intersymbol interference (ISI). To get around this, a guard band is inserted between any

consecutive symbols, xi−1 and xi. In particular, to each symbol, we append a cyclic prefix

of length P as done in (4.1). Thus, instead of transmitting xi, we transmit the length

N +P supersymbol xi defined in (4.1). This eliminates intersymbol interference and leaves

us with intrasymbol interference only (i.e. interference within the symbol xi).

The concatenation of the super-symbols xi induces the underlying scalar sequence {xk}.
When it passes through the channel hi, this sequence generates the sequence {yk} at the

channel output. Motivated by the symbol structure of the input, it is convenient to deal

with the output in the form of supersymbols of length M = N + P, and further split each

into a length-N symbol yi and a prefix associated with it y
i
, i.e.

yi =

[
yi

yi

]
(4.5)

This is a natural way to partition the output; the prefix y
i

actually absorbs all inter-

symbol interference between the adjacent symbols xi−1 and xi while the remaining part,

yi, depends on the ith input symbol xi only, hence exhibiting intrasymbol interference only.

These facts and more can be seen from the input/output relationship




yi−1

y
i

yi


 =




H i

OP×N HUi

ON×N ON×P

ON×P ON×N

HLi OP×N

H i







xi−1

x̃i−1

xi−1

xi

x̃i

xi




+




ni−1

ni

ni


 (4.6)

where ni is the output noise which we take to be white Gaussian. The matrices H i, HLi,

and HUi are convolution (Toeplitz) matrices of proper sizes created from the vector hi.

The channel matrix in (4.6) could have been written as a single Toeplitz matrix. We chose

instead to split it along the boarder lines defined by the input and output symbols and

their prefixes. This partition coupled with the input redundancy allows us to decompose

the OFDM channel into two distinct channels or constituent convolution operations. In

what follows, we shall describe each of these channels separately.
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4.2.1 Circular Convolution (Channel)

Starting from (4.6), we can parse the following input/output relationship

yi = H i




xi

x̃i

xi


 = H i xi + ni (4.7)

Moreover, the existence of a cyclic prefix in xi allows us to rewrite (4.7) as

yi = H ixi + ni (4.8)

where H i is a size-N circulant matrix

H i =




hi(0) 0 · · · 0 hi(P ) · · · hi(1)

hi(1) hi(0) · · · 0 0 · · · hi(2)
...

...
. . .

... · · · . . .
...

hi(P ) hi(P − 1) · · · hi(0) 0 · · · 0
...

. . . . . . · · · . . .
...

...

0 0 · · · hi(P ) hi(P − 1) · · · hi(0)




(4.9)

In other words, the cyclic prefix of xi renders the convolution in (4.7) cyclic, and we can

write

yi = hi◦∗xi + ni (4.10)

where hi is a length-N zero-padded version of hi

hi =

[
hi

O(N−P−1)×1

]
(4.11)

In the frequency domain, the cyclic convolution (4.10) reduces to the element-by-element

operation

Y i = Hi ¯X i + N i (4.12)
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where Hi, X i, N i, and Y i, are the DFT’s of hi, xi, ni, and yi, respectively, i.e.

Hi = Qhi, X i =
1√
N

Qxi, N i =
1√
N

Qni, and Y i =
1√
N

Qyi (4.13)

Since hi corresponds to the first P + 1 elements of hi, and in line with the notational

convention (4.2), we can show that

Q̃P+1hi = Hi (4.14)

This allows us to write (4.10) in terms of hi as

Y i = diag (X i) Q̃P+1hi + N i (4.15)

4.2.2 Linear Convolution (Channel)

Starting from (4.6), we can also extract a constituent relationship between the input and

output prefixes

y
i
=

[
HUi HLi

] [
xi−1

xi

]
+ ni (4.16)

This can be used to show that the prefix sequences {xi} and {y
i
} are related together with

the channel hi through a linear convolution, i.e.

y
i
= hi ∗ xi + ni (4.17)

The roles of xi and hi can also be interchanged in (4.16) and we can rewrite it as

y
i
= Xihi + ni (4.18)

where

Xi = XUi + XLi (4.19)
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XUi =




0 xi−1(P − 1) · · · xi−1(0)

0 0 · · · xi−1(1)
...

. . . . . .
...

0 · · · 0 xi−1(P − 1)




(4.20)

and

XLi =




xi(0) 0 · · · 0

xi(1) xi(0) · · · 0
...

. . . . . .
...

xi(P − 1) · · · xi(0) 0




(4.21)

4.2.3 Total Convolution (Channel)

The sequence {yi} at the channel output is related naturally to the input sequence {xi}
through linear convolution with the channel

yi = hi ∗ xi + ni (4.22)

Now, in line with the notation adopted here, define hi to be another zero-padded version

of hi of length N + P 3

hi
∆=

[
hi

O(N−1)×1

]
=

[
hi

OP×1

]

Zero padding does not affect linear convolution, and the output sequence {yi} is still related

to {xi} though linear convolution with hi. Thus, the convolution (4.22) can be written in

the (notationally more consistent) form

yi = hi ∗ xi + ni (4.23)

We can also express the input/output relationship in matrix form. In fact, we do that

by concatenating the matrix output relationships (4.15) and (4.18) for the circular and

convolutional channels

Y i = Xihi + N i (4.24)

3Recall that hi, defined in (4.11), is too a zero-padded version of hi, of length N.
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where, in line with the notational convention (4.1),

Xi
∆=

[
Xi

diag(X i)Q̃P+1

]
, Y i =

[
y

i

Y i

]
, and N i =

[
ni

N i

]
(4.25)

Remark To maintain perspective, the various relationships are summarized in the Ta-

ble 4.2 below. The last column of the table also summarizes the input/output relationship

for sparse channels where Ic denotes the index set of the active taps in hi.

Table 4.2: Input/output relationships for the circular, linear, and total channels

Channel
Sequence

relationship
Matrix relationship

Matrix relationship
Sparse channel

Linear y
i
= hi ∗ xi + ni y

i
= Xihi + ni y

i
= XiI

∗
Ic

hiIc
+ ni

Circular
yi = hi◦∗xi + ni

Yi = H¯X i + N i
Yi = diag (X i) Q̃P+1hi+N i Yi = diag(X i)Q̃P+1IIc hiIc

+ N i

Total yi = hi ∗ xi + ni Yi = Xihi+N i yi = XiI
∗
Ic

hiIc
+ ni

From this table, we can also appreciate the notation adopted in this chapter. Note in

particular the first column of the table where only similar variables (underline, calligraphic,

overlined, or otherwise) are related.

Before we end this section, we briefly discuss how the input/output relationships change

when the channel is sparse and in the presence of pilots.

4.2.4 Pilot/Output Relationships

Pilots are needed to kick-start the estimation process. Fortunately, pilots are sent as part

of the OFDM symbol and are an integral part of several standards as they are needed for

time and frequency recovery in addition to channel estimation. Within each symbol, pilots

are maximally placed away from each other. Channel gains at frequency bins close to the

pilots locations have a higher estimation accuracy than those further away. As such, pilot

locations are rotated from one OFDM symbol to the next. From (4.15), the pilot/output

equation is given

Y iIp
= diag (X i)Ip

Q̃P+1hi + N iIp
(4.26)
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where Ip = {i1, i2, . . . , iLp} denotes the index set of the pilot bins.4 Clearly, only the cyclic

channel can make use of the pilot information. 5

4.2.5 Channel Model

In this chapter, we assume a block fading model where the channel is assumed constant over

any OFDM supersymbol (i.e. over the OFDM symbol and associated cyclic prefix). Apart

from this constraint, we allow the channel to exhibit any behavior from one symbol to the

next. 6 In addition to the finite delay spread property, we make use of any or all of the

following constraints.

Frequency (tap) correlation The channel is assumed to be Gaussian distributed

hi ∼ N (m,Π) (4.27)

as when the channel is Rayleigh or Rician fading.

Time correlation We assume that the time correlation between hi and hi+1 (correspond-

ing to the impulse response for two consecutive OFDM symbols) exhibits itself through

a state-space model

hi+1 = Fhi + Gui (4.28)

where ui is a white Gaussian noise with variance σ2
u. The matrices F and G are a

function of the Doppler spread, the power-delay profile (frequency correlation), and

the transmit filter (Appendix A shows how this information can be used to construct

F and G). We assume that this information is known at the receiver. The model

(4.28) thus captures both frequency and time correlation.
4The pilot index set might change from one OFDM symbol to the next as the number of pilots and/or

their location might change.
5The effect of the pilot symbols is felt through the linear channel as well. However, this effect is contam-

inated by the effect of the other (unknown) symbols (through convolution) in a way that makes it difficult
to use the output of that channel for initial channel estimation.

6This means that the channel changes at the symbol edges only. This might be unrealistic as we expect
the channel to change in a graceful manner across the duration of the symbol. We choose this extreme block
fading model because we would like to test our receiver against extreme time variations without dealing with
intercarrier interference. This also allows us to use the finite delay spread property, reducing the number
of parameters to be estimated from N to P + 1, and hence reducing the number of pilots needed. If the
time-variant behavior is large enough to cause big intercarrier interference, then OFDM transmission might
not be the best way to go as the CP overload would not be justified in this case.
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Sparsity When the channel is sparse, we only need to estimate its active taps hiIc
. Those

active taps could also assume frequency correlation (similar to (4.27)) or could evolve

in time following a state-space model similar to (4.28).

4.3 The EM Algorithm for Joint Channel and Data Estima-

tion

4.3.1 The EM Algorithm

Ideally, we estimate hi using the total input/output relationship

Y i = Xihi + N i (4.29)

We achieve this by maximizing the log-likelihood function

ĥ
MAP
i = arg max

hi

ln p
(
hi|Xi, Y i

)

When the noise is white Gaussian this reduces to the least-squares problem

ĥi = arg min
hi

‖Y i −Xihi‖2
σ−2

n

Since the input Xi is not observable, we maximize instead an averaged form of the log-

likelihood function as mandated by the EM algorithm. In this case, the estimate of hi is

calculated iteratively, with the estimate at the jth iteration given by

ĥi

(j+1)
= arg max

hi

E
Xi|Yi,ĥ

(j)
i

ln p
(
hi|Xi, Y i

)
(4.30)

This involves two steps; an expectation step and a maximization step (hence the name

expectation-maximization). In the following, we discuss these steps respectively.

4.3.2 The Expectation Step: Mean-Square Estimation of Data

The log-likelihood function ln p(hi|Xi, Y i) shows quadratic dependence on the input Xi.

Hence, to perform the expectation step, we need to calculate the first two moments of

Xi, or equivalently, the mean E[Xi] and covariance Cov[X∗
i ] (see equation (4.39) further

ahead). These two expectations are calculated given the output Y i and the channel hi or
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an estimate of it, i.e.

E[Xi|Y i, ĥi] and Cov[X∗
i ]

Since the elements of Xi are linearly dependent on the frequency domain symbol X i,

the elements of E[Xi] will exhibit the same functional dependence on E[X i] and hence it

is enough to calculate the expectation

E[X i|Y i, ĥi]

Furthermore, we approximate this expectation with E[X i|Y i, ĥi] or, equivalently, with

E[X i|Y i, Ĥi]. This approximation is convenient as the expectation E[X i|Y i, Ĥi] can be

calculated on an element-by-element basis, i.e. by evaluating the scalar expectations

E[Xi(l)|Yi(l), Ĥi(l)] for l = 1, . . . , N (4.31)

Now, assuming that Xi(l) takes on its values from the alphabet

A = {A1, A2, . . . , A|A|} (4.32)

with equal probability, we have that

f(Xi(l)|Yi(l)) =
e
− |Yi(l)−H(l)Xi(l)|2

σ2
n

∑|A|
j=1 e

− |Yi(l)−H(l)Aj |2
σ2

n

(4.33)

This can be used to show that

E[Xi(l)|Yi(l)] =

∑j=|A|
j=1 Aje

− |Yi(l)−H(l)Aj |2
σ2

n

∑|A|
j=1 e

− |Yi(l)−H(l)Aj |2
σ2

n

(4.34)

This is nothing but the optimum MMSE estimate of Xi(l) given the output Yi(l). 7

As we did in the first moment case, we approximate the covariance calculation Cov[X∗
i |Y i, ĥi]

7Compare this estimate with the linear MMSE estimate

X̂MMSE
i (l) =

√EXH∗(l)
EX ||H(l)||2 + σ2

n

Yi(l)

This estimate makes use of the average energy of the input and not of the whole information provided by
the finite alphabet constraint.
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with that of Cov[X∗
i |Y i, ĥi]. This approximation allows us to use the circular channel to

calculate the covariance of Xi from the first moment of Xi(l), calculated in (4.34), and the

second moment given by

E[|Xi(l)|2|Yi(l)] =

∑j=|A|
j=1 |Aj |2e−

|Yi(l)−H(l)Aj |2
σ2

n

∑|A|
j=1 e

− |Yi(l)−H(l)Aj |2
σ2

n

(4.35)

Appendix B demonstrates how we can use the first two moments of X i to calculate the

covariance of X
∗
i .

