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Transient Analysis of Adaptive Filters
With Error Nonlinearities
Tareq Y. Al-Naffouri and Ali H. Sayed, Fellow, IEEE

Abstract—This paper develops a unified approach to the tran-
sient analysis of adaptive filters with error nonlinearities. In addi-
tion to deriving earlier results in a unified manner, the approach
also leads to new performance results without restricting the re-
gression data to being Gaussian or white. The framework is based
on energy-conservation arguments and avoids the need for explicit
recursions for the covariance matrix of the weight-error vector.

Index Terms—Adaptive filter, energy-conservation, error non-
linearity, feedback analysis, mean-square-error error, steady-state
analysis, transient analysis.

I. INTRODUCTION

T HIS paper describes a unifying framework for the study of
the transient performance of adaptive filters that involve

error nonlinearities in their update equations (e.g., [1]–[3]). This
class of algorithms is among the most difficult to analyze, and
it is not uncommon to resort to different methods and assump-
tions with the intent of performing tractable analyses. Before
discussing the features of the approach proposed herein and its
contributions, we provide, as a motivation, a summary of se-
lected techniques that have been employed earlier in the litera-
ture for the study of such algorithms.

a) Linearization(e.g., [4]–[7]). In this method of analysis,
the error nonlinearity is linearized around an operating
point, and higher order terms are discarded. Analyses that
are based on this technique fail to accurately describe the
adaptive filter performance for large values of the error,
e.g., at early stages of adaptation.

b) Restricted classes of nonlinearities(e.g., [8]–[14]). Here,
the analysis is restricted to particular classes of algo-
rithms such as the sign-LMS algorithm, the least-mean
mixed-norm (LMMN) algorithm, the least-mean fourth
(LMF) algorithm, and error saturation nonlinearities. By
limiting the study to a specific nonlinearity or to a class
of nonlinearities, it is possible to avoid linearization, and
the analysis results become more accurate.

c) Assumptions on the statistics of the errors. While it is
common to impose statistical assumptions on the regres-
sion and noise sequences, similar conditions can also be

Manuscript received March 12, 2001; revised October 23, 2002. This work
was supported in part by the National Science Foundation under Grants CCR-
9732376, ECS-9820765, and CCR-0208573. The work of T. Y. Al-Naffouri was
also supported in part by a fellowship from King Fahd University of Petroleum
and Minerals, Dharan, Saudi Arabia. The associate editor coordinating the re-
view of this paper and approving it for publication was Dr. Dennis R. Morgan.

T. Y. Al-Naffouri is with the Electrical Engineering Department, Stanford
University, Stanford, CA 94305 USA (e-mail: naffouri@stanford.edu).

A. H. Sayed is with the Electrical Engineering Department, University of
California, Los Angeles, CA 90095 USA (e-mail: sayed@ee.ucla.edu).

Digital Object Identifier 10.1109/TSP.2002.808108

imposed on error quantities. For example, in studying the
sign-LMS algorithm, it was assumed in [15] that the el-
ements of the weight-error vector are jointly Gaussian.
This assumption was shown in [16] to be valid asymptot-
ically. More accurate is the assumption that the residual
error is Gaussian [4], [10] or that its conditional value is
[8], [9]. By central limit arguments, this assumption is jus-
tified for long adaptive filters [4], [10]. More importantly,
this assumption is as valid in the early stages as in the final
stages of adaptation. For shorter filters, exact expectation
analysis can be employed as in [17]–[19].

d) Restricted class of inputs. It is common to assume that the
input sequence is white and/or has a Gaussian distribution
(e.g., [4], [6], [8]–[12], [20]–[22]).

e) Independence assumption. It is even more common to as-
sume that the successive regressors are independent in
what is widely known as the independence assumptions
[1], [23]. Despite being unrealistic, the independence as-
sumptions are among the most heavily used assumptions
in adaptive filtering analysis.

f) Gaussian noise. Noise is sometimes restricted to be iid
Gaussian as in [4], [8], [15], and [24], although Gaus-
sianity is not as common as the previous assumptions.
Surprisingly perhaps, the iid assumption on the noise is
almost indispensable, even for the analysis of the simplest
of adaptive algorithms.

A. Approach of This Paper

In this paper, we develop an approach that applies to arbi-
trary error nonlinearities. The arguments assume that the adap-
tive filter is long enough to justify the following approximations.

i) The residual error , to be later defined in (6), can be
assumed to be Gaussian.

ii) The norm of the input regressor can be assumed to be
uncorrelated with , which is the square of the error
nonlinearity to be defined later in (2).

Both of these assumptions are realistic for longer adaptive filters
(see, e.g., the simulation results in Section V-A). Fortunately,
they are also realistic in all stages of adaptation (including the
early stages).

