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Transient Analysis of Adaptive Filters
With Error Nonlinearities

Tareq Y. Al-Naffouri and Ali H. Sayedrellow, IEEE

Abstract—This paper develops a unified approach to the tran- imposed on error quantities. For example, in studying the
sient analysis of adaptive filters with error nonlinearities. In addi- sign-LMS algorithm, it was assumed in [15] that the el-
tion to deriving earlier results in a unified manner, the approach ements of the weight-error vector are jointly Gaussian.

also leads to new performance results without restricting the re- Thi fi h in 116110 b lid tot
gression data to being Gaussian or white. The framework is based is assumption was shown in [16] to be valid asymptot-

on energy-conservation arguments and avoids the need for explicit ically. More accurate is the assumption that the residual
recursions for the covariance matrix of the weight-error vector. error is Gaussian [4], [10] or that its conditional value is
Index Terms—Adaptive filter, energy-conservation, error non- [8] [9]. By central “r_n't a_rguments, this assu_mptlon IS Jus-
linearity, feedback analysis, mean-square-error error, steady-state tified for long adaptive filters [4], [10]. More importantly,
analysis, transient analysis. this assumption is as valid in the early stages as in the final

stages of adaptation. For shorter filters, exact expectation
analysis can be employed as in [17]-[19].
d) Restricted class of inputf is common to assume that the
HIS paper describes a unifying framework for the study of  input sequence is white and/or has a Gaussian distribution
the transient performance of adaptive filters that involve  (e.g., [4], [6], [8]-[12], [20]-[22]).
error nonlinearities in their update equations (e.g., [1]-[3]). This e) Independence assumptidhis even more common to as-
class of algorithms is among the most difficult to analyze, and  sume that the successive regressors are independent in
it is not uncommon to resort to different methods and assump-  what is widely known as the independence assumptions
tions with the intent of performing tractable analyses. Before  [1], [23]. Despite being unrealistic, the independence as-
discussing the features of the approach proposed herein and its sumptions are among the most heavily used assumptions
contributions, we provide, as a motivation, a summary of se-  in adaptive filtering analysis.
lected technigques that have been employed earlier in the literaf) Gaussian noiseNoise is sometimes restricted to be iid
ture for the study of such algorithms. Gaussian as in [4], [8], [15], and [24], although Gaus-
a) Linearization(e.g., [4]-[7]). In this method of analysis, sianity is not as common as the previous assumptions.
the error nonlinearity is linearized around an operating  Surprisingly perhaps, the iid assumption on the noise is
point, and higher order terms are discarded. Analysesthat almostindispensable, even for the analysis of the simplest
are based on this technique fail to accurately describe the  of adaptive algorithms.
adaptive filter performance for large values of the error,
e.g., at early stages of adaptation. A. Approach of This Paper

b) Restricted classes of nonlinearitigsg., [8]-[14]). Here, In this paper, we develop an approach that applies to arbi-
the analysis is restricted to particular classes of alg?r— '

rithms such as the sign-LMS algorithm, the Ieast-mez%nary error nonlinearities. The arguments assume that the adap-

mixed-norm (LMMN) algorithm, the least-mean fourth |ve-filter is Ion.g enoughtoj.ustifythefollowir?g approximations.
(LMF) algorithm, and error saturation nonlinearities. By 1) The residual erroe, (i), to be later defined in (6), can be
limiting the study to a specific nonlinearity or to a class _ 2ssumed to be Gaussian.

of nonlinearities, it is possible to avoid linearization, and 1) The norm of the input regressor can be assumed to be
the analysis results become more accurate. uncorrelated withf?[e(4)], which is the square of the error

c) Assumptions on the statistics of the errovshile it is nonlinearity to be defined later in (2).
common to impose statistical assumptions on the regrdpth of these assumptions are realistic for longer adaptive filters
sion and noise sequences, similar conditions can also(see, €.g., the simulation results in Section V-A). Fortunately,

, _ _ _ they are also realistic in all stages of adaptation (including the
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class of adaptive filters. This relation has been originally devel- 1) Superposition.

opedin[29]-[32]inthe context of robustness analysis of adaptive o o o

filterswithinadeterministicframework.Ithassincethenbeenused ar|wills, + a2llwills, = IWilla, s, +a,5,-

in[25]-[28] as aconvenienttool for studying the steady-state per-

formance ofadaptivefilterswithinastochasticframeworkaswell.
In this work, we show how to extend the same energy-based (B W) (0;Bow;) = (‘x,iTgluiT) (0;2ow;)

approach to the transient analysis of adaptive filters with error T T -

. .- : . . . . =W, (Elui uiEQ) W;
nonlinearities. Such an extension is desirable since it allows us
to bring forth benefits such as the convenience of a unified treat-
ment, the derivation of stability and convergence results, and the
weakening of some assumptions. The main contributions, and
an outline of this paper, are as follows. (0 Z1W;) (0;Bow;) = ||V~Vi||221uTu7-z.) - ||V~Vi||é)uTuizl~