4.3.3 The Maximization Step: Channel Estimation

With the two moments of the input at hand, we can proceed to perform the expectation

and maximization steps and obtain the channel estimate. Recall that the EM iteration is

expressed by

ĥ
(j+1)

i = arg max
hi

EXi|Yi,ĥ
(j)
i

[
ln p(hi|X i, Y i)

]
(4.36)

where averaging is performed conditioned on the output and the previous estimate of the

channel ĥ
(j)

i . Now, using Bayes rule, we can write

ln p(hi|X i,Y i) = ln p(X i, Y i|hi) + ln p(hi)− ln p(X i,Y i)

So, the EM iteration can be expressed as

ĥ
(j+1)

i = arg max
hi

EXi|Yi,ĥ
(j)
i

ln p(X i, Y i|hi) + ln p(hi)

Employing Bayes rule again yields

ln p(X i,Y i|hi) = ln p(Y i|X i, hi) + ln p(X i|hi)

= ln p(Y i|X i, hi) + ln p(X i)
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where the second lines follows from the fact that X i and hi are independent. With this

decomposition, we can finally express the EM iteration as

ĥ
(j+1)

i = arg maxhi
EXi|Yi,ĥ

(j)
i

ln p(Y i|X i, hi) + ln p(hi) (4.37)

Now assuming that the channel values are equally probable and that the noise in the in-

put/output equation (4.29) is white Gaussian, the update equation (4.37) reduces to

ĥ
(j+1)

i = arg min
hi

EXi|Yi,ĥ
(j)
i

‖Y i −Xihi‖2
σ−2

n
(4.38)

By expanding the norm, taking the expectation, and completing the squares, we can alter-

natively write (4.38) as

ĥ
(j+1)

i = arg minhi
‖Y i − E[Xi]hi‖2

σ−2
n

+ ‖hi‖2
Cov[X

∗
i ]

(4.39)

4.3.4 The Maximization Step: Incorporating Frequency Correlation

In a wireless environment, the channel hi usually follows a Gaussian distribution, i.e. hi

assumes the pdf

p(hi) =
1

((2π)P+1|Π|)1/2
e−‖hi‖2Π−1 (4.40)

where Π is the channel covariance matrix. By incorporating this pdf into the EM iteration

(4.37), we basically add the term ‖hi‖2
Π−1 to the right-hand side of (4.39). In other words,

we have

ĥ
(j+1)

i = arg minhi

{∥∥Y i + E[Xi]hi

∥∥2
1

σ2
n

+ ‖hi‖2
1

σ2
n

Cov[X
∗
i ]

+ ‖hi‖2
Π−1

}
(4.41)

4.3.5 The Maximization Step: Incorporating Time Correlation

We now incorporate the additional information provided by the time-correlation– i.e., the

correlation between hi and hi+1. For simplicity, we assume that this correlation arises from
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the state-space model 8

hi+1 = Fhi + Gui (4.42)

where the matrices F and G are assumed to be known at the receiver and where ui is

Gaussian noise with zero mean and covariance matrix σ2
uI. The initial state h0 is also

assumed to be Gaussian with zero-mean and covariance matrix Π0. The state-space model

(4.42) thus captures both the frequency and time correlations. When the input is fully

available, this model can be used together with the input/output equation

Y i = Xihi + N i (4.43)

to dynamically estimate the channel hi using the Kalman filter. Our problem, however, is

that the input Xi is not always available in full, and the Kalman filter has to be modified in

the EM sense, as we did in the presence of frequency correlation information (See Appendix

C).

4.3.6 The Kalman Filter

When the channel exhibits a dynamic behavior, as in (4.42), the optimum channel estimate

is always obtained using a Kalman filter. This applies whether the input is perfectly known,

the input is known in detected form only, only the pilot part of the input is known, or nothing

is known about the input. Thus, when the input is perfectly known, we employ the Kalman

filter to the state-space model

hi+1 = Fhi + Gui (4.44)

Y i = Xihi + N i (4.45)
8The channel could follow a more sophisticated model in which hi+1 would depend not only on hi but

also on past values of the impulse response. Extending our approach to this case is straightforward.
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Table 4.3: Modifications to the Kalman filter (4.46)–(4.50) under various input knowledge
conditions

Substitution
Situation

Xi Y i IN+P

Input in
detected form

[
E

[
Xi

]

Cov
[
X
∗
i

]1/2

] [ Y i

0P×1

]
IN+2P

Pilot info diag (X i)Ip
Q̃P+1 Y iIp

I |Ip|
No input info

(Applies for i ≥ 1)
O Y i IN+P

Sparse
channel

XiI
∗
Ic Y i IN+P

No cyclic
prefix info

diag (X i) Q̃P+1 Y i IN

In this case, the Kalman filter is given by [47]

Re,i = σ2
nIN+P + XiP i|i−1X

∗
i P 0|−1 = Π0 (4.46)

Kf,i = P i|i−1X
∗
i R

−1
e,i (4.47)

ĥi|i =
(
IN+P −Kf,iXi

)
ĥi|i−1 + Kf,iY i h0|−1 = 0 (4.48)

ĥi+1|i = F ĥi|i (4.49)

P i+1|i = F i

(
P i|i−1 −Kf,iRe,iK

∗
f,i

)
F ∗ +

1
σ2

u

GG∗ (4.50)

The desired estimate is ĥi|i.

When the input is not perfectly known, we perform the change of variables

Xi −→

 E

[
Xi

]

Cov
[
X
∗
i

]1/2


 Y i −→

[
Y i

0P×1

]
(4.51)

Remarks

• Table 4.3 summarizes the substitutions to perform on the Kalman implementation

(4.46)-(4.50) in various situations. The first line in the table applies when the input

is known in detected form. The substitution is obtained by appealing to the EM

algorithm as we show in Appendix C.
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• The lower entries in the table are straightforward to obtain. For example, when only

the pilot information is available, we replace the input/output equation (4.45) by

Y iIp = diag(X i)IpQ̃P+1hi + N i

and the substitutions in the second line of the table follow accordingly.

• When compound situations happen, we employ the substitutions in tandem. Thus,

when the channel is sparse and only the pilot part of the input is available, we perform

the substitution

Xi
sparsity−→ XiI

∗
Ic

pilots−→ diag(X i)IpQ̃P+1I
∗
Ic

Y i
sparsity−→ Y i

pilots−→ Y iIp

IN+P
sparsity−→ IN+P

pilots−→ I |Ip|

4.4 Incorporating Forward and Backward Time Correlation

So far, channel estimation has been performed in a causal manner. In other words, the

receiver estimates hi by using past and current data {Yk}i
k=0. In this way, channel (and

data) recovery can be done with no latency. If we relax the latency constraint, we can use

all data symbols {Yk}T
k=0 (past, current, and future) to estimate the IR hi.

When the channel exhibits a dynamic behavior, the optimum channel estimate is ob-

tained by employing a forward-backward Kalman filter. Interestingly, as in the forward

Kalman filter case, once we describe the solution for the perfectly known input case, the

solution for the other cases follow by some substitution (as described by Table 4.3). Thus,

the same basic form of the filter can be used regardless of our degree of knowledge about

the input.

4.4.1 The Forward-Backward Kalman

Consider the state-space model

hi+1 = Fhi + Gui (4.52)

Y i = Xihi + N i (4.53)
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The MAP estimate of the sequence {hk}T
k=0 given the output sequence {Yk}T

k=0 is obtained

by employing the forward-backward Kalman filter. As the name suggests, the filter consists

of two runs, forward and backward:

Forward Run: The forward run coincides with the Kalman filter. Thus, the receiver runs

recursions (4.46)-(4.50) which are used to obtain ĥi|i−1, ĥi|i, and P i|i−1 for i = 0, 1, . . . , N.

Backward Run: For i = N, N − 1, . . . , 0, calculate

λi|N =
(
IP+N −X

∗
i K

∗
f,i

)
F ∗

i λi+1|N + XiR
−1
e,i

(
Y i −Xiĥi|i−1

)
(4.54)

ĥi|N = ĥi|i−1 + P i|i−1λi|N (4.55)

starting from λN+1|N = 0.

The desired estimate is ĥi|N .

4.4.2 Summary of the Algorithm

At this point, we have all the elements necessary to implement the OFDM receiver. So

consider a sequence of OFDM symbols passing through a block fading channel. The channel

could exhibit no correlation, frequency correlation, or both frequency and time correlation.

Pilot Placement There are different requirements on the number of pilots needed de-

pending on the a priori information available and the type of processing the receiver does

(see Table 4.4). At one extreme, when there is no correlation information, the algorithm

needs as many pilots in each symbol as the number of active channel taps. At the other

extreme, when both time and frequency correlation information is available and when the

receiver performs (forward-backward) smoothing, it is enough to have a few pilots in any

one symbol.

Initial Channel Estimation Table 4.5 summarizes the different methods to perform

initial channel estimation. The appropriate method depends on the available correlation

information and the type of processing that is desired.
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Table 4.4: Conditions on pilot number and placement
Available Channel Info

Pilot
Conditions

NO
Correlation

Info

Frequency
Correlation

Frequency
and Time

Correlation
(filtering)

Frequency
and Time

Correlation
(smoothing)

Presence of
Pilots in
symbols

Need pilots in
each symbol

Need pilots in
each symbol

Need pilots in
first symbol

Need pilots in
some symbol

Number of
pilots per

symbol

As many pilots
as channel taps

Nonzero
number of

pilots

Nonzero
number of pilots

Nonzero
number of

pilots

Table 4.5: How to perform the initial channel estimation step under various conditions
Channel Info Initial Channel Estimate

NO correlation
Info

minhi
‖Y iIp − diag(X )IpQP+1hi‖2

Frequency
correlation

minhi
‖Y iIp − diag(X )IpQP+1hi‖2 + ‖hi‖2

Π−1

Frequency and Time
Correlation
(Filtering)

Employ the Kalman filter (4.46)-(4.50)
with substitution from Table 4.3

depending on whether there are pilots or not

Frequency and Time
Correlation
(Smoothing)

Employ the foward-backward
Kalman filter (4.46)-(4.50), (4.54),(4.55)

with substitution from Table 4.3
depending on whether there are pilots or not

Data Detection Perform mean-square estimation of the first and second moments of the

frequency domain symbol X i using (4.34) and (4.35). Use that to construct the first and

second moments E[Xi] and Cov[X∗
i ], as described in Appendix B.

Channel Estimation Update Table 4.6 summarizes the various methods for updating

the channel estimate. Again, the particular update used depends on the correlation infor-

mation available and the type of processing desired (i.e. filtering or smoothing).
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Iterate between Estimation and Detection Iterate between channel estimation and

data detection. Simulations show that a few iterations are enough for convergence.