The approach we adopt is based on the works [25]–[28], where
a unified approach to the steady-state and tracking performances
of adaptive filters has been developed that makes it possible not
only to treatvariousalgorithmsuniformlybutalso toarriveatnew
performance results. This approach is based on studying the en-
ergy flow through each iteration of an adaptive filter, and it relies
onafundamentalenergyconservationrelationthatholdsforalarge
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class of adaptive filters. This relation has been originally devel-
oped in [29]–[32] in thecontextof robustnessanalysisofadaptive
filterswithinadeterministicframework.Ithassincethenbeenused
in [25]–[28]asaconvenient tool forstudying thesteady-stateper-
formanceofadaptivefilterswithinastochasticframeworkaswell.

In this work, we show how to extend the same energy-based
approach to the transient analysis of adaptive filters with error
nonlinearities. Such an extension is desirable since it allows us
to bring forth benefits such as the convenience of a unified treat-
ment, the derivation of stability and convergence results, and the
weakening of some assumptions. The main contributions, and
an outline of this paper, are as follows.

1) Weset thestage in thenextsectionby introducingournota-
tion.Weproceedbydefining theadaptive filteringproblem
and some associated error quantities. The energy of these
errors are finally related through a fundamental energy re-
lation, which will be the starting point for much of the sub-
sequent analysis. This result is summarized in Theorem 1.

2) The energy relation is used in Section III to derive a gen-
eral recursion that describes the mean-square evolution
(i.e., learning curve) of an adaptive filter with error non-
linearity. To achieve this result, we rely on the long filter
assumptions, which are formally introduced in this sec-
tion. The independence assumption turns out to be useful
in constructing the dynamical relation. The main con-
tribution of this section is summarized in Theorem 2,
which essentially states that the mean-square behavior of
an adaptive filter with error nonlinearity is equivalent to
that of a nonlineartime-invariantstate-space model. The
statement of the theorem describes this model.

3) In Section IV, we show that the excess mean-square error
(EMSE) of an adaptive filter with error nonlinearity can
be obtained as the fixed point of a nonlinear function. The
main result here is Theorem 3 and Corollary 2, which hold
with a weaker form of the independence assumption.

In a companion paper [33], we similarly extend the energy-
conservation approach to study the transient behavior of adap-
tive filters with data normalization.

B. Notation

We focus on real-valued data, although the extension to com-
plex-valued data is immediate. Small boldface letters are used
to denote vectors, e.g.,, and the symbol denotes transposi-
tion. The notation denotes the squared Euclidean norm of
a vector , whereas denotes the weighted
squared Euclidean norm . All vectors are
column vectors except for a single vector, namely, the input data
vector denoted by , which is taken to be a row vector. The time
instant is placed as a subscript for vectors and between paren-
theses for scalars, e.g., and .

C. Weighted-Norms

We will make substantial use of weighted-norms in this paper.
Thus, for for ease of reference, we summarize below some of
their properties. Thus, let and be scalars, a column
vector, and a row vector, and let and be symmetric
matrices. Then, the following properties hold.

1) Superposition.

2) Polarization. Since

we can write

(1)
3) Independence. If and are independent random vec-

tors, then the polarization property allows us to write

II. A DAPTIVE ALGORITHMS WITH ERRORNONLINEARITY

An adaptive filter attempts to identify a weight vector , of
length , by using a sequence of row regressors {}, of length

, and output samples { } that are related via

Here, accounts for measurement noise and modeling errors.
Many adaptive schemes have been proposed in the literature for
this purpose (see, e.g., [1]–[3]). In this paper, we focus on the
class of algorithms

(2)

where is the estimate of at time , is the step size

(3)

is the estimation error, and is a scalar function of the
error . Table I lists some common adaptive algorithms and
their corresponding error nonlinearities.1

A. Error Measures

Given an adaptive filter of the family (2), we are interested
in studying the time-evolution and the steady-state values of the
variances

and (4)

where stands for the weight-error vector

The steady-state values of the above variances represent the
mean-square-error and the mean-square-deviation perfor-
mances of the filter, respectively, whereas their time-evolution
relate to the learning or the transient behavior of the filter.

1In this table, LMF stands for the least-mean fourth algorithm [5], whereas
LMMN stands for the least-mean mixed-norm algorithm [13], [14].
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TABLE I
EXAMPLES FORf [e(i)]

In order to study the variances (4), the framework of this paper
relies on introducing the weighteda priori anda posteriorier-
rors defined by

(5)

for some symmetric positive definite weighting matrixto be
specified later; it will be seen that different choices forallow
us to evaluate different performance measures of an adaptive
filter. We will use a more standard notation for the usual case

, namely

(6)

With the error quantities { } so defined, we can
rewrite the adaptation and filtering (2) and (3) in terms of them.
Specifically, by subtracting from both sides of (2), we get

(7)

and by combining the defining expressions (3) and (6), we ob-
tain

(8)

The estimation errors , , and can be related by
premultiplying both sides of the adaptation (7) by

and incorporating the defining expressions (5), which yield

(9)

where

if

otherwise.
(10)

B. Weighted-Energy Relation

We are now in a position to derive a weighted-energy
relation that relates the energy of the error quantities
{ }. This relation will be instrumental in
achieving our stated objective of studying the steady-state and
transient performances of adaptive filters of the form (2).