1) We setthe stage inthe nextsection by introducing our nota- L o Q)
tion. We proceed by defining the adaptive filtering problem 3) Independencelf u; andw; are independent random vec-
and some associated error quantities. The energy of these tors, then the polarization property allows us to write
errors are finally related through a fundamental energy re-

2) Polarization. Since

:V~VLT (EzuZTqul) “71

we can write

lation, which will be the starting point for much ofthe sub-  E [(u;Z1W;) (0;Zow;)] =E [||‘7Vi||22luru122}
sequent analysis. This resultis summarized in Theorem 1. -
2) The energy relation is used in Section Il to derive a gen- =E |:||Wi||ElE[u;.Tu,]22i| :

eral recursion that describes the mean-square evolution
(i.e., learning curve) of an adaptive filter with error non-
linearity. To achieve this result, we rely on the long filter
assumptions, which are formally introduced in this sec- An adaptive filter attempts to identify a weight vecteof, of
tion. The independence assumption turns out to be uselegthM, by using a sequence of row regressaig{ of length
in constructing the dynamical relation. The main cond/, and output samplesi{7)} that are related via

tribution of this section is summarized in Theorem 2,

which essentially states that the mean-square behavior of d(i) = w;w’ + v(i).

?hna?g?gtr']\/()enﬂ gz;;’ivrﬁz_?;\rlzrrig?]tns“tgfggty;:eegzzz:e%?—lere,v(z’) accounts for measurement noise and modeling errors.
. b ' Many adaptive schemes have been proposed in the literature for

statement of the theorem describes this model. . .

) this purpose (see, e.g., [1]-[3]). In this paper, we focus on the

In Section IV, we show that the excess mean-square erol < of algorithms

(EMSE) of an adaptive filter with error nonlinearity can

be obtained as the fixed point of a nonlinear function. The Wip1 = w; + pul fle(i)], >0 2)

main result here is Theorem 3 and Corollary 2, which hold ’

with a weaker form of the independence assumption. wherew; is the estimate o at timei, y is the step size

In a companion paper [33], we similarly extend the energy-
conservation approach to study the transient behavior of adap-

tive filters with data normalization. is the estimation error, anfl[e(i)] is a scalar function of the
_ errore(s). Table | lists some common adaptive algorithms and
B. Notation their corresponding error nonlinearities.
We focus on real-valued data, although the extension to com-
plex-valued data is immediate. Small boldface letters are ugdd Erfor Measures
to denote vectors, e.gw, and the symbal” denotes transposi- ~ Given an adaptive filter of the family (2), we are interested
tion. The notatiori|w||* denotes the squared Euclidean norm dh studying the time-evolution and the steady-state values of the
a vector||w||? = wl'w, wheread|w||% denotes the weighted variances
squared Euclidean norjiw||% = wTXw. All vectors are
column vectors except for a single vector, namely, the input data Ele(i))? and E|w|? 4)
vector denoted by;, which is taken to be a row vector. The time )
instant is placed as a subscript for vectors and between par@herew; stands for the weight-error vector
theses for scalars, e.gv; ande().

Il. ADAPTIVE ALGORITHMS WITH ERRORNONLINEARITY

3

~

e(L)éd(z) —uw; = w,w’ — ww; + v(7) 3)

VNVZ' ZWO—WZ'.

C. Weighted-Norms The steady-state values of the above variances represent the

We will make substantial use of weighted-norms in this papdpean-square-error and the mean-square-deviation perfor-

their properties. Thus, let; anda» be scalarsyv; a column 'elate to the learning or the transient behavior of the filter.

vector, andu; a row vector, and lek; and i, be symmetric  yy, s table, LMF stands for the least-mean fourth algorithm [5], whereas
matrices. Then, the following properties hold. LMMN stands for the least-mean mixed-norm algorithm [13], [14].
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TABLE | Both sides of (11) should have the same weighted energy,
EXAMPLES FOR f[e(i)] namely
ALGORITHM | ERROR NONLINEARITIES fle(i)] ®T+12v~v4+1 _ [VV + jis(4) (ez(i) _ ez(i)) uT]T
) T T P a ()

LMS 6(1) ~ _ . S/ S/ T

LME eS(i) X% I:Wi + :U’E(Z) (ep (Z) — €4 (Z)) u; ]
LMF family e_2k+1(ig i which, after some straightforward manipulations, yields the de-

LMMN ae(i) + be” (1) sired energy relation
Sign error sgnle(q)]
. e(i 22 - _ . N2 - _ . N2

Sat. nonlin. Js® exp (—5z) d= Wil + () [ = IIW3ll3 + As () [eF ()] (12)