Table 4.6: How to update the channel estimate under various conditions
Channel Info Channel Update

No correlation
Info

minhi
‖Y i − E[Xi]hi‖2 + ‖hi‖2

Cov[X
∗
i ]

Frequency
correlation

minhi
‖Y i − E[Xi]hi‖2 + ‖hi‖2

Cov[X
∗
i ]

+ ‖hi‖2
Π−1

Frequency
and Time

Correlation
(Filtering)

Employ Kalman filter (4.46)-(4.50)
with the substitution

Xi −→
[

E
[
Xi

]

Cov
[
X
∗
i

]1/2

]
, Yi −→

[ Yi

0P×1

]
, IN+P −→ IN+2P

Frequency
and Time

Correlation
(Smoothing)

Employ the FB-Kalman filter (4.46)-(4.50), (4.54),(4.55)
with substitution

Xi −→
[

E
[
Xi

]

Cov
[
X
∗
i

]1/2

]
, Yi −→

[ Yi

0P×1

]
, IN+P −→ IN+2P

4.5 Simulations

4.5.1 Simulation Setup

We consider an OFDM system that transmits a sequence of 5 symbols each with 64 carriers

and a cyclic prefix of length P = 15. The input data is 16 QAM mapped from a binary

bit stream through gray coding. We will use two pilot configurations. The first employs

16 pilots in the first symbol and x number of them in the subsequent four symbols with

1 ≤ x ≤ 16. We denote this configuration by 16xxxx. The second configuration, denoted

xx16xx, is a cyclic rearrangement of the first with the 16 pilots placed in the middle (3rd)

symbol and x pilots in the other symbols.

The channel IR consists of 16 complex taps (the maximum length possible that avoids

intersymbol interference). The initial IR h0 has an exponential delay profile E[|h0(k)|2] =

e−0.2k. For i ≥ 0, hi is generated according to the dynamical model (4.42)

hi+1 = Fhi + Gui (4.56)

Both F and G are diagonal matrices. Specifically, we set F = fI with 0 < f < 1 and set
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the diagonal entries of G as G(k, k) =
√

(1− f2)E[|h0(k)|2]. The state noise ui is iid with

unit variance. This ensures that the channel maintains the same (exponential) delay profile

at subsequent time instants. Throughout the simulations, we run the EM algorithm for 10

iterations.

4.5.2 Effect of Time Variation

Figure 4.1 demonstrates the effectiveness of the Kalman filter in dealing with different

degrees of time variation (f = .1, .3, .5, .7). Specifically, we implement the 16xxxx pilot

configuration for x = 4, 8, 12, 16. We observe that the BER curves will saturate when the

time variation is excessive enough (i.e., f is small enough). The only exception is the 16-

pilot case in which the BER decreases linearly with SNR regardless of how sever the time

variation is. This is understood given the fact that 16 is actually the number of channel taps.

Figure 4.2 demonstrates the same situation for the FB-Kalman receiver. The only difference

is that this receiver is tested with the pilot configuration xx16xx. The observations above

remain valid for this receiver too.
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Figure 4.1: BER curves for the Kalman based receiver for different number of pilots and various
degrees of time variation
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Figure 4.2: BER curves for the FB-Kalman based receiver for different number of pilots and various
degrees of time variation

4.5.3 Comparing the Kalman and the Forward-Backward Kalman

In this subsection, we compare the effectiveness of the Kalman and the FB-Kalman when

using the two configurations 16xxxx and xx16xx for x = 4, 8, 12, 16 and for different degrees

of time variation. Specifically, Figure 4.3 considers the 16xxxx pilot case. We note that

almost consistently, the BER curve of the Kalman outperforms that of the FB-Kalman when

the two receivers deal with the same degree of time variation (the only exception is the case

f = .7 in which the FB-Kalman outperforms the Kalman filter).

Figure 4.4 considers the second pilot configuration, namely xx16xx. To avoid cluttering

the figure, we draw the best BER curve for the Kalman filter case (corresponding to f =

.9, the least degree of time variation). We note that this best case Kalman scenario is

comparable to the worst FB-Kalman cases (those with high degrees of time variations).

Thus, when the FB-Kalman receiver operates on channels with low degrees of time variation

(e.g., for f = .7 or f = .9), it produces BER curves that are much better than that of the

Kalman-based receiver.

We next compare the performance of the Kalman receiver employing the 16xxxx pilot
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Figure 4.3: For the 16xxxx pilot configuration, the BER curves for the Kalman receiver outperform
those of the FB-Kalman receiver

configuration with that of the FB-Kalman receiver employing the xx16xx configuration.

Thus, the two receivers employ the same number of pilots except that these pilots are

distributed differently. We carry out this comparison for different levels of time variations.

We note that the BER curves are quite comparable for the extreme cases of time variation

(low and high values of f). However, for moderate levels of variation (f = .7), the FB-

Kalman consistently outperforms the performance of the Kalman. This is not unexpected

for when the variation is too slow, the two filters are equally able to track the channel

with only a few pilots. When the time variation is too high, time correlation information

becomes of little use. It is only at a moderate level of time variations that the additional

signal processing mandated by the FB-Kalman becomes valuable.

4.5.4 Effect of Increased Signal Processing

We next consider the effect of increased signal processing on the BER curves for the Kalman

and the FB-Kalman receivers. Specifically, we implement the two receivers

1. using the CP observation and the soft estimate of the input,
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Figure 4.4: For the xx16xx pilot configuration, the BER curves for the Kalman receiver outperform
those of the FB-Kalman receiver

2. using the CP and the hard estimate of the input,

3. using no CP observation and using the hard estimate of the input.

Figures 4.6 and 4.7 show that increasing the level of signal processing pays off producing

better BER performance. This applies for different number of pilots and different degrees

of time variation.

4.5.5 Effect of Increasing the Number of Iterations

Figure 4.8 demonstrates the effect of increasing the number of EM iterations on the BER

performance of the FB-Kalman receiver. We do that for different number of pilots and

different degrees of time variation. As expected, the BER improves as we increase the

number of iterations. The value of iterations eventually results in diminishing returns.
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Figure 4.5: The Kalman and FB-Kalman show comparable performance at extreme levels of time
variation. Only at moderate levels of variation does the FB-Kalman outperform the Kalman

4.5.6 Bench Marking

Finally, we bench mark the BER performance of the Kalman and FB-Kalman receivers

against receivers that have been suggested in literature and also against the known-channel

case. Specifically, Figure 4.9 compares the BER performance of the following five receivers:

1. EM-based least-squares (LS) receiver (i.e. a receiver employing frequency correlation

only)

2. The EM-based receiver proposed by Lu, Wang, and Li in [58] 9.

3. The EM-based Kalman receiver

4. The EM-based FB-Kalman receiver

5. A receiver with perfect channel knowledge
9This receiver is similar to our Kalman-based receiver in that it makes use of the time and frequency

correlation.
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Figure 4.6: The Kalman-based receiver demonstrates improved BER with increasing levels of signal
processing

All receivers implement the 16xxxx pilot configuration except the FB-Kalman which

implements the xx16xx configuration and the receiver with perfect channel knowledge which

uses no pilots. We test these receivers against the dynamically variant channel (4.42) with

f = .7.

Figure 4.9 demonstrates that the Kalman and FB-Kalman outperform the LS receiver

and the receiver of [58]. This is especially the case for low number of pilots. Moreover, for

this case of moderate time variation, the FB-Kalman consistently outperforms the Kalman

receiver.

4.6 Conclusion

In this chapter, we considered the problem of semi-blind channel and data recovery in

OFDM. The chapter first introduced some convenient notation and used that to perform a

careful study of OFDM transmission. This study was subsequently used to design an OFDM

receiver. The receiver makes use of the data and channel constraints to perform recovery
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Figure 4.7: The FB-Kalman based receiver demonstrates improved BER with increasing levels of
signal processing

with zero latency and minimal pilot overhead. Specifically, the receiver uses the pilots to

kick start channel estimation and subsequently iterates between that and data recovery. In

doing so, the receiver utilizes the data constraints (which include pilots, the cyclic prefix,

and the finite alphabet nature of the data) and employs the data estimates in soft format.

The receiver also makes use of the various constraints on the channel (which include sparsity

and finite delay spread information as well as time and frequency correlation). Thanks to

the presence of the cyclic prefix, optimal mean-square data recovery is done on an element

by element basis while channel recovery always boils down to solving a regularized least-

squares problem. Table 4.7 lists the various channel constraints and the associated LS norm

that each contributes. Channel estimation using a subset of these constraints is performed

by minimizing the sum of the corresponding squared norms.

The chapter culminates with the EM-based Kalman which performs data and channel

recovery with zero latency and the EM-based forward-backward Kalman which performs

batch processing to enhance the performance of the receiver (at the expense of increasing

complexity, delay, and latency).
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Figure 4.8: Increasing the number of EM iterations improves the BER of the FB-Kalman receiver,
but the value of these iterations results in diminishing returns

The Kalman receivers derived here apply to nonstationary channels as well in which

the matrices F and G of the state-space model (4.44) vary with time. It has already

been extended to incorporate the coding constraint on the data [10]. The chapter assumes

that these parameters are known perfectly at the receiver. However, the receiver can be

generalized to estimate the state-space parameters and to be robust to uncertainties in these

estimates (e.g., see [81]).

Table 4.7: Weighted norm interpretation of various channel estimation methods
Constraint Associated weighted norm

Pilots ‖Y iIp
− diag (X i)Ip

Q̃P+1hi‖2
1

σ2
n

Frequency correlation ‖hi −m‖2
Π−1

Detected data ‖Y i − diag(X̂ i)Q̃P+1hi‖2
1

σ2
n

+ ‖hi‖2
1

σ2
n

Q̃∗P+1Cov[X i]Q̃P+1

Cyclic prefix observation ‖y
i
− E[Xi]hi‖2

1

σ2
n

+ ‖hi‖2
1

σ2
n

Cov[X∗
i ]

Time correlation ‖hi − F ĥi−1‖2
P−1

i|i−1

+ ‖Y i − E[Xi]hi‖2
1

σ2
n

+ ‖hi‖2
1

σ2
n

Cov[Xi]
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Figure 4.9: BER curves comparing a receiver that employs the Kalman filter with one employing
the FB-Kalman and another with perfect channel knowledge. The two Kalman receivers employ the
same number of pilots with optimum placement.

4.7 APPENDIX A: State-Space Channel Model

A typical OFDM symbol passes through two channels; the physical channel ci (which consists

of L + 1 paths arriving at instants τ0, τ1 . . . , τL) and the receive filter r. The actual channel

hi, which is P + 1 taps in length, is the convolution of these two channels. Thus, we can

write



hi(1)

hi(2)
...

hi(P + 1)




=




r(−τ0) r(−τ1) · · · r(−τL)

r(T − τ0) r(T − τ1) · · · r(T − τL)
...

...
...

...

r(PT − τ0) r(PT − τ2) · · · r(PT − τL)







ci(1)

ci(2)
...

ci(L + 1)




or more compactly

hi = Rci (4.57)
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4.7.1 Modelling the Time-Variant Behavior

Due to the mobile nature of the channel, the physical channel taps ci(k) are time-variant.

According to the WSSUS model [75], the process ci(k) is zero-mean wide-sense stationary

complex Gaussian process with autocorrelation

E
[
ci(k)ci′(k′)

]
= J0

(
2πfc(k)(N + P )T |i− i′|) δkk′ (4.58)

where T is the sampling (baud) rate, fc(k) is the Doppler frequency associated with the

kth tap, and J0 denotes the zero-order Bessel function of the first kind.

We can approximate the time-variant behavior of the tap ci(k) arbitrarily closely by an

autoregressive (AR) model with large enough order (see [50], [45]). As argued in [50], even

a first-order AR model can capture most of the channel dynamics. We can show that the

closest 1st-order AR fit of (4.58) is given by

ci+1(k) = α(k)ci(k) +
√

(1− α2(k))E[|c0(k)|2]ui(k) (4.59)

where

α(k) ∆= J0 (2πfc(k)(N + P )T )

The factor
√

(1− α2(k))E[|c0(k)|2] ensures that the tap ci(k) maintains the same power

profile for all time. Collecting (4.59) for all taps yields

ci+1 = F cci + Gcui (4.60)

where

F c = diag
(

α(1), · · · , α(L + 1)
)

Gc = diag
[ √

(1− α2(1))E[|ci(1)|2] · · ·
√

(1− α2(L + 1))E[|ci(L + 1)|2]
]

We can use this dynamical relationship along with (4.57) to derive a dynamical relationship

for the impulse response hi. Specifically, multiplying both sides of (4.60) by R and noting

that R†R = I 10, we obtain

hi+1 = Fhi + Gui

10For this to be true, the matrix R has to be tall which will be the case if the sampling rate is high enough
so that the number of channel taps P + 1 is larger then the number of physical paths.
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where

F = RF cR
† and G = RGc

4.8 APPENDIX B: Evaluating Moments of the Input Matrix

X i

The expectation step boils down to calculating the first two moments E[Xi] and Cov[X∗
i ]

(see (4.39) and (4.41) for example). The expressions (4.36) and (4.37) call for evaluating

these two moments over X i only. However, since Xi depends on X i as well as X i−1, we will

carry the expectation over these two consecutive symbols. This is needed for the EM-based

forward-backward Kalman while the expectation over X i follows as a special case.