First, we determine a relation between the errors. This is ob-
tained by combining (7) and (9) to eliminate the nonlinearity

:

(11)

Both sides of (11) should have the same weighted energy,
namely

which, after some straightforward manipulations, yields the de-
sired energy relation

(12)

This relation shows how the weighted energies of the error quan-
tities evolve in time. Observe that it is an exact relation and no
approximations or assumptions are used to derive it. The result,
for , has been originally developed in [29]–[32] in the
context of robustness analysis of adaptive filters within a deter-
ministic framework. It has since then been used in [25]–[28] as
a convenient tool for studying the steady-state performance of
adaptive filters within a stochastic framework as well. We will
now show its relevance to the transient analysis of adaptive fil-
ters with error nonlinearities.

III. D YNAMICAL BEHAVIOR OF THEWEIGHT-ERRORVECTOR

Our first step is to examine how the energy relation (12) can
be used to characterize the time-evolution of the weighted vari-
ance for any . Thus, consider (12) and replace the
a posteriorierror by its equivalent expression (9). This
yields

or, upon taking the expectation of both sides

(13)

Now, two expectations call for evaluation. This is facilitated by
the following assumption on the noise sequence.

AN: The noise sequence is iid and independent of .

A. Evaluating Term

To evaluate the first expectation

we will assume that the adaptive filter is long enough such that
the random variables and can be assumed to be
jointly Gaussian.

AG: For any constant matrix and for all , and
are jointly Gaussian.

As mentioned in the introduction, this assumption is reason-
able for longer filters by central limit arguments (see also the
simulation results in Section V-A). A similar assumption was
adopted in [4], [9], and [10], and its usefulness can be under-
stood from the following result and from the subsequent discus-
sion (see, e.g., [9] and [10]).
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TABLE II
h [�] FOR THEERRORNONLINEARITIES OF TABLE I (� =E[e (i)])

Lemma 1 (Price’s Result):Let and be jointly Gaussian
random variables that are independent from a third random vari-
able . Then

With Price’s theorem at hand, we can use assumption AG
together with the standing assumption on the noise AN and (8)
to write as

(14)

At first glance, it would appear that we have replaced the ex-
pectation with a similar one .
However, this second form is more tractable. Indeed, the ex-
pectation depends on throughthe second
moment only. This can be further seen by expanding it
as (where we suppress the time index on the right-hand side)

(15)

where is the pdf of the additive noise. The contribution
of to the result of the integration will depend solely on

. Therefore, the ratio , which
appears in (14), is a function of . This fact motivates
the following definition:2

(16)

For future reference, is evaluated for the algorithms of
Table I, and the results are shown in Table II (for general
noise distribution and for the Gaussian noise case as well).
Combining (14) and (16) yields

(17)

2The Gaussianity assumption AG is the main assumption leading to the
defining expression (16) forh , hence, the subscriptG. The subscriptU for
h , which is defined later in (20), is similarly motivated.

We finally use the polarization property (1) to write the first
expectation in (17) as a weighted-norm of, yielding

(18)

B. Evaluating Term

We turn our attention now to the second expectation in (13)
, which is easier to handle. The long

filter assumption is also useful here.
AU: The adaptive filter is long enough such that and

are uncorrelated.
The unweighted version of this assumption was used in

[25]–[27]. It becomes more realistic as the filter gets longer.
The assumption enables us to split the expectationas

(19)

Moreover, since is Gaussian and independent of the noise,
we can show [as in (15)] that depends on
through itssecond moment only. This prompts us to define

(20)

which together with (19) yields

(21)

The function is evaluated for the algorithms of Table I, and
the results are shown in Table III for general noise and for the
Gaussian noise special case (the last entry in the table is derived
in the Appendix ).

C. Weight-Error Recursion

By substituting (18) and (21) into (13), we obtain

Upon replacing the mean-square error with the equiv-

alent expression , the recursion takes the more
homogeneous form shown in the statement below.

Theorem 1 (Weighted-Energy Relation):Consider an adap-
tive filter of the form
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TABLE III
h [�] FOR THEERRORNONLINEARITIES OF TABLE I (� =E[e (i)])

where and . Assume
the noise sequence is iid and independent of and that the
filter is long enough so that and are jointly Gaussian
and that and are uncorrelated. Then, the fol-
lowing recursion holds for the weighted weight-error variance

:

(22)

where the functions and are defined by

Remarks:

1) What we have achieved so far is to transform recursion
(13) into (22), which depends on various weighted Eu-
clidean norms of the weight-error vector, thanks to as-
sumptions AG and AU.

2) Assumptions AG and AU eventually get translated into
some mixing conditions on the signal statistics. In partic-
ular, the Gaussian assumption AG on re-
quires that the process of individual summands
are mixed [35, Th. 27.4]. Similarly, the AU assumption is
justified by the law of large numbers, which in turn re-
quires that the input is mixed [37].