This relation shows how the weighted energies of the error quan-
In order to study the variances (4), the framework of this pap#ties evolve in time. Observe that it is an exact relation and no
relies on introducing the weightepriori anda posteriorier- approximations or assumptions are used to derive it. The result,

rors defined by for ¥ = I, has been originally developed in [29]-[32] in the
5, .A ~ 5, \A ~ context of robustness analysis of adaptive filters within a deter-
e, ()= Bwi, e, (i)=u;Xwiy (5)  ministic framework. It has since then been used in [25]-[28] as

a convenient tool for studying the steady-state performance of
specified later: it will be seen that different choices ¥omllow adaptive filters within a stochastic framework as well. We will
us to evaluate different performance measures of an adapfid’ Show its relevance to the transient analysis of adaptive fil-
filter. We will use a more standard notation for the usual calg's With error nonlinearities.

¥ =1, namely

for some symmetric positive definite weighting matBxto be

I1l. DYNAMICAL BEHAVIOR OF THE WEIGHT-ERRORVECTOR
NA Ty e NA T s 6) ) . . .
Ca(1)=€, (1) = Wi, ep(1)=ep (i) = Wiwirr.  ( Our first step is to examine how the energy relation (12) can

With the error quantitiesw;, 65(;)7 eZ(i)} so defined, we can be used to characterize the time-evolution of the weighted vari-

rewrite the adaptation and filtering (2) and (3) in terms of ther@NCeE[|W; |5, for aZ”YE- Thus, consider (12) and replace the
Specifically, by subtractingr® from both sides of (2), we get 2 posteriorierror e;, (7) by its equivalent expression (9). This

yields
Wip1 = W; — pfle(i)u) () . N : . ;
- - _ [Wirl% = [Will% — 2peq () fle(@)] + [l |3 £ [e(2)]
and by combining the defining expressions (3) and (6), we ob-
tain or, upon taking the expectation of both sides
e(i) = ea(i) + v(i). (8) @

> 2 ~ 112 /- .
The estimation errorsZ(i), ¢2(i), ande(i) can be related by [IWit1ll5] = £ [IWill5] = 20 E [eq (2) fle(D)]
premultiplying both sides of the adaptation (7)py3: @

WEW 1 = w W, — pufle(i)]][uil| 2 E w2 2] . (13)

and incorporating the defining expressions (5), which yield Now, two expectations call for evaluation. This is facilitated by
the following assumption on the noise sequence.

. . K . . - .
ey (i) = e5 (i) — s (7) fle(@)] (9  AN: The noise sequenag) is iid and independent af;.
where A. Evaluating Term(®
A —L 112 . .
uz(i)é{ TR if ||u,,,||; #0 (10) To evaluate the first expectation
0, otherwise.

@ = E [eq (i) fle(d)]]

B. Weighted-Energy Relation we will assume that the adaptive filter is long enough such that
i i S(;
We are now in a position to derive a weighted-energi!® random variables, (i) ande, (i) can be assumed to be

relation that relates the energy of the error quantiid@intly Gaussian. _ o .
{Wi,Wi1,er (i), e5(i)}. This relation will be instrumental in AG: For any constant matriX: and for alli, e.(i) ande; (i)
achieving our stated objective of studying the steady-state fHE jointly _Gauss_|an. ) ) . L
transient performances of adaptive filters of the form (2). As ment|oned.|n the |ntroduct|o_n,.th|s assumption is reason-
First, we determine a relation between the errors. This is of2!® for longer filters by central limit arguments (see also the

tained by combining (7) and (9) to eliminate the nonlinearit?immatioh results in Section V—A).. A similar assumption was
Fle(@)]: adopted in [4], [9], and [10], and its usefulness can be under-

stood from the following result and from the subsequent discus-
Wiy1 = w; + fis(i) (e (i) — €5/ (i) u; . (11) sion (see, e.g., [9] and [10]).
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TABLE I A
h[-] FOR THEERROR NONLINEARITIES OF TABLE | (02 =E[e? (i)])

ALGORITHM [ hgloZ ] (v(i) Gaussian) | hglo: ] (general case)
LMS 1 1
LMF 3(0Z +03) 3(cZ +03)
: 2%+ 2)1 W [ 2RF1 N o Y
LMF famlly ?c%_—l—(m(agﬂ + 0-12})16 2]':0 ( j ) O'EZE [1)2(k J)(’L)]
LMMN a+3b(o;, + 0% ) a+3b(o; + 02

5.
, 1 2 1 _22G
Sign error = ——F |e *%a
T \/0s, + 05 T O,
w2 (i)
Osat Osat FE e_ 208, toqt) J

2 2 2
\/0§a+03+dsat \/Oe, TOsat L

Lemma 1 (Price’s Result)Let z andy be jointly Gaussian We finally use the polarization property (1) to write the first
random variables that are independent from a third random vagikpectation in (17) as a weighted-normvef, yielding
ablez. Then s, ) . 5.
. @ = B [Z60)(e@)] = F [IWilld,r,, ] ho [ElE26)]
Elofly+ 2 = 2og Blufly + 7)) ¢ (18)