From (4.19) and (4.25), we can express the first moment of Xi as

EXi−1,Xi

[
Xi

] ∆=

[
EXi [diag(X i)]Q̃P+1

EXi−1 [XUi] + EXi [XLi]

]
(4.61)

=

[
diag(X̂ i)Q̃P+1

X̂Ui + X̂Li

]
(4.62)

where the elements of X̂ i are evaluated in (4.34) and where the estimate X̂Ui is obtained

from x̂i−1 just as XUi is obtained from xi−1 (see (4.20)). The estimate X̂Li can be cal-

culated similarly. Now, let’s evaluate the covariance of X
∗
i . Starting from the defining

expression (4.25), it is easy to show that

CovXi−1,Xi [X
∗
i ] = CovXi [Q̃

∗
P+1diag(X i)∗] + CovXi−1,Xi [X

∗
i ]

= Q̃
∗
P+1Cov[diag(X i)∗]Q̃P+1 + Cov[XU

∗
i ] + Cov[XL

∗
i ]

The covariance Cov [diag(X ∗
i )] is a diagonal matrix whose diagonal elements are simply the

variances

Cov[Xi(l)] = E[|Xi(l)|2]− |E[Xi(l)]|2 (4.63)

and hence can be calculated from (4.34) and (4.35). The elements of the covariance matrix
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CL
∆= Cov [Xi

∗
L] are calculated recursively from

CL(j, k) = CL(j + 1, k + 1) + E[x∗i (P − j)xi(P − k)]− x̂∗i (P − j)x̂i(P − k)︸ ︷︷ ︸
covariance evaluated in (4.67)

(4.64)

The recursion is run (backward) for j, k = 1, 2, · · · , P starting from the boundary conditions

CL(P + 1, l) = CL(l, P + 1) = 0, l = 1, 2, · · · , P (4.65)

The covariances that appear in (4.64) are the entries of the covariance Cov [xi] and are

collectively calculated from

Cov [xi] =
1
N

Q∗
P
Cov [X i]QP

(4.66)

=
1
N

Q∗
P
Cov [diag(X i)]QP

(4.67)

where (4.66) follows from the partial IDFT relationship xi = (1/
√

N)Q∗
P
X i, and where the

diagonal elements of the covariance Cov [diag(X i)] of (4.67) have already been calculated in

(4.63). Similarly, we can show that the elements of the covariance CU
∆= Cov [Xi

∗
U] satisfy

the recursion

CU(j + 1, k + 1) = CU(j, k) + E[x∗i−1(P − j)xi−1(P − k)]− x̂∗i−1(P − j)x̂i−1(P − k)

The recursion is kick-started from the initial conditions

CU(1, l) = CU(l, 1) = 0, l = 1, 2, · · · , P (4.68)

4.9 APPENDIX C: Derivation of the EM-Based Kalman Fil-

ters

In this appendix, we construct the EM-based Kalman filter. In particular, assume that the

channel satisfies the state-space recursion

hi = Fhi−1 + Gui (4.69)
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with Gaussian distributed initial state h0 ∼ N (0,Π0). The channel also satisfies the in-

put/output relationship

Y i = Xihi + N i (4.70)

We obtain the MAP estimate of the IR sequence {hk}T
k=0 by maximizing the pdf of the se-

quence conditioned on the input and output sequences {X k}T
k=0 and {Yk}T

k=0. Alternatively,

we obtain the MAP estimate by maximizing the full pdf p
({hk}T

k=0, {X k}T
k=0, {Yk}T

k=0

)
. It

is straightforward to show that this pdf can be decomposed into

p
({hk}T

k=0, {Xk}T
k=0, {Yk}T

k=0

)
=

T∏

k=0

p(Yk|Xk,hk)
T∏

k=1

p(hk|hk−1)p(h0)

Using the state-space equations, we can show that the log-likelihood function (excluding

any terms that are independent of hk) is give by

ln p
({hk}T

k=1, {Xk}T
k=1, {Yk}T

k=1

)
= −‖h0‖2

Π−1
0

−
T∑

k=1

‖Yk −Xkhk‖2
1

σ2
n

−
T∑

k=1

‖hk − Fhk−1‖2
1

σ2
u

GG∗ (4.71)

Since the channel sequence {hk}T
k=0 is Gaussian distributed, the MAP estimate of the chan-

nel sequence given the output sequence {Yk}T
k=0 is the same as the MMSE estimate given

the same sequence.The MMSE estimate itself is obtained by the forward-backward filter

described by (4.46)–(4.50), (4.54), and (4.55) ( See problem 10.9 in [47]).

Now since the input symbols X 0, · · · , X T , are not available, we invoke the EM algo-

rithm, maximizing the averaged likelihood instead. Specifically, given the initial estimates

ĥ0, · · · , ĥT together with the output symbols Y0, · · · , YT , we can estimate h0, · · · , hT it-

eratively using the expectation-maximization operation

{ĥ(j+1)

k }T
k=0 = arg max

{hk}T
k=0

E{Xk}T
k=0|{ĥ

(j)
k }T

k=0,{Yk}T
k=0

p({hk}T
k=0, {X k}T

k=0, {Yk}T
k=0)
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This, together with (4.71), yields

{ĥ(j+1)

k }T
k=0 = arg max

{hk}T
k=0

−‖h0‖2
Π−1

0
−

T∑

k=0

E
∥∥Yk −Xkhk

∥∥2
1

2σ2
n

−
T∑

k=0

‖uk‖2
1

2σ2
u

= arg max
{hk}T

k=0

−‖h0‖2
Π−1

0
−

T∑

k=0

∥∥Yk − E
[
Xk

]
hk

∥∥2
1

2σ2
n

−
T∑

k=0

‖hk‖2
1

2σ2
n

Cov[X
∗
k]
−

T∑

k=0

‖uk‖2
1

2σ2
u

= −‖h0‖2
Π−1

0
−

T∑

k=0

∥∥∥∥∥

[
Yk

0P×1

]
−

[
E[Xk]

Cov[X∗
k]

1/2

]
hk

∥∥∥∥∥

2

1

2σ2
n

−
T∑

k=0

‖uk‖2
1

2σ2
u

(4.72)

where the expectations are taken given the previous estimates ĥ
(j)

k and the output of all

data symbols Y0, · · · , YT . The averaged likelihood (4.72) function can be obtained from

the original one (4.71) by performing the substitutions

X l −→
[

E[X l]

Cov[X∗
l ]

1/2

]

Y l −→
[

Y l

0P×1

]

Thus, the maximizing impulse response values are also obtained by implementing the

forward-backward Kalman filter taking into account the substitutions above. Alternatively,

the impulse response values are obtained by implementing the forward-backward Kalman

on the following state-space model

hi+1 = Fhi + Gui (4.73)[
Y i

0P×1

]
=

[
E[Xi]

Cov[X∗
i ]

1/2

]
hi +

[
N i

ni

]
(4.74)

where ni is virtual noise that is independent of the physical noise N i. This state-space

model in turn motivates the EM-Kalman filter. In other words, the EM-Kalman based

receiver applies the Kalman filter to the state-space model (4.73)–(4.74).



Chapter 5

Receiver Design for MIMO OFDM

Transmission over Time-Variant

Channels

5.1 Introduction

1 This chapter builds on the previous chapter and scales up the receiver design to OFDM

transmission over mutli-input multi-output (MIMO) transmission. OFDM is a technique

that enables high speed transmission over frequency selective channels with simple equaliz-

ers by creating a set of parallel, frequency-flat channels. Moreover, for frequency flat fading

channels, space-time codes provide diversity and coding gain benefits when compared with

single-input single-output (SISO) systems, improving their BER performance [73]. When

MIMO techniques are combined with OFDM, space-time codes for frequency flat channels

can be used per tone, providing the benefit of multiple antennas with simple channel equal-

ization. However, the spacial dimension in turn places a constraint in that the receiver has

to recover the impulse response of the MIMO channel.

This chapter thus considers receiver design for MIMO OFDM transmission over frequency

selective time-variant channels. While the presence of multi-antennas makes the problem
1A major part of this chapter is reproduced, with permission, from T. Y. Al-Naffouri O. Oteri, O. Awoniyi,

and A. Paulraj, “Receiver design for MIMO-OFDM transmission over time-variant channels,” Globecom 2004,
Dallas, Texas, Nov. 2004.
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more challenging, it also adds more (spatial) structure that the receiver can utilize. Specif-

ically, in addition to the constraints we employed for SISO OFDM, the receiver can make

use of the transmit and receive correlation as well as the space-time (ST) code. The chapter

is organized along the same lines of Chapter 4. Specifically, following this introduction, we

provide a system overview in Section 5.2 where we describe the transmitter, the receiver,

and the channel model. In Section 5.3 we derive the I/O equations that are used for channel

estimation and for space-time decoding. The channel estimator and data detector parts of

the receiver are described in Section 5.4 and this is followed by some practical considerations

and simulation results.

5.1.1 Notation

We continue to use the notation of Chapter 4. However, we need to adopt more notational

elements to take care of the additional spatial and temporal dimensions. Thus, given a

sequence of vectors htx
rx

for rx = 1 · · ·Rx and tx = 1 · · ·Tx, we define the following stack

variables

hrx
=




h1
rx

...

hTx
rx


 and h =




h1
...

hRx


 (5.1)

Moreover, given an Rx × Tx matrix H, we denote its (rx, tx) entry by htx
rx

, its rx row by

hrx , and its tx column by htx . Thus, we can write

H = [htx
rx

]

=
[

h1 h2 · · · hTx

]

=




h1

h2

...

hRx




We also use the notation h(+) (h(−)) to denote the value of h at the next (previous) time

instant.
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5.2 System Overview

In this section, we give an overview of the communications system: transmitter, channel,

and receiver.

5.2.1 Transmitter

b

Puncturer
Encoder
 Interleaver
 Modulator


Pilot

Insert.


STBC

encoder


IFFT

Cyclic

prefix


IFFT

Cyclic

prefix


IFFT

Cyclic

prefix


Figure 5.1: Transmitter

A block diagram of the transmitter is shown in Figure 5.1. The bit sequence to be

transmitted passes through a convolutional encoder that serves as an outer code for the

system. The coded output is then punctured to increase the code rate. The punctured

sequence then passes through a random interleaver which rearranges the order of the bits

according to a random permutation. The interleaved bit sequence is mapped to QAM

symbols using gray coding and the QAM symbols are in turn mapped to the OFDM symbols

with space reserved for the pilot symbols (as explained in Subsection 5.2.2). The STBC

encoder uses the OFDM signals to construct the ST block by mapping the various OFDM

symbols to a specific antenna and specific time slot depending on the ST code used. Each

antenna performs an IFFT operation on the OFDM symbols to produce the time-domain

OFDM symbols and adds a cyclic prefix to each prior to transmission.

5.2.2 Pilot Insertion

Pilots are employed to initialize channel estimation. The use of properly placed pilots and

additional channel or data constraints can reduce the actual number of pilots needed. The

first ST block in the transmitted packet uses Np pilots. Subsequent ST blocks can use



CHAPTER 5. RECEIVER DESIGN FOR MIMO OFDM 106

Pilots
 QAM Symbols
 OFDM symbol


Figure 5.2: Pilot placement in OFDM symbols

a reduced number of pilots or no pilots at all (e.g., as in [24], [58]), relying instead on

additional channel constraints (e.g., time correlation) to perform initial channel estimation.