3) The independence assumption on the noise AN is equally
essential in developing (18) and (21) and, hence, (22). It
is a reasonable assumption that allows us to express the
expectations in (13) in terms of the weight-error energy.

4) Recursion (22) as it stands is difficult to propagate in
time. The reason is that the recursion is not self-contained
as the right-hand side is dependent on and

, in addition to .
5) Note that only a weak form of the independence assump-

tion, namely AU, has been used so far. Contrast this with
the standard (stronger)3 independence assumption:

AI: The sequence is zero-mean, iid, with autocorre-
lation matrix .

In this case, recursion (22) reduces to the following.

3For example, when the input is of constant modulus, assumption AU is true,
whereas AI is not.

Corollary 1 (Energy Recursion With Independence):Consider
the same setting of Theorem 1. If, in addition, the sequence
is zero-mean, iid, and has covariance matrix ,
then (22) becomes

(23)

D. Constructing the Learning Curves

The learning curve of the filter refers to the time-evolution of
the variance ; its steady-state value is the mean-square
error (MSE). Clearly, in view of (8), we have that

so that studying the evolution of is equivalent to studying
the evolution of ; the steady-state value of the latter is
called the excess mean-square error (EMSE).

Now, under the independence assumption, we have

This suggests that the learning curve can be evaluated by com-
puting for each . This task can be accomplished re-
cursively from (23) by essentially choosing , as we now
verify.

1) Case of White Regression Data:Consider first the case
of white input data for which so that

. Restricting the input in this manner is a common
practice in the literature (e.g., as in [4], [10], [12], [36], and
[38]).

Thus, setting in (23), we get

(24)

Note that the right-hand side now depends on only,
and (24) can be propagated in time. We have thus obtained a
recursion for the evolution of the variance for adaptive
filters with error nonlinearities and white input regression data.

2) Case of Correlated Regression Data:The result (23),
however, allows us to evaluate the time evolution of
and , even without the whiteness assumption on the
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regression data (i.e., for general matrices). The key idea is to
take advantage of the free parameter. Let us, in particular,
write (23) for the choices (the arguments
of the functions and remain the same (i.e., ),
regardless of the choice of and are therefore suppressed for
convenience of notation): See equation (25) at the bottom of
the page. The problem now is that the left-hand side of (25)
is always one variable short of the number of variables on the
right-hand side. Fortunately, we do not have to continue in this
manner indefinitely since the additional variable
can be expressed in terms of the “lower order” variables. Using
the Cayley–Hamilton theorem, we have

where

is the characteristic polynomial of . This induces the desired
relation

and enables us to rewrite the last equation in (25) as

The system (25) now becomes truly self-contained and, as such,
can be put into the state-space form shown in the following the-
orem.

Theorem 2 (Transient Behavior With Independence):Con-
sider an adaptive filter of the form

where and . Assume
that { } are iid and mutually independent, that the filter
is long enough so that and are jointly Gaussian, and
that and are uncorrelated. Then, regardless of

the statistics of the regression data, the transient behavior of the
filter is characterized by the state-space recursion

(26)

where the state-vector and the input vector are defined by

...
...

and the coefficient matrix is given by the equation at the
bottom of the page in terms of { } and the { }.

Remarks:

1) Since and depend on { }, they are also func-
tions of and, hence, of the state vector .
Thus, the state-space model (26) is generally nonlinear,
yet time invariant.

2) Stability and steady-state analysis of the adaptive filter
can now be characterized by studying the properties of
the state-space model (26).

3) The top entry of the state-vector characterizes the
evolution of (mean-square deviation curve),
whereas the second entry of characterizes the evolu-
tion of (learning curve).

IV. STEADY-STATE ANALYSIS

Now that the transient behavior of adaptive filters of the class
(2) has been characterized, we move on to show how the results
so far can be used to evaluate the steady-state performance of
this same class of filters. Actually, the discussion that follows
does not require the independence assumption AI any longer.

We refer again to the averaged energy relation (22), which we
rewrite using (5) and (6) as

(27)

Assuming that the weight-error vector reaches a steady-state
mean-square value, i.e.,

...
(25)

...
...

...
...

...
...
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the energy relation (27) becomes, in the limit

or

(28)
Now, let denote the EMSE, i.e.,

(29)

which, assuming the filter is mean-square stable, exists and is
finite. Then

and

and accordingly, (28) can be written more compactly, as shown
below.

Theorem 3 (Steady-State Performance):Consider the same
setting of Theorem 1. Then, assuming a mean-square stable
filter with EMSE denoted by , the following equality holds:

(30)

The above relation has been derived for general memoryless
error nonlinearities. We now show how it can be used to evaluate
various steady-state quantities such as the excess mean-square
error and the mean-square deviation.

A. Excess Mean-Square Error

To calculate the excess mean-square error, we employ (30)
with set to the identity matrix

Tr

or since , we arrive at the following state-
ment.