Ely?]
, . . B, Evaluating Ter
With Price’s theorem at hand, we can use assumption AG g Term®

together with the standing assumption on the noise AN and (8 We turn our attention now to the second expectation in (13)

Sat. nonlin.

to write (D) as = E [||w;||£f?[e(7)]], which is easier to handle. The long
filter assumption is also useful here.
E [eZ fle(i)]] =E [eX flea(d) + v(3)]] f;{AL(J.:)]The adaptivelfi![te(; is long enough such thd; ||Z and
o Elea(d) flea(d) + v(i)]] e(1)] are uncorrelated.
=K [eaz(l)ea(")] Ele2(i)] : The unweighted version of this assumption was used in

(14) [25]-[27]. It becomes more realistic as the filter gets longer.
The assumption enables us to split the expecta@pas

At first glance, it would appear that we have replaced the ex- E [Hu‘HQ f2[e(z')]] -E [Hu‘HQ] E [fQ[e(i)]] . (19)
pectation [¢2 (i) f[e(s)]] with a similar oneE[e, (i) f(e(i))]. e i
However, this second form is more tractable. Indeed, the éyoreover, since, (i) is Gaussian and independent of the noise,
pectationF|[e, (i) f (¢(i))] depends om, (i) throughthe second We can show [as in (15)] thak [f>[e(i)]] depends or,(i)
moment&[e2 (i)] only. This can be further seen by expanding ithrough itssecond moment onlfhis prompts us to define
as (where we suppress the time index on the right-hand side) ho [E[ei(i)]] Ap [f2[e(z‘)]] (20)

Eleq(i) flea(d) + v(2)]] = which together with (19) yields
R 1 2/2E[e] 2 27 0 2 2¢;
/| cafleatt] e P )deady (A9) B [l (6] = B [lwliE] o [B [0 @D

The functionhy is evaluated for the algorithms of Table I, and

where p, is the pdf of the additive noise. The contributionye resyits are shown in Table Il for general noise and for the

of e, () to the result of the integration will depend solely or; 5 ssjan noise special case (the last entry in the table is derived
Elez(i)]. Therefore, the rati@ [eq (i) f[e(i)] / Ele2(i)], which i, the Appendix ).
appears in (14), is a function df[e2(i)]. This fact motivates

the following definition2 C. Weight-Error Recursion
_ Ele, (i) fle(i By substituting (18) and (21) into (13), we obtain
he [Ble3 o)) £ ELaI O asy oo i
€all E[Wisillg] = E [IWillg] - 2uhe [Elez(i)]]
For future referencehs is evaluated for the algorithms of < F [||‘7‘"i||éuTu-] + U2k [Ilu,:llé] hy [E[ez(i)]] )

Table |, and the results are shown in Table Il (for general
noise distribution and for the Gaussian noise case as wellpon replacing the mean-square etbfe? (7)| with the equiv-
Combining (14) and (16) yields alent expressiory [Hwi”i.%}’ the recursion takes the more
. . . . . homogeneous form shown in the statement below.
b p , _ > ¥ . 2/,
B [e"' (L)f(e(t))] =k [e“ (L)e"'(L)] ha [E[e"'(L)” - (47 Theorem 1 (Weighted-Energy Relatioronsider an adap-

2The Gaussianity assumption AG is the main assumption leading to ttige filter of the form
defining expression (16) fok <, hence, the subscrigi. The subscriptU for T ) )
hy , which is defined later in (20), is similarly motivated. witr1 = w; + pu; fle(d)], ¢>0
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TABLE Il A
hy[-] FOR THEERRORNONLINEARITIES OF TABLE | (02 =El[e2 (i)])

ALGORITHM | hylo> ] (v(i) Gaussian) | hylo? ] (general case)
LMS s +o, o +o,
LMF 15(c2 +03)3 1508 + 4502 02 + 1502 E [v(3)] + E [v°(3)]
. (4k + 2)! 2 2Nkt 1 ki1 4k +2 0\ (29)! o p a2k—jr1) (s
LMF family m((]’eu +02) + Zj:o 2 2].—ﬂanE [’U J (Z)]

156268 + (45b%0; + 6ab)oy
+(1562E [v4(5)] + 12abo2 + a?)o2,
+E [(bv2(3) + a)?v%(i)]

1

a?(o? + 02) + 6ab(c2 + 02)?