The pilots are optimally placed at maximum distance away from each other [71]. Within

the same STBC block, the pilots maintain the same position (across time and space) which

prevents interference from non-pilot symbols. As such, no interference cancellation is needed

during initial channel estimation. Since frequency bins close to the pilot positions have a

higher estimation accuracy than those further away, the pilot positions are rotated from

one ST block to the next. Figure 5.2 demonstrates these design guidelines.

5.2.3 Channel Model

In this chapter, we consider MIMO channels that are block fading and frequency selective.

For proper channel modelling, consider the time domain I/O relationship

y(i) =
P∑

p=0

H(p)x(i− p) + n(i) (5.2)

where H(p) is the Rx× Tx MIMO impulse response (IR) at tap p and where i is the sample

time index. The taps H(p) usually incorporate the effect of the transmit filter and the

effects of the transmit and receive spatial correlation making H(p) correlated across space

and tap. We will assume H(p) here to be iid and relegate the spatially correlated case to

Appendix A. Moreover, we will assume that H(p) remains constant over a single ST block

(and hence over the constituent OFDM symbols).

To model the time variations, we scale up the SISO channel model of Chapter 4 to the

MIMO case. Specifically, we assume that from one ST block to the next, the MIMO taps
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change according to the dynamic equation

H(+)(p) = α(p)H(p) +
√

(1− α2(p))e−βpU(p) (5.3)

where α(p) is related to the Doppler frequency fD(p) by α(p) = J0(2πfD(p)T ) and T is

the time duration of one ST block, and where U(p) is an iid matrix with entries that are

N (0, 1). The variable β in (5.3) corresponds to the exponent of the channel delay profile

while the factor
√

(1− α2(p))e−βp ensures that each link maintains the exponential decay

profile (e−βp) for all time.

This channel model pushes the time variation to the limit while avoiding intercarrier

interference and ensuring the proper operation of the space-time code. Using the dynamic

equation in (5.3), we can obtain the state-space model for the impulse response htx
rx

acting

between transmit antenna tx and receive antenna rx

htx(+)
rx

(p) = α(p)htx
rx

(p) +
√

(1− α2(p))e−βputx
rx

(p) (5.4)

By stacking (5.4) for p = 0, 1, . . . , P, we obtain the dynamic model

ht
(+)
x

rx
= Fhtx

rx
+ Gutx

rx
(5.5)

where

F =




α(0)
. . .

α(P )


 and G =




√
1− α2(0)

. . . √
(1− α2(P ))e−βP




By further stacking (5.5) over all transmit and receive antennas, as done in (5.1), we obtain

h(+) = (ITxRx ⊗ F ) h + (ITxRx ⊗G) u (5.6)

where h, u, and h(+) are vectors of size TxRx(P + 1) × 1. Note that while (5.3) and (5.6)

are equivalent, the latter model is in vector form and hence lends itself more to the Kalman

filter operations, which are essential for channel estimation.

Finally, for a complete characterization of this dynamic model, we need to specify the
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covariance of u. It is easy to show that

E [uu∗] = IRx ⊗ E
[
urxu∗rx

]
(5.7)

= IRx ⊗
(
ITx ⊗E

[
utx

rx
utx∗

rx

])
(5.8)

= IRx ⊗ ITx ⊗ IP+1 = ITxRx(P+1) (5.9)

We can similarly show that the channel covariance at the first time instant is given by

E [h h∗] = ITxRx ⊗GG∗

The covariance information is important for employing the Kalman filter to channel esti-

mation. Appendix A considers the the more general spatially correlated case.

5.2.4 Receiver

Demodulator


Cyclic

prefix


Removal

FFT


Cyclic

prefix


Removal

FFT


Cyclic

prefix


Removal

FFT
 STBC


decoder

De-


interleaver

De-


puncturer

Decoder


Pilot

Removal


Initial

Channel


Estimator


Channel

Estimator


E[x]

E
[x
2
]


h
est


h
est,initial


Figure 5.3: OSTBC OFDM receiver

A block diagram of the receiver is shown in Figure 5.3. The receiver uses the pilots to

initialize its operation. The receiver’s core operation is based on the expectation maximiza-

tion (EM) algorithm which performs joint channel and data recovery. The iterative module

is made up of the ST block decoder/data detector and the channel estimator.

STBC Decoder/Data Detector

The STBC decoder/data detector calculates the conditional first and second moments of

the transmitted data (soft estimate) to be used by the channel estimator. This constitutes
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the expectation step of the EM algorithm. At the last iteration of the algorithm, this block

generates hard decisions of the STBC block.

Channel Estimator

The soft estimates of the STBC decoder are used by the channel estimator in the maximiza-

tion step of the EM algorithm. It uses these estimates together with other data/channel

constraints to produce an improved channel estimate.

These two processes (channel estimation and data detection) go on iteratively until

a stopping criterion is satisfied. This could be that the iterative algorithm executes a

maximum number of iterations or that the likelihood function does not change beyond a

certain threshold.

The decoded OSTBC OFDM symbols are stripped of their pilot symbols, passing the

remaining (data) symbols to the QAM demodulator. The demodulated bits subsequently

pass through the de-puncturer, de-interleaver, and finally the Viterbi decoder.

5.3 Input/Output Equations for MIMO OFDM

To derive the I/O equations for a MIMO channel, we first derive the I/O equation for a SISO

link between transmit antenna tx and receive antenna rx and subsequently use superposition

to scale up the result to the MIMO case. The SISO I/O equations are described in Table 4.2

(Chapter 4), part of which is reproduced here for convenience.

Table 5.1: Input/output relationships for the circular, linear, and total channels between
transmit antenna tx and receive antenna rx

Channel Sequence relationship Matrix relationship

Linear y
rx

= htx
rx
∗ xtx + nrx

y
rx

= Xtxhtx
rx

+ nrx

Circular
yrx

= htx
rx
◦∗xtx + nrx

Yrx = Htx
rx
¯X tx + N rx

Yrx = diag (X rx) Q̃P+1h
tx
rx

+ N rx

= Xrxhtx
rx

+ N rx

Total yrx
= h

tx
rx
∗ xtx + nrx Yrx = Xtxhtx

rx
+ N rx

5.3.1 Remarks

1. We can now use the I/O equations of Table 5.1, together with the superposition

principle, to derive the corresponding I/O equations for a MIMO system. For example,
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under superposition, the matrix relationship for the linear channel becomes

y
rx

=
Tx∑

tx=1

Xtxhtx
rx

+ nrx
(5.10)

2. Alternatively, if we adopt the Einstein notation for summation, 2 the following two

expressions become equivalent

y
rx

= Xtxhtx
rx

+ nrx
and y

rx
=

Tx∑

tx=1

Xtxhtx
rx

+ nrx
(5.11)

This in effect means that Table 5.1, as it stands, completely characterizes the I/O

equations for the MIMO channel.

3. The relationships of Table 5.1 exhibit no time dependence as they apply to any MIMO

OFDM symbol. When time dependence needs to be emphasized, as when the OFDM

symbol is part of a space-time block, we signify it by attaching (tb) to the symbol.

For example, we can rewrite (5.10) to stress the time-dependence as

y
rx

(tb) =
Tx∑

tx=1

Xtx(tb)htx
rx

+ nrx
(tb) (5.12)

For proper operation of the ST code, we assume that the channel htx
rx

remains constant

over the duration of the block.

4. While Table 5.1 completely describes the behavior of a MIMO channel, we would like

to write the I/O equation in the succinct form

Y = Ah + N , (5.13)

that incorporates the effect of the space-time code and the effect on all receive

antennas– a form that lends itself to channel estimation. Before doing that, however,

we digress to briefly introduce ST codes and input representation in their presence.
2The Einstein notation allows us to get rid of the summation symbol by invoking the understanding that

summation runs over any subscript or superscript that is repeated in a given monomial. Thus, tx appears
twice in the monomial htx

rx
∗ xtx

and so the monomial should be summed over the range of tx making the
two expressions in (5.11) equivalent.
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5.3.2 Space-Time Coding for OFDM

For OFDM transmission, STBC can be implemented on the time or frequency symbol.

In time-domain STBC, the code symbols of a given ST block occupy the same frequency

bins of consecutive OFDM symbols. In contrast, the code symbols in frequency-domain

STBC occupy consecutive frequency bins in the same OFDM symbol. While we assume

time-domain STBC in this chapter, the design can be easily extended to frequency-domain

STBC.

To derive the I/O equations for space-time coding, we adopt the approach of [51]. To this

end, consider the set of Ns uncoded OFDM symbols {S(1), . . . , S(Ns)}. Using ST coding,

we wish to transmit these symbols in one OSTBC block using Tx antennas and Tb time

slots. We achieve this using the set of Tx × Tb matrices {A(1),B(1), . . . ,A(Ns), B(Ns)}
which characterize the ST code used. For example, Alamouti’s code with Tx = 2, Ns = 2

and Tb = 2 is characterized by the matrices

A(1) =

[
1 0

0 −1

]
, A(2) =

[
0 1

1 0

]
, B(1) =

[
1 0

0 1

]
, and B(2) =

[
0 −1

1 0

]

Following the approach of [51], we can show that the OFDM symbol transmitted from

antenna tx at time slot tb is given by

X tx(tb) =
Ns∑

ns=1

atb
tx(ns)RS(ns) + jbtb

tx(ns)IS(ns) (5.14)

where atb
tx is the (tx, tb) element of A(ns), btb

tx is the (tx, tb) element of B(ns), j =
√−1, and

RS(ns) is the real part of S(ns) and IS(ns) its imaginary part.

The coded symbol X tx(tb) is now ready for OFDM transmission. This is done at the

transmitter by performing an IFFT on X tx(tb) to produce the time domain symbol

xtx(tb) =
1√
N

Q∗X tx(tb) (5.15)

and by appending a cyclic prefix given by

xtx(tb) =
1√
N

Q∗
P
X tx(tb) (5.16)

The time and frequency domain symbols as well as the cyclic prefix can in turn be used to



CHAPTER 5. RECEIVER DESIGN FOR MIMO OFDM 112

generate the input matrices Xtx(tb), Xtx(tb), and Xtx(tb) that are used in the I/O equations

as described in Chapter 4. With these equations at hand, we are now ready to write the

I/O equations in the compact form (5.13).

5.3.3 Input/Output Equations with Space-Time Coding: Channel Esti-

mation Version

Linear Channel

Consider the time-dependent I/O equation (5.12). Concatenating this equation for tb =

1, . . . , Tb yields 


y
rx

(1)

y
rx

(2)
...

y
rx

(Tb)




︸ ︷︷ ︸
y

rx

=




Xtx(1)

Xtx(2)
...

Xtx(Tb)




︸ ︷︷ ︸
Xtx

htx
rx

+




nrx
(1)

nrx
(2)
...

nrx
(Tb)




︸ ︷︷ ︸
nrx

We can write this more compactly as

y
rx

= Xtxhtx
rx

+ nrx

This represents the I/O relationship for the linear channel between transmit antenna tx and

receive antenna rx. Using superposition, we can express the effect of Tx such antennas as

y
rx

=
[

X1 · · · XTx

]

︸ ︷︷ ︸
X




h1
rx

...

hTx
rx




︸ ︷︷ ︸
hrx

+N rx (5.17)

= X hrx
+ nrx

(5.18)

Finally, concatenating this relationship for all receive antennas yields




y
1

y
2
...

y
Rx




=




X

X
. . .

X







h1

h2
...

hRx




+




n1

n2
...

nRx



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Using the stack notation (5.1), we can equivalently write this as

y = (I ⊗X) h + n

Circular Channel

Along the same lines, we derive the following I/O equation for the circular channel

Y = (I ⊗X) h + n (5.19)

where

X =
[

X1 X2 · · ·XTx

]

with

Xtx =




Xtx(1)

Xtx(2)
...

Xtx(Tb)




=




diag(X tx(1))Q̃P+1

diag(X tx(2))Q̃P+1
...

diag(X tx(Tb))Q̃P+1




Total Channel

We can similarly show that the I/O equation governing the total channel is given by

y =
(
I ⊗X

)
h + n

where

X =
[

X1 X2 · · ·XTx

]

with

Xtx =




Xtx(1)

Xtx(2)
...