Corollary 2 (EMSE): Consider the same setting of Theorem
1. Then, the EMSE is a positive solution of the equation

Tr (31)

i.e., the EMSE is a fixed point of the function
Tr .

Relation (31) is a generalization of the results of [26] to gen-
eral error functions . In the following, we show how (31) spe-
cializes for some nonlinearities.

1) LMS Algorithm: In the LMS case, (31) reads

Tr

or, upon solving for , we obtain the well-known result [20]:

Tr
Tr

TABLE IV
EMSEFOR THESIGN ALGORITHM FOR VARIOUS NOISESTATISTICS.

2) Sign Algorithm: We start from (31) again. With the aid of
Tables II and III, we see that

Tr Tr (32)

It is worth noting in the sign algorithm case that assumption
AU is not needed. In other words, we only need the Gaussian
assumption AG to establish (32). This was the same conclu-
sion arrived at in [26], but the study there was limited to the
Gaussian noise case. Further progress is pending the evaluation
of , which calls for specifying the noise statis-
tics. Our findings are summarized in the Table IV. In particular,
we arrive at the same EMSE expressions of [12] derived there
under the independence assumption for iid input. In the second
line of Table IV, the noise is assumed to be equal to with
probability 1/2, whereas in the third line, the noise is assumed
to be uniformly distributed inside the interval ( ).
The erf function is defined by

erf

3) Error-Saturation Algorithm: Consider the saturation
nonlinearity in Table I. The associated expectationsand
are relatively easy to establish in the Gaussian noise case (see
Tables II and III)

which upon substitution in (31) yields the following relation for
the EMSE:

Tr

This is the same result arrived at in [10] under the independence
assumption for iid input.

In the general noise case, we have

(33)

which encompasses the binary noise case considered in [10] as a
special case. Evaluating is more difficult; this was attempted
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in [10], and the argument led to a complicated expression in-
volving double integrals and infinite limits. We arrive in the Ap-
pendix at the expression

(34)

by relying on a convenient expression for the error function in-
troduced [40]. Upon substituting (33) and (34) into (31), we ob-
tain

Tr

which can be numerically solved for, which is the EMSE.
4) LMF Algorithm: For the LMF algorithm, and with the aid

of Tables I and II, (31) takes the form

Tr (35)

where and denote the fourth and sixth moments of
. Finding the EMSE is thus equivalent to finding the roots

of a third-order equation, which can be done numerically. We
can avoid this in the Gaussian case and obtain aclosedformula
for the EMSE.

Gaussian Noise:In the Gaussian noise case, (35) simpli-
fies to

Tr

where Tr . This is a quadratic equation inwith two
positive roots

(36)

Simulations show that only the smaller root is meaningful.
It appears that calculating the steady-state error for super non-

linearities (e.g., the LMF algorithm, the LMF family, and the
LMMN algorithm) has always involved some form of lineariza-
tion (e.g., [5], [13], [26], [36], [38], [39]). The LMF derivation
above demonstrates how the EMSE can be obtained for such al-
gorithms without having to employ linearization arguments.

B. Mean-Square Deviation

The mean-square deviation (MSD), which is defined as

MSD

can be related to the EMSE by invoking the independence as-
sumption in the limit. More specifically, by combining (30) and
(31), we obtain

Assuming AI holds in the limit, we have

so that

(37)

Since we are interested in , we choose in (37) as
, which leads us to the following conclusion.

Corollary 3 (MSD): Consider the same setting of Theorem
1, and assume, in addition, that the sequenceis zero-mean
iid. Then, the MSD is given by

MSD
Tr

where denotes the filter EMSE.
Other steady-state measures can be similarly evaluated. Thus,

for any symmetric matrix , we have

EMSE

V. SIMULATIONS

Throughout this section, the system to be identified is an FIR
channel of length 16. The input is generated by passing
an iid (uniform or Gaussian) process through a first-order
model

(38)

By varying the value of , we obtain processes of different
colors. Here, we set . The output is contaminated by an
iid (uniform or Gaussian) additive noise at an SNR level of 10
dB.

A. Testing the Gaussianity of

We start by running a simulation to test the Gaussian assump-
tion AG on for the sign algorithm. We choose the sign al-
gorithm because it was argued in [41] that can never be
Gaussian under the independence assumption. The signals in-
volved are chosen to be non-Gaussian. Thus, the input is gener-
ated by (38), and the processesand are both taken to be iid
uniform.

The Gaussian hypothesis is tested by running the adaptive al-
gorithm 1000 times and plotting the histogram of at the eq-
uispaced instants . The histograms, which
are depicted in Fig. 1, suggest that the Gaussian assumption on

is still a reasonable approximation for practical purposes.
The only exception is the histogram for , which is almost
uniformly distributed (as it should be since is generated
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Fig. 1. Histogram ofe (i) for the sign algorithm at different time instants
(uniform noise, uniform input witha = 0:3, � = 0:01, SNR= 10 dB).