LMMN +15b%(c% +02)3

Sign error 1
. 9 . 1 0’3 +0'12, 9 1 1 m/2 o2,sin2(6 E T 202 4—1;25(1 in2(8))
- a 1_ 1 Cea Tt
Sat. nonlin. 0%,Sin _——03 + o2 1ok, 2mosn | 72— & /4 —“LLA—Laga+os=lsinz(g) le ]

wheree(i) = d(i) — w;w; andd(i) = u;w® + v(i). Assume  Corollary 1 (Energy Recursion With Independenc&onsider
the noise sequeneg:) is iid and independent af; and that the the same setting of Theorem 1. If, in addition, the sequence
filter is long enough so that, (i) ande (7) are jointly Gaussian is zero-mean, iid, and has covariance matriR,
and thatu||u;||% and f?[e(i)] are uncorrelated. Then, the fol-then (22) becomes

lowing recursion holds for the weighted weight-error varianc . . . .
Ellwi % E [I1wis112] = E [I9:12] 20k [ElIwilI3)] 2 [I1%il125]
+1? B [[wilg] ho [E[IWlIR] - (23)

¢

B [Wisl2] = E [Iwill2] - 2uhe [B %l |]
XE [IWill2,r,, | +#2E [Ilwill3] ho [E I, ]| @2)
where the functioné[-] andhy -] are defined by

Elea () fle(d]]
Elez ()]

Remarks: Ee?(i) = Ee2(i) + o
1) What we have achieved so far is to transform recursion

(13) into (22), which depends on various weighted g0 that studying the evolution éfe? (7) is equivalent to studying

) 20 _ .
clidean norms of the weight-error vector, thanks to a%hi e(;/ct)rl]utmn Offe, (1); the steady statél\;/glée of the latter is
sumptions AG and AU. called the excess mean-square error ( ).

2) Assumptions AG and AU eventually get translated into 'NOW: under the independence assumption, we have
some mixing conditions on the signal statistics. In partic- Eel(i) = Eluw;|? = E [||wi|%] -
ular, the Gaussian assumption AG @y{i) = u,;w; re- ) )
quires that the process of individual summang$)w; (1) Thl_s suggests that the Iearnm_g curve can be evaluat.ed by com-
are mixed [35, Th. 27.4]. Similarly, the AU assumption i®uting £[||w;||%] for eachi. This task can be accomplished re-
justified by the law of large numbers, which in turn re€ursively from (23) by essentially choosidg= R, as we now
quires that the input; is mixed [37]. verify. _ _ o
3) The independence assumption on the noise AN is equallyl) Case of White Regression Dat&onsider first the case
essential in developing (18) and (21) and, hence, (22).9f White input data for whiclR = 7T so thatE[e;(i)] =
is a reasonable assumption that allows us to express fhe?[[W:l|*. Restricting the input in this manner is a common
expectations in (13) in terms of the weight-error energyPractice in the literature (e.g., as in [4], [10], [12], [36], and
4) Recursion (22) as it stands is difficult to propagate ip8))- ) )
time. The reason is that the recursion is not self-containedThus, settings = Tin (23), we get
; e .
as the right-hand side is dependentiofWillc, ., a4 [, 2] = B [I9l?] - 202k [o22 11wl
El|wil|%r, . in addition toF||w;ls;. o 5 s ) o
5) Note that only a weak form of the independence assump- xE [[[Will*] + p*ouMhy [0, E [[[%]°]] . (24)

tion, namely AU, has been used so far. Contrast this Wijpte that the right-hand side now depends Biiw;||? only,

the standard (strongeérndependence assumption:  and (24) can be propagated in time. We have thus obtained a
Al: The sequence; is zero-mean, iid, with autocorTe- recursion for the evolution of the varianw,; |* for adaptive

lation matrixR = E [117 ). ~filters with error nonlinearities and white input regression data.
In this case, recursion (22) reduces to the following. 2) Case of Correlated Regression Datdhe result (23),

) . e
3For example, when the input is of constant modulus, assumption AU is trd0WeVver, .aIIOWS us to evaluate th? time eVOlUt'OnEmWiH
whereas Al is not. and EeZ(i), even without the whiteness assumption on the

D. Constructing the Learning Curves

The learning curve of the filter refers to the time-evolution of
the varianceEe?(i); its steady-state value is the mean-square
error (MSE). Clearly, in view of (8), we have that

,LU =F [fQ[e(Lﬂ] y }LG = <>
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regression data (i.e., for general matrig®s The key idea is to the statistics of the regression data, the transient behavior of the
take advantage of the free parame¥erLet us, in particular, filter is characterized by the state-space recursion

write (23) for the choiceX = I, R, ..., R~ (the arguments 5

of the functionsh andhy remain the same (i.ef [||w:[|%]), Wit = AWi+ p7Y (26)

regardless of the choice & and are therefore suppressed folvhere the state-vectdd; and the input vectay are defined by
convenience of notation): See equation (25) at the bottom of

the page. The problem now is that the left-hand side of (25) E [”YV"'”;] E [”ui”z]
is always one variable short of the number of variables on the,, _ E [Iwillz] C V=hy- E [luillz]
right-hand side. Fortunately, we do not have to continue in this ! : ' :
manner indefinitely since the additional variatiiel || %; ||, | E [[|%i] %01 ] E [|[wlf2_.]

can be expressed in terms of the “lower order”

variables. Usin - o .
the Cayley—Hamilton theorem, we have a%d the coefficient matrix4 is given by the equation at the

bottom of the page in terms oh{;, hy} and the {p;}. O
RM = —p)l—piR— - —py_RM! Remarks:
where 1) SinceA and) depend on fy, hg}, they are also func-
tions of E [||w;]|%] and, hence, of the state vector;.
p(x)édet (zI — R) Thus, the state-space model (26) is generally nonlinear,

_ ) M—1 M yet time invariant.