Xtx(Tb)




and Xtx(tb) =

[
Xtx(tb)

Xtx(tb)

]
=

[
diag(X tx(tb))Q̃P+1

Xtx(tb)

]
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5.3.4 Input/Output Equations with Space-Time Coding: Data Detection

Version

Signal detection in ST-coded OFDM is done on a tone-by-tone basis, except that the tones

are collected for the whole ST block (for Rx receive antennas and over Tb time slots).

Consider the frequency domain I/O equation in Table 5.1. We can extract the following I/O

equation for tone n belonging to the OFDM symbol tb (equations (5.20)–(5.26) are valid at

a given tone n but we don’t show this dependence explicitly for brevity)

Yrx(tb) =
[
H1

rx
· · · HTx

rx

]


X1(tb)

...

XTx(tb)


 +Nrx(tb) (5.20)

Collecting this relationship for all receive antennas yields




Y1(tb)
...

YRx(tb)


 =




H1
1 · · · HTx

1
... · · · ...

H1
Rx

· · · HTx
Rx






X1(tb)

...

XTx(tb)


 +




N1(tb)
...

NRx(tb)


 (5.21)

Or, more succinctly,

Y(tb) = HX (tb) + N (tb) (5.22)

By further concatenating this relationship for tb = 1, · · · , Tb, we can show that the following

relationship holds (see [51] for more details)

Y = C

[
RS
IS

]
+ N (5.23)

where

Y =




Y(1)
...

Y(Tb)


 , S =




S(1)
...

S(Ns)


 , and C =

[
Ca Cb

]



CHAPTER 5. RECEIVER DESIGN FOR MIMO OFDM 115

with

Ca =
[

vec(HA(1)) · · · vec(HA(Ns))
]

(5.24)

Cb =
[

vec(HB(1)) · · · vec(HB(Ns))
]

(5.25)

We note that the STBC code is orthogonal if and only if the matrix C satisfies [51],

R [C∗C] = ||H||2I ∀H (5.26)

This property is essential to perform data detection. On multiplying both sides of (5.23)

by C∗ =
[

C∗
a C∗

b

]
, taking the real part, and rearranging terms, we can show that the

following relationship holds

Ỹ(n) = ‖H(n)‖2S(n) + Ñ (n) (5.27)

where

Ỹ(n) = R [C∗
a(n)C(n)Y(n)] + jR [C∗

b(n)C(n)Y(n)] (5.28)

Ñ (n) = R [C∗
a(n)C(n)N (n)] + jR [C∗

b(n)C(n)N (n)] (5.29)

We would like to remind the reader that the developments above apply at a given frequency

tone n as explicitly indicated in (5.27)–(5.29). Since C is orthogonal, the noise Ñ remains

white and S can be detected from (5.27) on an element-by-element basis.

5.4 Channel Estimation

Channel estimation is a critical part of the receiver proposed in this chapter. It is a chal-

lenging task because the receiver needs to estimate the channel by utilizing the underlying

channel and data constraints when the input is not available at the receiver. The estima-

tion makes use of the frequency and time correlation, finite delay spread, sparsity, ST code,

cyclic prefix, and the finite alphabet constraints. We start this section by explaining how

to estimate the channel when the data is known at the receiver. We use that as a spring

board to treat the unobserved data case. Throughout this section, we will assume that the
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channel hd satisfies the generic I/O equation

Yd = Xdhd + N d (5.30)

and follows the dynamic model

h
(+)
d = F dhd + Gdud (5.31)

where the subscript d indicates dummy variables.3

5.4.1 Known Data Case

When the input Xd is available, we perform channel estimation by maximizing the log-

likelihood function

ĥd = arg max
hd

p(hd|Yd, Xd) (5.32)

= arg max
hd

p(hd)p(Yd, Xd|hd) (5.33)

Here p(hd|Yd,Xd) is the pdf of the channel given the input and output data. Assuming

that the channel is Gaussian distributed (hd = N (0,Π)) and satisfies the I/O equation

(5.30), we can show that the MAP estimate is given by

ĥd = arg min
hd

‖Yd −Xdhd‖2
σ−2

n
+ ‖hd‖2

Π−1 (5.34)

where σ2
n is the variance of the noise. The estimate makes use of the frequency correlation

which manifests itself through the channel covariance matrix Π.

If, in addition to the I/O equation, the channel satisfies the dynamic model (5.31),

then we can use the previous channel estimate to improve on the current estimate. More

precisely, the dynamic dependence between the present and the past expressed by (5.31)

allows us to use all past input and output data in addition to the present ones. In this case,

the log-likelihood function (5.32) is maximized given all the past and present data and is
3In this section, we describe channel estimation in terms of a generic state-space model and dummy

variables. This allows us to describe channel estimation in general and succinct terms and without having
to carry complicated expressions around (involving the kronecker product, for example).
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achieved efficiently using the Kalman filter [47], described by the equations below

P (+|−) =

{
Π for first time instant

F dP
(−)F ∗

d + GdG
∗
d otherwise

(5.35)

Re = σ2
nI + XdP

(+|−)X∗
d (5.36)

Kf = P (+|−)X∗
dR

−1
e (5.37)

ĥ
(+)

d =

{
0 for the first time instant

(I −KfXd) F dĥd + KfYd, otherwise
(5.38)

P (+) = P (+|−) −KfReK
∗
f (5.39)

5.4.2 Unknown Data Case: The EM Algorithm

The challenge in our algorithm is that the input is not available. Hence, instead of maximiz-

ing the conditional distribution in (5.32), we maximize an averaged form of the distribution,

i.e.

ĥ
new iter

d = arg max
hd

EX|Yd,ĥold iter
d

[ln p(hd|Xd, Yd)] (5.40)

where averaging is performed over the unknown input given the output Yd and the channel

estimate of the previous iteration. This represents the EM algorithm. Each iteration of the

algorithm produces an estimate ĥd that monotonically increases the likelihood of the channel

hd. This guarantees that the EM algorithm converges to a local maximum of the likelihood

function [66]. Convergence to the global maximum depends on the initial condition from

which the EM iterations are started.

From (5.40), we see that the EM algorithm consists of two steps repeated iteratively:

1. The expectation step where the log-likelihood is averaged over the unknown (input)

variable given the most recent channel estimate. This corresponds to the data detec-

tion part of the receiver.

2. The maximization step where the averaged likelihood is maximized to update the

channel estimate. This corresponds to the channel estimation part of the receiver.

These two steps are repeated until the algorithm converges.

For example, when the data Xd is unobserved, the MAP estimate of (5.34) is replaced
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by the EM-based estimate

ĥd = arg max
hd

‖Yd −E[Xd]hd‖2
σ−2

n
+ ‖hd‖2

Π−1 + ‖hd‖2
Cov[X∗

d ] (5.41)

where E[Xd] and Cov[Xd] represent the expectation and covariance of Xd, respectively.

Similarly, when the data Xd is unobserved, we can not employ the Kalman filter (5.35)–

(5.39) to estimate the channel. Instead, the EM-based channel estimate is obtained by

employing the Kalman filter (5.35)–(5.39) to the following state-space model [2]

h
(+)
d = F dhd + Gdud (5.42)[

Yd

0P×1

]
=

[
E [Xd]

Cov [Xd
∗]1/2

]
hd +

[
N d

zd

]
(5.43)

where zd is Gaussian N (0P×1, σ
2
nI) and independent from N d. In other words, we employ

the Kalman filter (5.35)–(5.39) with the following change of variables

Xd −→
[

E [Xd]

Cov [Xd
∗]1/2

]
and Yd −→

[
Yd

0P×1

]
(5.44)

5.5 Algorithm Summary

In this section we summarize the steps taken in the algorithm

• Initial channel estimation The first step in the receiver operation is to obtain an

initial estimate of the channel. We achieve this applying the Kalman filter to the

dynamic channel model (5.6) together with the pilot/output equations (5.61), which

are derived in the Appendix B

h(+) = (ITxRx ⊗ F ) h + (ITxRx ⊗G) u (5.45)

YIp = (I ⊗XIp)h + N Ip (5.46)

The Kalman filter (5.35)–(5.39) thus provides the initial channel estimate by perform-

ing the substitution

F d −→ (ITxRx ⊗ F ) Gd −→ (ITxRx ⊗G)

Yd −→ YIp Xd −→
(
IRx ⊗XIp

) (5.47)
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When time correlation information is not available to the receiver, the initial estimate

can be obtained by solving the LS problem in (5.41) or by setting F = 0 in (5.47). In

subsequent ST blocks, the final estimate calculated in the previous block is used to

calculate the predicted portion of the channel estimate.

• Expectation step-data recovery The receiver uses the latest channel estimate to

perform the expectation step on the data. Let A =
{
A1, . . . , A|A|

}
where |A| is the

size of the set A, denote the alphabet set from which the elements of the (uncoded)

OFDM symbol S(n) take their values. Based on the data detection relationship in

(5.27), we can show that the conditional pdf f(S(ns)|Ỹ(ns)) is given by (S(ns) is the

nth tone of the OFDM symbol S(ns) with n omitted for brevity)

f(S(ns)|Ỹ(ns)) =
e
−

∣∣∣∣∣Ỹ(ns)−
∥∥∥∥H

∥∥∥∥
2

S(ns)

∣∣∣∣∣
2

2σ2
n

∑|A|
i=1 e

−

∣∣∣∣∣Ỹ(ns)−
∥∥∥∥H

∥∥∥∥
2

Ai

∣∣∣∣∣
2

2σ2
n

(5.48)

where ‖H‖2 is based on the most recent channel estimate and is defined in (5.22).

We can use this to calculate conditional expectation of S(ns) and its second moment

given the output Ỹ(ns)

E[S(ns)|Ỹ(ns)] =
∑|A|

i=1 Aie
−

∣∣∣∣∣Ỹ(ns)−
∥∥∥∥H

∥∥∥∥
2

Ai

∣∣∣∣∣
2

2σ2
n

∑|A|
i=1 e

−

∣∣∣∣∣Ỹ(ns)−
∥∥∥∥H

∥∥∥∥
2

Ai

∣∣∣∣∣
2

2σ2
n

(5.49)

E[|S(ns)|2 |Ỹ(ns)] =
∑|A|

i=1 |Ai|2e−
∣∣∣∣∣Ỹ(ns)−

∥∥∥∥H
∥∥∥∥
2

Ai

∣∣∣∣∣
2

2σ2
n

∑|A|
i=1 e

−

∣∣∣∣∣Ỹ(ns)−
∥∥∥∥H

∥∥∥∥
2

Ai

∣∣∣∣∣
2

2σ2
n

(5.50)

• Maximization step-channel estimation The receiver now uses the first two mo-

ments of the data to perform the maximization step on the channel. As we argued in

Subsection 5.4.2, the maximization step is carried out by running the Kalman filter
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(5.35)–(5.39) with the following change of variables

F d −→ (ITxRx ⊗ F ) Gd −→ (ITxRx ⊗Gd)

Yd −→
[

Y
0P×1

]
X −→

[
IRx ⊗ E [X]

IRx ⊗ Cov [X∗]1/2 ⊗ IRx

]
(5.51)

When time correlation is unavailable, the channel estimate can be obtained by setting

F = 0 in (5.51).

• The expectation and maximization steps are alternated until a stopping criterion is

satisfied, at which point the detected QAM-symbols are demodulated, de-punctured

and de-interleaved. The resulting bits are then decoded by a Viterbi decoder.

5.6 Simulation Parameters

The transmitter and receiver illustrated in Figure 5.1 and Figure 5.3 were implemented.

The outer encoder is a rate 1/2 convolutional encoder and the coded bits are mapped to

16-QAM symbols using gray coding. We use the OSTBC commonly known as the Alamouti

code with Ns = 2 and Tb = 2 [6]. Our MIMO channel model is simulated using the state-

space model with parameters, α = 0.985, β = 0.2, P = 7 and U is N (0, I). The number of

receive antennas, Rx, is set to 1 or 2.