Fig. 2. Theoretical and simulated learning curves for the sign algorithm
(Gaussian noise, Gaussian input witha = :1, � = :01, SNR= 10 dB).

by one data point for which the central limit theorem does not
apply).

B. Learning Curves

Next, we study the match between the theoretical (Theorem
2) and simulated learning curves. We test the match for the sign
and LMF algorithms. In both cases, the input is assumed to be
a Gaussian correlated process with . As depicted in
Figs. 2 and 3, the experimental and theoretical learning curves
agree very well. This agreement occurs despite the fact that large
values of the step size are used.

C. Steady-State Behavior

Here, we simulate the steady-state behavior of the sign and
LMF algorithms and compare the results to theory. We test the
sign algorithm for correlated uniform input (with ) and
uniform noise. Fig. 4 shows an excellent match between the

Fig. 3. Theoretical and simulated learning curves for the LMF algorithm
(Gaussian noise, Gaussian input witha = 0:1, � = :0044, SNR= 10 dB).

Fig. 4. Theoretical and simulated EMSE versus� for the sign algorithm
(uniform noise, Gaussian input witha = 0:3, SNR= 10 dB.).

EMSE generated by simulation and that predicted by theory (see
Table IV).

The LMF is tested for correlated Gaussian input (with
) and Gaussian noise. Fig. 5 demonstrates the excellent

match between simulation and theoretical values [predicted by
(36)]. In this figure, we also plot the value of the steady-state
error as predicted by the expression in [26] for small and large

, which eventually employ some sort of linearization. The
predictions of (36) are more accurate.

VI. CONCLUDING REMARKS

In this paper, we employed energy-conservation arguments
to study the transient performance of adaptive filters with error
nonlinearities. The arguments of this work, as well as in [25] and
[26], demonstrate the convenience of working with the energy
relation. In developing the energy relation, we basically push
the algebraic operations to the limit before we undertake any
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Fig. 5. Theoretical and simulated EMSE versus� for the LMF algorithm
(Gaussian noise, Gaussian input witha = 0:3, SNR= 10 dB).

averaging operation. We do so because our ability to maneuver
algebraically under the expectation operator is usually limited.

The main contributions of this part are Theorems 1–3; the first
relates to the energy conservation result, the second relates to
the learning curve behavior, and the third relates to a nonlinear
equation for EMSE calculation.

APPENDIX

EVALUATING FOR THE ERROR

SATURATION NONLINEARITY (34)

To evaluate the expectation

for the error saturation nonlinearity
, we rely on the equivalent representation

sign (39)

Powers of are obtained by changing the integration limits in
(39) (in addition to other minor changes, see [40]). Thus

(40)
Thanks to (40), in evaluating given , the expec-
tation operator can move inside the integral and operate on its
integrand, and we can show that

(41)

where . This yields the desired result.

REFERENCES

[1] S. Haykin, Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice-
Hall, 1996.

[2] B. Widrow and S. D. Stearns,Adaptive Signal Processing. Englewood
Cliffs, NJ: Prentice-Hall, 1985.

[3] O. Macchi,Adaptive Processing: The LMS Approach with Applications
in Transmission. New York: Wiley, 1995.

[4] D. L. Duttweiler, “Adaptive filter performance with nonlinearities in the
correlation multiplier,”IEEE Trans. Acoust., Speech, Signal Processing,
vol. ASSP-30, pp. 578–586, Aug. 1982.

[5] E. Walach and B. Widrow, “The least-mean fourth (LMF) adaptive al-
gorithm and its family,”IEEE Trans. Inform. Theory, vol. IT–30, pp.
275–283, Apr. 1984.

[6] J. Gibson and S. Gray, “MVSE adaptive filtering subject to a constraint
on MSE,” IEEE Trans. Circuits Syst., vol. 35, pp. 603–608, May 1988.

[7] W. Sethares, “Adaptive algorithms with nonlinear data and error func-
tions,” IEEE Trans. Signal Processing, vol. 40, pp. 2199–2206, Sept.
1992.

[8] V. Mathews and S. Cho, “Improved convergence analysis of stochastic
gradient adaptive filters using the sign algorithm,”IEEE Trans. Acoust.,
Speech, Signal Processing, vol. ASSP–35, pp. 450–454, Apr 1987.

[9] N. J. Bershad, “On error saturation nonlinearities in LMS adaptation,”
IEEE Trans. Acoust., Speech, Signal Processing, vol. 36, pp. 440–452,
Apr. 1988.

[10] N. J. Bershad and M. Bonnet, “Saturation effects in LMS adaptive echo
cancellation for binary data,”IEEE Trans. Acoust., Speech, Signal Pro-
cessing, vol. 38, pp. 1687–1696, Oct. 1990.

[11] E. Eweda, “Comparison of RLS, LMS, and sign algorithms for tracking
randomly time-varying channels,”IEEE Trans. Signal Processing, vol.
42, pp. 2937–2944, Nov. 1994.