R T 2) Stability and steady-state analysis of the adaptive filter
is the characteristic polynomial &. This induces the desired can now be characterized by studying the properties of
relation the state-space model (26).

o o o o 3) The top entry of the state-vectd¥; characterizes the
Wil e = =pollWill™ = pallWillg — -+ = Par—1[|Will a1 evolution of E||w;||> (mean-square deviation curve),

whereas the second entry Wdf; characterizes the evolu-

and enables us to rewrite the last equation in (25) as ) , :
tion of Ee2 (i) (learning curve).

E (Wi uums] = [[Wil300]

+ 2 (pol|Will® + p1||Wil|% IV. STEADY-STATE ANALYSIS

4+t pu—1|[Will g 1) ha Now that the transient behavior of adaptive filters of the class
2 112 (2) has been characterized, we move on to show how the results

+ 12 E |:||u1||RA171j| hU.

so far can be used to evaluate the steady-state performance of
The system (25) now becomes truly self-contained and, as sulis same class of filters. Actually, the discussion that follows
can be put into the state-space form shown in the following théees not require the independence assumption Al any longer.
orem. We refer again to the averaged energy relation (22), which we
Theorem 2 (Transient Behavior With Independend&yin-  rewrite using (5) and (6) as

sider an adaptive filter of the ;orm > [||V~Vi+1||§)] _E [||v~vi||22] Couhe [E[ez(i)]] > [ef(z’)ea(z')]
Wit =wi +pu; fle(i)], >0 F12E [||lw]2] ho [E[2(0)]] . (27)

wheree(i) = d(i) — w;w; andd(i) = u;w° + v(i). ASSUMe Assuming that the weight-error vector reaches a steady-state
that {v (i), u;} are iid and mutually independent, that the filtefmean-square value, i.e.,

is long enough so that, (i) andeZ (i) are jointly Gaussian, and

. ~ 2 . ~ 112
thatu||u;||% and f2[e(i)] are uncorrelated. Then, regardless of IIEQOE [IWial5] = }LDQOE gl
Elwinllf] = E [|IWill7] = 2uh E [|Will%] + 1 E [[|lui|3] ho
E([Wiwllz] = E [[IWill%] = 2phe E [IIWil%:] + 12 E [|lwl|%] ho (25)
E |:||“~Ii+1||§21v1—1:| = F [||V~‘/'i||?p1—1] - QNhGE [”“NUH?%M] + /fIZE [”uvﬁH%M—l] hu
1 —2phe 0 0 0
0 1 —2uhg - 0 0
A=| 5 L : 5
0 0 0 1 —2uhg

2upoha  2upihg 2up2hg -+ 2upym—2hg 1+ 2upy—1ha
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the energy relation (27) becomes, in the limit
lim hg [Ele2(d)]] lim E [e)(i)eq ()]

L [luif}3] lim ho [Ele

2
a

()]
or

lim; o0 hy [Ele?

iMoo ha[E]e2

a

(i)]]

7

(')]J

(29)

Pg
2

Jim Eleg(i)ea(i)] [lluill3] -
8)
Now, let¢ denote the EMSE, i.e.,

¢ = lim E[e?(i)]
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TABLE IV
EMSEFOR THE SIGN ALGORITHM FOR VARIOUS NOISE STATISTICS.

Noise EMSE
2 4 402
Gaussian (8, 26] | ¢ = W‘ a= u\/—g'ﬂ(R)
02
Binary [12] (=a%", a=yu gTr(R)
2
Uniform [12] ¢ = £ 39, Tr (R)
2 30,2
erf -
2¢

which, assuming the filter is mean-square stable, exists and i®) Sign Algorithm: We start from (31) again. With the aid of

finite. Then

Jim hg[Bl()] = halc) and lim ho[E[e3()]) = ho[d

Tables Il and 1ll, we see that

hold] _ [« V¢
fefd =37

1

(=Ltmr®)

(32)

and accordingly, (28) can be written more compactly, as shown

below.
Theorem 3 (Steady-State Performanc€onsider the same

It is worth noting in the sign algorithm case that assumption
AU is not needed. In other words, we only need the Gaussian

setting of Theorem 1. Then, assuming a mean-square staiggumption AG to establish (32). This was the same conclu-

filter with EMSE denoted by, the following equality holds:

hi[C]
halC]