Three thousand packets were simulated per SNR value. Each packet is comprised of 12

OFDM symbols transmitted over 6 ST blocks. Each OFDM symbol consists of 64 frequency

tones and a cyclic prefix of length 16. 16 pilots are used in the OFDM symbols making up

the first ST block, while the number of pilots in subsequent symbols vary between 2, 6, and

10.

5.7 Results and Discussion

In this section, we discuss the effect of various parameters on the BER performance of the

receiver design.

5.7.1 Bench Marking

We compare our algorithm with an EM-based iterative MMSE receiver such as the one

proposed in [58] and [24]. In contrast to our work, the authors in [58] and [24] take a
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Figure 5.4: Receiver design comparison

data-centric approach, treating the transmitted signal as the desired parameter and the

channel as the unobserved data. This algorithm further confines its pilots to the first ST

block. The pilots are used to produce an initial channel estimate for the first ST block. This

estimate is in turn used to predict the initial channel estimate for the subsequent ST blocks

by employing a time correlation filter [58]. These initial estimates are used to kick-start the

EM algorithm.

In this algorithm, the E-step is calculated by a conditional expectation of the channel

given the received symbol and the current estimate of the transmitted data (i.e., through

MMSE estimation). The maximization step is simply the hard decision, i.e. the ML estimate

of the transmitted data.

In Figure 5.4, we compare both schemes with 16 pilots in the initial ST block and zero

pilots in the subsequent blocks. EMA refers to the iterative MMSE scheme while EMB

refers to the Kalman filter based scheme proposed in this chapter. We also implement both

schemes with a total of 26 pilots as shown in Figure 5.4. The EMA confines the pilots to

the first ST block while in EMB, we place 16 pilots in the first ST block and 2 pilots each

in subsequent blocks. This ensures that both schemes incur the same pilot overhead.

Our algorithm (EMB) outperforms EMA of [58] in both pilot scenarios. One reason

for this performance improvement is that our algorithm incorporates the time correlation

information and the most recent channel estimate in every iteration of the EM algorithm.



CHAPTER 5. RECEIVER DESIGN FOR MIMO OFDM 122

5.7.2 Sensitivity to Number of Iterations and Spatial Diversity
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Figure 5.5: BER performance with iterations and spatial diversity

In this subsection, we test the sensitivity of our algorithm to the number of EM iterations

used. We demonstrate this for one and two receive antennas. Here we employ 6 pilots per

OFDM symbol (in addition to the 16 pilots per symbol employed in the first ST block).

From Figure 5.5, we see that the first iteration yields substantial improvement over the

pilot-based estimation. However, iterating beyond that yields diminishing returns.

Figure 5.5 also illustrates that by increasing the number of receive antennas (thereby

increasing the spatial receive diversity), the BER performance gets closer to the perfectly

known channel case, indicating that spatial receive diversity provides more tolerance to

channel estimation errors.

5.7.3 Sensitivity to Number of Pilots

Here, we keep the number of pilots in the first ST block fixed at 16 per OFDM symbol and

vary the number of pilot tones in the subsequent ST blocks (we use 2, 6 and 10 pilots per

symbol). The results are shown in Figure 5.6.

We note that the BER performance improves with increasing number of pilots. We also

note that additional EM iterations can have substantial improvement for the low number of

pilots case (e.g. the BER curve for the 2 pilots case is almost similar to that of the 6 pilots
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case).
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Figure 5.6: BER performance with varied number of pilots

5.7.4 Effect of Incorporating Frequency and Time Correlation in the

Channel Estimation

The impact of using both frequency and time correlation in channel estimation is shown in

Figure 5.7 for the 6-pilot scenario. In this figure, solid lines represent the one receive antenna

case (Rx = 1) while the dashed lines stand for the two receive antenna case (Rx = 2).

Pe = 1 refers to channel estimation using frequency correlation information only while

Pe = 2 implies the use of both frequency and time correlation in channel estimation (see

Section 5.5 for details).

We observe an error floor when only the frequency correlation information is used in

channel estimation. This error floor remains regardless of the number of iterations. How-

ever, when we incorporate both frequency and time correlation information, we observe a

significant improvement in BER (at a BER = 10−2, the error floor drops by more than 10dB

for Rx = 1 and Rx = 2). We also note that a single EM iteration provides substantial

improvement when compared to the pilot-based estimation case.

We conclude that including time correlation in the channel estimation process (especially

for channels with high time correlation) increases the amount of information that can be
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harnessed by iterating.
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Figure 5.7: BER performance with frequency and time correlation

5.7.5 Sensitivity to Time Variation

In this subsection, we test the performance of our receiver against different degrees of time

variation. This is parameterized by α (0 ≤ α ≤ 1) with lower values of α indicating a more

time-variant channel. In Figure 5.8 we show the BER curves for a system that employs

10-pilots per OFDM symbol.

From this figure, we observe that as α decreases (indicating more channel variation),

the BER improves. This comes from increasing time diversity in the channel. Therefore,

with enough number of pilots, we are able to track the channel and capture time diversity.

For comparison, in Figure 5.9, we show the BER curves for a system with fewer pilots

(6-pilots per OFDM symbol) for α = 0.7, 0.8 and 0.985. We observe an error-floor as the

channel variation increases. So, in this case, we are unable to capture the time diversity.

More pilots are thus needed to capture diversity and improve performance.
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Figure 5.8: BER performance with varying channel correlation with 10 pilots

5.8 Practical Issues

5.8.1 Convergence and Stopping Criterion

For deterministic channels, i.e. in the absence of any correlation information, the minimum

number of pilots needed for channel identifiability is equal to the number of taps of the

MIMO impulse response [71]. However, when the channel becomes random as is the case in

this chapter, we can decrease the number of pilots and compensate for the decrease with

(frequency and time) correlation information. Quantifying the exact trade-off is beyond the

scope of this chapter.

Each iteration of the EM algorithm produces an estimate of the channel ĥd that mono-

tonically increases the channel’s likelihood function. This guarantees that the EM algorithm

converges to a local maximum of the likelihood function [66]. Convergence to the global

maximum depends on the initial condition from which the EM iterations are started.

Here, we use simulation results to investigate the effect of SNR and number of iterations

on the convergence of the EM algorithm. We do this by plotting the mean-square error

(MSE) between the channel estimate and the actual channel as a function of SNR. The MSE

is plotted for pilot based estimation and for EM-based estimation with 1 and 4 iterations.

We also plot the Cramer-Rao Bound (CRB) curve obtained when all the symbols are used as

pilots [93]. We note that the pilot-based estimation curve in Figure 5.10 eventually reaches
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Figure 5.9: BER performance with varying channel correlation with 6 pilots

an error floor. From this figure, we also note that with increasing number of iterations and

increasing SNR, the MSE of our estimate approaches that of the CRB.

Since the number of iterations used determines the computational complexity, we would

like to devise a way to stop the iterations without compromising the performance of the EM

algorithm. Thus, we will iterate for a maximum number of niter iterations as long as the

percentage change in the two most recent channel estimates is greater than some constant

η, i.e.
‖ĥiter − ĥ

iter+1‖2

‖hiter‖2
> η

We stop the algorithm if this condition is violated or if we reach the maximum number of

iterations niter.

5.8.2 Robust Channel Estimation

For the proper operation of the receiver, the channel needs to follow the dynamical model

and the receiver needs to have access to that model, i.e. to F and G. When either of these

assumptions is not true, the receiver assumes the dynamic model,

ht
(+)
x

rx
= Fhtx

rx
+ Gu (5.52)
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when the channel actually varies according to

ht
(+)
x

rx
= (F + ∆F )htx

rx
+ (G + ∆G)utx

rx
(5.53)

where ∆F and ∆G characterize the uncertainties in the model. To minimize the effect of

these uncertainties, one can implement robust versions of the Kalman filters, as done in

[81].

5.8.3 Complexity

One of the main advantages of OFDM transmission is that it lends itself to simple equal-

ization. 4 Thus, regardless of the OFDM receiver we employ, the major cost in complexity

is incurred in channel estimation. So we will take the complexity of channel estimation as

a bench mark to compare various receivers.

Roughly speaking, we can distinguish between three kinds of receivers: the non-iterative

pilot based receiver, the iterative MMSE receiver (e.g. that of [58]), and the iterative Kalman

filter based receiver we propose in this chapter. All of these methods employ some form of

matrix inversion to solve for the MIMO impulse response, which consists of TxRx(P + 1)
4In fact, we can show that the number of operations required to perform MMSE- or ML-based data

detection of an OFDM symbol is always of the order O(N).



CHAPTER 5. RECEIVER DESIGN FOR MIMO OFDM 128

taps. The cost of one such matrix inversion is thus O(T 3
xR3

x(P + 1)3) [47]. This inversion is

done once for pilot-based estimation while its done niter number of times for the iterative

receivers resulting in a complexity of O(niterT
3
xR3

x(P + 1)3). Thus, our Kalman based filter

results in a linear increase in complexity as compared to the most basic (pilot-based) receiver

and has comparable complexity to that of iterative MMSE receivers.

5.9 Conclusion

In this chapter, we have proposed a receiver for MIMO OFDM transmission over time-

variant channels. The receiver makes full use of the data constraints (pilots, cyclic prefix,

finite alphabet constraint and space-time code). It also exploits the channel constraints,

particularly the time and frequency correlation. While we assumed the channel to be

constant within the same space-time block, it is allowed to vary from one block to the

next. This allows the receiver to operate in high speed environments. Apart from the outer

code, the receiver also performs channel and data recovery within the same space-time

block and hence avoids the need for data storage making the receiver suitable for real-time

applications. When compared with other MIMO receivers, our receiver makes the most use

of the underlying data and channel constraints.

The receiver employs the EM algorithm to achieve channel and data recovery. Specif-

ically, the data recovery (or the expectation step) is as simple as decoding a space-time

block code. Channel recovery (or the maximization step) is performed using a Kalman fil-

ter. Simulations demonstrated the favorable behavior of our receiver as compared to other

receivers.

We can generalize the algorithm presented to include the effects of the transmit filter

and the channel transmit and receive spatial correlation (see Appendix A). We can also

modify the receiver to take care of (space-time) trellis as opposed to block codes. If storage

and latency are not of concern, we can also modify the algorithm to perform estimation in

the forward and backward direction resulting in better estimates, as done in Chapter 4.
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5.10 APPENDIX A: Channel Model in the Presence of Spa-

tial Correlation

In what follows, we present the transmit correlation case, and then generalize our results

to deal with the general correlation case.

5.10.1 Transmit Correlation

In the transmit correlation case, H(p), the MIMO impulse response at tap p, is given by

H(p) = W (p)T 1/2(p) (5.54)

where T 1/2(p) is the transmit correlation matrix (of size Tx) at tap p and where W (p)

consists of iid elements. The matrix W (p) remains constant over a single ST block and

varies from one ST block to the next according to

W (+)(p) = α(p)W (p) +
√

(1− α2(p))e−βpU(p) (5.55)

where α(p), β, and U(p) are as defined in Subsection 5.2.3.