[12] T. Claasen and W. Mecklenbräuker, “Comparison of the convergence of
two algorithms for adaptive FIR digital filters,”IEEE Trans. Circuits
Syst., vol. CAS-28, pp. 510–518, June 1981.

[13] O. Tanrikulu and J. A. Chambers, “Convergence and steady-state proper-
ties of the least-mean mixed-norm (LMMN) adaptive algorithm,”Proc.
Inst. Elect. Eng.—Vision, Image Signal Process., vol. 143, no. 3, pp.
137–142, June 1996.

[14] J. A. Chambers, O. Tanrikulu, and A. G. Constantindes, “Least mean
mixed-norm adaptive filtering,”Electron. Lett., vol. 30, no. 19, pp.
1574–1575, Sept. 1994.

[15] S. Koike, “Convergence analysis of a data echo canceler with a
stochastic gradient adaptive FIR filter using the sign algorithm,”IEEE
Trans. Signal Processing, vol. 43, pp. 2852–2861, Dec. 1995.

[16] R. Sharma, W. Sethares, and J. Bucklew, “Asymptotic analysis of
stochastic gradient-based adaptive filtering algorithms with general cost
functions,” IEEE Trans. Signal Processing, vol. 44, pp. 2186–2194,
Sept. 1996.

[17] S. Florian and A. Feuer, “Performance analysis of the LMS algorithm
with a tapped delay line (two-dimensional case),”IEEE Trans. Acoust.,
Speech, Signal Processing, vol. ASSP-34, pp. 1542–1549, Dec 1986.

[18] S. C. Douglas and W. Pan, “Exact expectation analysis of the LMS adap-
tive filter,” IEEE Trans. Signal Processing, vol. 43, pp. 2863–2871, Dec.
1995.

[19] V. H. Nascimento and A. H. Sayed, “Stability of the lms adaptive filter by
means of a state equation,” inProc. 36th Annu. Allerton Conf. Commun.,
Contr., Comput., 1998, pp. 242–251.

[20] W. A. Gardner, “Learning characteristic of stochastic-descent algo-
rithms: A general study, analysis, and critique,”Signal Process., vol.
6, no. 2, pp. 113–133, Apr. 1984.

[21] A. Feuer and E. Weinstein, “Convergence analysis of LMS filters with
uncorrelated Gaussian data,”IEEE Trans. Acoust., Speech, Signal Pro-
cessing, vol. ASSP-33, Jan. 1985.

[22] M. Rupp, “The behavior of LMS and NLMS algorithms in the presence
of spherically invariant processes,”IEEE Trans. Signal Processing, vol.
41, pp. 1149–1160, Mar. 1993.

[23] J. E. Mazo, “On the independence theory of equalizer convergence,”Bell
Syst. Tech. J., vol. 58, pp. 963–993, May/June 1979.

[24] J. Bermudez and N. J. Bershad, “A nonlinear analytical model for the
quantized LMS algorithm- The arbitrary step size case,”IEEE Trans.
Signal Processing, vol. 44, pp. 1175–1183, May 1996.

[25] J. Mai and A. H. Sayed, “A feedback approach to the steady-state per-
formance of fractionally-spaced blind adaptive equalizers,”IEEE Trans.
Signal Processing, vol. 48, pp. 80–91, Jan. 2000.

[26] N. R. Yousef and A. H. Sayed, “A unified approach to the steady-state
and tracking analyzes of adaptive filters,”IEEE Trans. Signal Pro-
cessing, vol. 49, pp. 314–324, Feb. 2001.



AL-NAFFOURI AND SAYED: TRANSIENT ANALYSIS OF ADAPTIVE FILTERS WITH ERROR NONLINEARITIES 663

[27] , “Ability of adaptive filters to track carrier offsets and random
channel nonstationarities,”IEEE Trans. Signal Processing, vol. 50, pp.
1533–1544, July 2002.

[28] , “A feedback analysis of the tracking performance of blind
adaptive equalization algorithms,” inProc. CD Conf., vol. 1, 1999, pp.
174–179.

[29] A. H. Sayed and M. Rupp, “A time-domain feedback analysis of adap-
tive algorithms via the small gain theorem,” inProc. SPIE, vol. 2563,
1995, pp. 458–469.

[30] M. Rupp and A. H. Sayed, “A time-domain feedback analysis of filtered-
error adaptive gradient algorithms,”IEEE Trans. Signal Processing, vol.
44, pp. 1428–1439, June 1996.

[31] A. H. Sayed and M. Rupp, “Robustness issues in adaptive filtering,” in
DSP Handbook. Boca Raton, FL: CRC, 1998, ch. 20.

[32] M. Rupp and A. H. Sayed, “On the convergence of blind adaptive equal-
izers for constant-modulus signals,”IEEE Trans. Commun., vol. 48, pp.
795–803, May 2000.