12

lim E [eZ(i)eq(i)] 2

11— 00

E [||ui|3]

(30)

&

sion arrived at in [26], but the study there was limited to the
Gaussian noise case. Further progress is pending the evaluation

of E |e=v"()/2¢| which calls for specifying the noise statis-

e
tics. (Lur findings are summarized in the Table IV. In particular,
we arrive at the same EMSE expressions of [12] derived there

The above relation has been derived for general memoryleggler the independence assumption for iid input. In the second
error nonlinearities. We now show how it can be used to evaluditge of Table IV, the noise is assumed to be equatto, with
various steady-state quantities such as the excess mean-squrateability 1/2, whereas in the third line, the noise is assumed

error and the mean-square deviation.

A. Excess Mean-Square Error

To calculate the excess mean-square error, we employ (30)

with X set to the identity matrix
[”u“Q] hU[C] _ hU[C]
" held] hal¢]

or since¢ = lim;_,, E[e2(i)], we arrive at the following state-
ment.

I

2

_Ftg

lim B[e2(9)] = 4

12— 00

Tr (R)

Corollary 2 (EMSE): Consider the same setting of Theorem

1. Then, the EMSE is a positive solution of the equation

to be uniformly distributed inside the intervat(/30,,, v/30,).
The erf function is defined by

erf(x) = %/0 et dt.

3) Error-Saturation Algorithm: Consider the saturation
nonlinearity in Table I. The associated expectatibasandh
are relatively easy to establish in the Gaussian noise case (see
Tables Il and III)

hel(] =

Osat

VC+U127+Uzat

. (402
h _ 2 1 S v
ook (e,

)

which upon substitution in (31) yields the following relation for

L hy[(]
==Tr(R 31
(= 5T (3D)
iie., the EMSE is a fixed point of the functionthe EMSE:

(1/2)Tr (R) hu [C]/ha(C]- &

Relation (31) is a generalization of the results of [26] to gen-

eral error functiong. In the following, we show how (31) spe-
cializes for some nonlinearities.
1) LMS Algorithm: In the LMS case, (31) reads

(=TI (R) ((+02)
or, upon solving for, we obtain the well-known result [20]:

¢ = polTr(R)
- 2—uTr(R)

(+o?

M -1
=0t =1 (R _—r
T ®n (e

e )
C+ol+ ok

This is the same result arrived at in [10] under the independence
assumption for iid input.

In the general noise case, we have

ha[(] =

Osat
/ 2
C + Osat

which encompasses the binary noise case considered in[10] as a
special case. Evaluatirig; is more difficult; this was attempted

E [eﬂﬂ <i>/2(<+o’§at>} (33)
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in [10], and the argument led to a complicated expression ican be related to the EMSE by invoking the independence as-
volving double integrals and infinite limits. We arrive in the Ap-ssumption in the limit. More specifically, by combining (30) and

pendix at the expression (31), we obtain
. N E [||luill3]
holQ) = 2702, (1 2 dim B (e ()ea(i)] = ¢ iy
/ \/ 2 sin®( E[e—vz(i)/Z(afa+03atsin2(9))]> Assuming Al holds in the limit, we have
2
e\ o2+ o sin?(6) lim E [eZ(i)eq(i)] = lim E [[|W:]|2x]
(34) 1—00 1— 00
so that
by relying on a convenient expression for the error function in- 2
S ; . . 2 E [Ju]|]
troduced [40]. Upon substituting (33) and (34) into (31), we ob- lim F [”W’iHZR] =(- W (37)
tain el i

11 Since we are interested ifi||w;||?, we chooseX in (37) as
#E [ —v3(i )/2(<+”s1t):| — im0 Tr (R) <_ _ R~!, which leads us to the following conclusion.
C+ O 4 7 Corollary 3 (MSD): Consider the same setting of Theorem

1, and assume, in addition, that the sequemcés zero-mean

7T/2 Sln 2/, 2 2 . 9
at Ele— v (1)/2(a?  +02,sin”(8)) .. . X
/ \/02 n UsatSHlQ 0 e ] iid. Then, the MSD is given by

MSD = _Mc¢
which can be numerically solved fgr which is the EMSE. ~ Tr(R)
4) LMF Algorithm: For the LMF algorithm, and with the aid !
of Tables | and Il, (31) takes the form where( denotes the filter EMSE. ¢

Other steady-state measures can be similarly evaluated. Thus,

15¢3 + 4502¢2 + 15my 4C + My g for any symmetric matriA, we have

¢= (+o2

Tr(R) (35)

o=

lim E [||Ww;]|3] = MEMSE
wherem,, 4 andm, ¢ denote the fourth and sixth moments of e Bl
v(7). Finding the EMSE is thus equivalent to finding the roots
of a third-order equation, which can be done numerically. We V. SIMULATIONS
can avoid this in the Gaussian case and obtailosedformula
for the EMSE.