Just as we did in Subsection 5.2.3, we would like to construct a recursion for the tap

htx
rx

(p) and subsequently scale it up for the SISO and MIMO cases. Now since htx
rx

(p) is the

(rx, tx) element of H(p), we deduce from (5.54) that it is the inner product of the rx row

of W (p) and the tx column of T 1/2, i.e.

htx
rx

(p) = wrx(p)ttx(p) (5.56)

Moreover, from (5.55), we have the following recursion for wrx(p)

w(+)
rx

(p) = α(p)wrx(p) +
√

(1− α2(p))e−βpurx(p)

Post-multiplying both sides by ttx(p) yields

w(+)
rx

(p)ttx(p) = α(p)wrx(p)ttx(p) +
√

(1− α2(p))e−βpurx(p)ttx(p)
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This means that htx
rx

(p) satisfies the dynamical equation

ht
(+)
x

rx
(p) = α(p)htx

rx
(p) +

√
(1− α2(p))e−βputtxrx

(p) (5.57)

where uttxrx
is defined by

uttxrx
(p) = urx(p)ttx(p)

Concatenating (5.57) for p = 1, 2, . . . , P yields a dynamic equation for the impulse response

htx
rx

=




htx
rx

(0)
...

htx
rx

(P )


 =




wrx(0)ttx(0)
...

wrx(P )ttx(P )




which is the same as the dynamic equation (see (5.5)) for the spatially uncorrelated case

ht
(+)
x

rx
= Fhtx

rx
+ Guttx

rx
(5.58)

The only difference from the uncorrelated case is that uttx
rx

is no more white. Rather, we

have

E
[
uttx

rx
uttx∗

rx

] ∆= E




urx(0)ttx(0)

urx(1)ttx(1)
...

urx(P )ttx(P )




[
ttx∗(0)u∗rx

(0) ttx∗(1)u∗rx
(1) · · · ttx∗(P )urx∗(P )

]

=




tttx
tx(0)

tttx
tx(1)

. . .

tttx
tx(P )




∆= diag(tttx
tx)

where

tttx
rx

=




trx∗(0)ttx(0)

trx∗(1)ttx(1)
...

trx∗(P )ttx(P )




=




trx(0)ttx(0)

trx(1)ttx(1)
...

trx(P )ttx(P )




and where the second line follows from the fact that trx∗(p) = ttx(p) since T 1/2(p) is
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conjugate symmetric. In general, we can show that

E[utrxut∗
r′x

] =




diag(tt1
1) diag(tt2

1) · · · diag(ttTx
1 )

diag(tt1
2) diag(tt2

2) · · · diag(ttTx
2 )

...
... · · · ...

diag(tt1
Tx

) diag(tt2
Tx

) · · · diag(ttTx
Tx

)




for rx = r′x and is zero otherwise. Alternatively, we can write this as

E[utrxut∗
r′x

] =

{ ∑P
p=0 T (p)⊗ (

IpBI
p) for rx = r′x

O otherwise

where

B =




1 0 · · · 0

0 0 · · · 0
...

... · · · ...

0 0 · · · 0




, I =




0

1 0

1
. . .
. . . 0

1 0




, and I =




0 1

0
. . .
. . . 1

0 1

0




Collecting (5.58) for all transmit and receive antennas yields

h(+) = (ITxRx ⊗ F ) h + (ITxRx ⊗G) ut (5.59)

where

E[uu∗] = IRx ⊗ E[utrxut∗rx
]

=
P∑

p=0

IRx ⊗ T (p)⊗ (
IpBI

p) (5.60)

When the channel exhibits both transmit and receive correlation, the IR h continues to

satisfy the dynamical equation (5.59) except that the correlation of the innovation u is now

given by

E[uu∗] =
P∑

p=0

R(p)⊗ T (p)⊗ (
IpBI

p)
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5.11 APPENDIX B: Pilot/Output Equations for MIMO OFDM

Starting from the I/O equations constructed in (5.3), we derive the pilot/output equations
that can be used for initial channel estimation. So let Ip denote the index set of pilot loca-
tions within the frequency bins. The pilot/output equations are simply those I/O equations
whose numbers are elements of the index set Ip. Thus, from (5.19) and using the pruning
notation of Chapter 4, we can write the pilot/output equations at antenna rx and time
instant tb as

Yrx Ip
(tb) =

Ns∑

ns=1

[
diag

(
a

tb
1 (ns)R(SIp (ns)) + jb

tb
1 (ns)ISIp (ns)

)
· · · diag

(
a

tb
Tx

(ns)R(SIp (ns)) + jb
tb
Tx

(ns)SIp (ns)
) ]

×
(

I ⊗ Q̃
∗
P+1

)
hrx

+ N rx Ip
(tb)

We now proceed as we did in the full output case collecting the output YrxIp
(tb) over

tb = 1, . . . , Tb and over all receive antennas. This yields the pilot/output equation

YIp = (I ⊗XIp)h + N Ip (5.61)

where

XIp =

Ns∑

ns=1

[
diag

(
a1(ns)⊗RSIp (ns) + jb1(ns)⊗ ISIp (ns)

)
· · · diag

(
aTb

(ns)⊗RSIp (ns) + jbTb
(ns)⊗ ISIp (ns)

) ]

×
(

I ⊗ Q̃
∗
P+1

)



Chapter 6

Conclusions and Future Work

6.1 Concluding Remarks

This dissertation has considered the analysis and design of adaptive algorithms for wireless

channel estimation. The first part of the dissertation presented a framework for the transient

analysis of adaptive filters with general data and error nonlinearities. The approach relies on

energy conservation arguments. In addition to deriving earlier results in a unified manner,

the approach leads to stability and performance results without restricting the regression

data to being Gaussian or white. The framework also does not require an explicit recursion

for the covariance matrix of the weight-error vector. We may add that extensions to leaky

algorithms and to tracking analysis are possible and are treated in, e.g., [83].

The second part of the dissertation considered receiver design for SISO and MIMO

OFDM transmission over frequency selective block-fading 1 channels. The receiver em-

ploys the expectation-maximization (EM) algorithm for joint channel and data recovery. It

makes collective use of the data and channel constraints that characterize the communi-

cation problem. The data constraints include pilots, the cyclic prefix, the finite alphabet

constraint, and space-time block coding. The channel constraints include the finite delay

spread, sparsity, frequency and time correlation, and spacial correlation. The receiver algo-

rithm becomes progressively more sophisticated as more data and channel constraints are

incorporated, with each new version of the algorithm subsuming the previous version as

a special case, culminating in the most general version, the EM-based forward-backward
1By block, we mean an OFDM symbol for SISO transmission and a space-time block for MIMO transmis-

sion.

133
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Kalman filter.

The two parts of the dissertation share the following three themes:

Model-Based Filtering: Both the analysis and design of adaptive algorithms relied on

some a priori models. For example, in performing adaptive filtering analysis, we adopted

the system identification model, which relates the input and output according to (see Sub-

section 2.1.3 and Section 3.2)

d(i) = uiw
o + v(i)

Similarly, in designing the OFDM receiver, we assumed that the channel evolves in time

according to the dynamic model (see Subsections 4.2.5 and 5.2.3)

hi+1 = Fhi + Gui

Weighted-Norm Based Development: Weighted-norms were heavily used in the anal-

ysis and design of filters. Thus, mean-square analysis of adaptive filters was performed by

carrying out the algebra on the Euclidean norm’s weight. Similarly, the channel IR was

estimated by minimizing a sum of weighted Euclidean norms (see the weighted-norm in-

terpretation of Table 4.7). The norms involved and their weights depend on the a priori

information about the channel and available information about the data.

State-Space Model: Both the analysis and design of adaptive algorithms are articulated

in terms of state-space models. Thus, answering the questions of convergence and steady-

state error for an adaptive algorithm with data (error) nonlinearity boils down to answering

the same questions for a linear (nonlinear) time-invariant state-space model (see (2.55)

and (3.22)). Similarly, channel estimation of the EM-based OFDM receiver boils down to

applying a Kalman or FB-Kalman filter to some state-space model (see for example (4.73)).

The dissertation managed to answer several important questions related to the analysis

and design of adaptive algorithms for channel estimation. Moreover, the transparency with

which these questions were answered paves the way to ask other questions that can be

pursued as future work, and which we elaborate on in the next section.
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6.2 Future Work

6.2.1 Adaptive Filters with Optimized Behavior

Chapters 2 and 3 presented a unified performance analysis of adaptive filters employing

general error or data nonlinearities. In particular, this general class of filters was charac-

terized in terms of convergence speed and steady-state behavior. A natural question is,

then, what is the optimum data or error nonlinearity that maximizes the convergence speed

for a given steady-state performance, or, alternatively, reduces the steady-state error for

a given convergence speed? Several papers have already attempted to answer this ques-

tion and optimize the choice of data and error nonlinearities (e.g., as in [27, 3, 28, 14]).

The optimum nonlinearities arrived at in these works were obtained by maximizing some

performance measures which were themselves obtained under restrictive assumptions and

approximations. The result is that the corresponding nonlinearities are in turn as good as

or as valid as these assumptions and approximations.

In contrast, the performance analysis detailed in Chapters 2 and 3 is valid under much

more general conditions. Starting from this general performance analysis, we can derive

nonlinearities that are optimum under similarly general conditions.

6.2.2 Relaxing the Independence Assumption

The energy relationship described in Subsection 2.2.1 made it possible to relax many of

the assumptions that are usually invoked in the study of adaptive filters. As a result, the

independence assumption is the only assumption that Chapter 2 relies on for the mean-

square analysis of adaptive filters with data nonlinearity. Moreover, by carefully examining

the development of Chapter 2, we note that disposing of this assumption requires the

manipulation of an infinite product of correlated random matrices [70]. There is significant

literature on random matrices that has been successfully employed for recent advances in

communication theory [96, 25, 67]. The same theory can be used to evaluate products of

random matrices and hence study the performance of adaptive filters without relying on

the independence assumption.

6.2.3 Reducing the Complexity of the OFDM Receiver

The presence of the cyclic prefix in OFDM transmission diagonalizes the communication

channel. This simplifies the equalization part of the receiver because equalization can then
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be carried out on a tone-by-tone basis. The presence of the cyclic prefix can be similarly

helpful in reducing the computational complexity of the channel estimation part of the

receiver. Specifically, from Subsection 4.2.1 we note that the input matrix Xi can be

decomposed in the presence of a cyclic prefix as

Xi = diag (X i) Q̃P+1

i.e., as the product of a diagonal matrix and the partial FFT matrix Q̃P+1 (whose columns

are orthogonal). These facts can be used to simplify the computational complexity of the

Kalman and FB-Kalman filters.

6.2.4 Exchanging the Roles of the Channel and Data in Receiver Design

In receiver design, we need to recover two variables, the channel and the data. Recovering

the two variables jointly is too computationally intensive. The EM algorithm employed in

Chapters 4 and 5 performs the recovery iteratively by taking one unknown (the data) to be

the hidden variable and the other unknown (the channel) to be the desired variable. We

could also swap the roles the data and channel play in the EM algorithm, making the channel

the hidden variable, and the data the desired variable. This approach will also result in a

Kalman filter except that the state-variable will be twice as long. The advantage of this

approach is that it generates the data estimate through maximum-likelihood estimation as

opposed to mean-square estimation (as we do here).

6.2.5 OFDM Receiver Design Under Uncertainty

Chapters 4 and 5 considered receiver design for channels that remain constant during the

transmission of an OFDM symbol and that can change arbitrarily at the OFDM symbol

boundaries. Moreover, the chapters also assumed that the channel evolves according to a

dynamical model

hi+1 = Fhi + Gui

and that the model is perfectly available at the receiver. All these assumption might not

be valid in a real situation. Thus, the channel might change within the OFDM symbol

itself (giving rise to intersymbol interference). Moreover, the state-space model may not

accurately describe the evolution of the channel, and even when it does, the model is not

usually available at the receiver.
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These assumptions manifest themselves in the form of an uncertain state-space model

hi+1 = (F + ∆F )hi + (G + ∆G)ui (6.1)

Y i =
(
Xi + ∆Xi

)
hi + ni (6.2)

Deriving an EM-based receiver that is robust to these uncertainties would be a compelling

future work.

6.2.6 Optimal Pilot Placement

The simulations of Chapter 4 demonstrate that pilot-placement heavily affects the perfor-

mance of the Kalman and FB-Kalman receivers. The following questions are thus worthy

of consideration:

1. How many pilots are needed in the first symbol? From a system identification per-

spective, we need as many pilots as channel taps. However, since we are employing

an iterative procedure, how is the number of pilots affected the by number of the EM

iterations and by the fact that the channel has some exponential decay profile (making

the effect of some taps negligible)?

2. What is the best way to distribute a number of P pilots within an OFDM symbol?

Is uniform distribution the best way to go? Does the knowledge of the frequency

correlation among the taps help in placing the pilots optimally within the OFDM

symbol?

3. Given a certain level of time variation (Doppler speed) and given a certain number

of pilots to place in a number of OFDM symbols, what is the best way to distribute

them, assuming causal processing at the receiver (Kalman filtering)? What is the best

pilot distribution, assuming batch-processing (FB-Kalman filtering)?
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