[33] T. Y. Al-Naffouri and A. H. Sayed, “Transient analysis of data-nor-
malized adaptive filters,”IEEE Trans. Signal Processing, vol. 51, pp.
639–652, Mar. 2003.

[34] R. Price, “A useful theorem for nonlinear devices having gaussian in-
puts,” IEEE Trans. Inform. Theory, vol. IT-4, pp. 69–72, June 1958.

[35] P. Billingsley, Probability and Measure, 3rd ed. New York: Wiley,
1995.

[36] S. C. Douglas and T. H. -Y. Meng, “Stochastic gradient adaptation under
general error criterion,”IEEE Trans. Signal Processing, vol. 42, pp.
1335–1351, June 1994.

[37] T. Birkel, “Laws of large numbers under dependence assumptions,”
Statist. Probab. Lett., vol. 14, no. 4, pp. 355–362.

[38] T. Y. Al-Naffouri, A. Zerguine, and M. Bettayeb, “Convergence anal-
ysis of the LMS algorithm with a general error nonlinearity and an iid
input,” in Proc. Asilomar Conf. Signals, Syst., Comput., vol. 1, 1998, pp.
556–559.

[39] N. R. Yousef and A. H. Sayed, “Tracking analysis of the LMF and
LMMN adaptive algorithms,” inProc. Asilomar Conf. Signals, Syst.,
Comput., vol. 1, 1999, pp. 786–790.

[40] M. K. Simon and M. -S. Alouini, “A unified approach to the proba-
bility of error for noncoherent and differentially coherent modulations
over generalized fading channels,”IEEE Trans. Commun., vol. 46, pp.
1625–1638, Dec. 1998.

[41] E. Masry and F. Bullo, “Convergenece analysis of the sign algorithm for
adaptive filtering,”IEEE Trans. Inform. Theory, vol. 41, pp. 489–495,
Mar. 1995.

Tareq Y. Al-Naffouri received the B.S. degree in
mathematics (with honors) and the M.S. degree in
electrical engineering from King Fahd University
of Petroleum and Minerals, Dhahran, Saudi Arabia,
in 1994 and 1997, respectively, and the M.S. degree
in electrical engineering from Georgia Institute
of Technology, Atlanta, in 1998. He is currently
pursuing the Ph.D. degree with the Electrical Engi-
neering Department, Stanford University, Stanford,
CA.

His research interests lie in the area of signal pro-
cessing for communications. Specifically, he is interested in the analysis and
design of algorithms for channel identification and equalization. He has held
internship positions at NEC Research Labs, Tokyo, Japan, and at National Semi-
conductor, Santa Clara, CA.

Mr. Al-Naffouri is the recipient of a 2001 best student paper award at an
international meeting for work on adaptive filtering analysis.

Ali H. Sayed (F’01) received the Ph.D. degree
in electrical engineering in 1992 from Stanford
University, Stanford, CA.

He is currently Professor and Vice-Chair of
electrical engineering at the University of California,
Los Angeles. He is also the Principal Investi-
gator of the UCLA Adaptive Systems Laboratory
(www.ee.ucla.edu/asl). He has over 180 journal
and conference publications, is the author of the
forthcoming textbookFundamentals of Adaptive
Filtering (New York: Wiley, 2003), is coauthor

of the research monographIndefinite Quadratic Estimation and Control
(Philadelphia, PA: SIAM, 1999) and of the graduate-level textbookLinear
Estimation(Englewood Cliffs, NJ: Prentice-Hall, 2000). He is also co-editor of
the volumeFast Reliable Algorithms for Matrices with Structure(Philadelphia,
PA: SIAM, 1999). He is a member of the editorial boards of theSIAM Journal
on Matrix Analysis and Its Applicationsand the International Journal of
Adaptive Control and Signal Processingand has served as coeditor of special
issues of the journalLinear Algebra and Its Applications. He has contributed
several articles to engineering and mathematical encyclopedias and handbooks
and has served on the program committees of several international meetings.
He has also consulted with industry in the areas of adaptive filtering, adaptive
equalization, and echo cancellation. His research interests span several areas
including adaptive and statistical signal processing, filtering and estimation
theories, signal processing for communications, interplays between signal
processing and control methodologies, system theory, and fast algorithms for
large-scale problems.

Dr. Sayed is recipient of the 1996 IEEE Donald G. Fink Award, a 2002 Best
Paper Award from the IEEE Signal Processing Society in the area of Signal
Procesing Theory and Methods, and co-author of two Best Student Paper awards
at international meetings. He is also a member of the technical committees on
Signal Processing Theory and Methods (SPTM) and on Signal Processing for
Communications (SPCOM), both of the IEEE Signal Processing Society. He is a
member of the editorial board of the IEEE SIGNAL PROCESSINGMAGAZINE. He
has also served twice as Associate Editor of the IEEE TRANSACTIONS ONSIGNAL

PROCESSINGand is now serving as Editor-in-Chief of the TRANSACTIONS.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