Gaussian Noise:In the Gaussian noise case, (35) simpli
fies to

Throughout this section, the system to be identified is an FIR
channel of length 16. The input(:) is generated by passing
an iid (uniform or Gaussian) proces§i) through a first-order
model

(c+o2)

(+ o2 r(R) = % (¢+ 03)2 u(i) = au(i — 1) + x(4). (38)

(= o
T2
By varying the value of, we obtain processes:) of different

wherea = 5,Tr (R). This is a quadratic equation fnwith two ~ €0l0rs. Here, we set = 0.3. The output is contaminated by an
positive roots iid (uniform or Gaussian) additive noise at an SNR level of 10

dB.
(1 - ao?) £ /1 - 2a02
= :

(= (36) A. Testing the Gaussianity ef (7)

We start by running a simulation to test the Gaussian assump-
Simulations show that only the smaller root is meaningful. tion AG one, (i) for the sign algorithm. We choose the sign al-

It appears that calculating the steady-state error for super n@gfithm because it was argued in [41] tha(i) can never be
linearities (e.g., the LMF algorithm, the LMF family, and the€Gaussian under the independence assumption. The signals in-
LMMN algorithm) has always involved some form of linearizavolved are chosen to be non-Gaussian. Thus, the input is gener-
tion (e.g., [5], [13], [26], [36], [38], [39]). The LMF derivation ated by (38), and the processeandv are both taken to be iid
above demonstrates how the EMSE can be obtained for suchugtiform.

gorithms without having to employ linearization arguments. ~ The Gaussian hypothesis is tested by running the adaptive al-
gorithm 1000 times and plotting the histogranegfi) at the eq-

B. Mean-Square Deviation uispaced instants= 0,200, ..., 1000. The histograms, which

are depicted in Fig. 1, suggest that the Gaussian assumption on
eq(7) is still a reasonable approximation for practical purposes.

. o The only exception is the histogram fey(0), which is almost
MSD = ili,IEOE||Wi|| uniformly distributed (as it should be sineg(0) is generated

The mean-square deviation (MSD), which is defined as
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i=400

L 1 I h 2 e
1000 2000 3000 4000 5000 6000 7000

-0.5 0 0.5 -0.5 0 0.5 -0.5 0 0.5 lterations
i=600 i=800 i=1000

Fig. 3. Theoretical and simulated learning curves for the LMF algorithm
Fig. 1. Histogram of, (7) for the sign algorithm at different time instants (Gaussian noise, Gaussian input witk= 0.1, = .0044, SNR= 10 dB).
(uniform noise, uniform input witle = 0.3, ¢ = 0.01, SNR= 10 dB).

— Simulation
Theory :

e

MSD (dB)

" .l‘ 1 1 1 1 1 1 1 1 1
200 200 600 800 1000 1200 1400 1600 1800 2000 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
step-size

lterations

Fig. 2. Theoretical and simulated learning curves for the sign algorithfrig. 4. Theoretical and simulated EMSE vergusfor the sign algorithm
(Gaussian noise, Gaussian input with= .1, ¢ = .01, SNR= 10 dB). (uniform noise, Gaussian input with= 0.3, SNR= 10 dB.).

by one data point for which the central limit theorem does n&MSE generated by simulation and that predicted by theory (see

apply). Table 1V).
The LMF is tested for correlated Gaussian input (with
B. Learning Curves a = 0.3) and Gaussian noise. Fig. 5 demonstrates the excellent

Next, we study the match between the theoretical (Theoréﬁgtch betvyee_n simulation and theoretical values [predicted by
2) and simulated learning curves. We test the match for the sigif)l- In this figure, we also plot the value of the steady-state
and LMF algorithms. In both cases, the input is assumed to $&Or s predicted by the expression in [26] for small and large
a Gaussian correlated process with= 0.3. As depicted in W_hi(_:h eventually employ some sort of linearization. The
Figs. 2 and 3, the experimental and theoretical learning cunrigdictions of (36) are more accurate.
agree very well. This agreement occurs despite the fact that large

values of the step size are used. VI]. CONCLUDING REMARKS
) In this paper, we employed energy-conservation arguments
C. Steady-State Behavior to study the transient performance of adaptive filters with error

Here, we simulate the steady-state behavior of the sign amzhlinearities. The arguments of this work, as well as in [25] and
LMF algorithms and compare the results to theory. We test tf26], demonstrate the convenience of working with the energy
sign algorithm for correlated uniform input (with= 0.3) and relation. In developing the energy relation, we basically push
uniform noise. Fig. 4 shows an excellent match between ttie algebraic operations to the limit before we undertake any
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Fig. 5. Theoretical and simulated EMSE vergudor the LMF algorithm
(Gaussian noise, Gaussian input witk= 0.3, SNR= 10 dB).
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