
A Forward-Backward Kalman for the Estimation of
Time-Variant Channels inOFDM

Tareq Y. Al-Naffouri Arogyswami Paulraj
Electrical Engineering Dept. Electrical Engineering Dept.

King Fahd University of Petroleum and Minerals Stanford University
Dhahran, Saudi Arabia USA

Abstract— OFDM combines the advantages of high achievable rates
and relatively easy implementation. However, for proper recovery of the
input, the OFDM receiver needs accurate channel information. In this
paper, we propose an expectation-maximization (EM) algorithm for joint
channel and data recovery. The algorithm makes use of the rich structure
of the underlying communication problem– a structure induced by the
data and channel constraints. These constraints include pilots, the cyclic
prefix, and the finite alphabet constraints on the data, and sparsity, finite
delay spread, and the statistical properties of the channel (frequency and
time correlation). The algorithm boils down to a forward-backward (FB)
Kalman filter. We also suggest a suboptimal modification that is able to
track the channel and recover the data with no latency.

I. I NTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is an effec-
tive technique for high bit-rate transmission. It has found widespread
applications and is already part of many standards. For proper oper-
ation of anOFDM system, the receiver needs an accurate estimate
of the channel state information. For rapidly time-variant channels,
the receiver faces the additional challenge of performing channel
(and data) recovery for eachOFDM symbol. In performing these
two operations, the receiver takes advantage of the rich structure of
the underlying communication problem. This structure can be either
traced back to some inherent constraints on the data or on the channel.
Table I lists the most common of these constraints and the works that
employed them.

TABLE I
Data and channel constraints used for channel estimation

CONSTRAINTS ASSUMPTIONS REFERENCE

Finite alphabet constraint [1]
Code [2]

Transmit precoding [2]–[5]

Data
Constraints

Pilots [6],[7]
Finite delay spread [2],[3],[6]

Sparsity [8]
Frequency correlation [2],[9],[10]

Channel
Constraints

Time correlation [11]–[13]

A. Approaches to channel estimation inOFDM

Several algorithms were suggested in literature for channel esti-
mation inOFDM transmission. Each of these algorithms makes use
of a subset of the constraints in Table I. These algorithms can be
classified into one of the following categories
1) Training-based estimation: Pilots are used to perform channel
estimation as in [6] and [7].
2) Blind estimation: At the other extreme, blind algorithms rely
completely on natural constraints underlying the communication
problem to perform recovery (as in [2]–[4]).
3) Semi-blind estimation: Semi-blind techniques are a hybrid of
blind and training based techniques, utilizing pilots and other natural
constraints to perform channel estimation (as in [2], [10]–[15]).

4) Data-aided channel estimation:The receiver uses the channel
estimate to detect the data, which in turn can be used to enhance the
channel estimate, giving rise to an iterative technique for channel and
data recovery [11], [12]. Other works, like [13], [16], and [17], arrived
at iterative techniques more rigorously by employing the expectation-
maximization (EM) algorithm. The data-aided approach seems the
most sensible for channel estimation as it is more general.

The afformentioned works utilizeonly a subsetof the constraints
on the channel and data. In this paper, however, we present a (data-
aided EM) method that can make use of all the constraints in
Table I1. The method boils down to a forward-backward (FB) Kalman
filter. One disadvantage of our approach is the storage and latency
requirements of theFB-Kalman as it has to process multipleOFDM
symbols simultaneously. We thus suggest a suboptimal forward-only
version (basically a Kalman filter) that is able to perform channel
recovery with no latency.

A remark about notation: We use bold face letters (e.g.,y) to
denote vectors and caligraphic notation to denote variables in the
frequency domain (e.g.,Y is theDFT of y).

II. SYSTEM MODEL

Consider a sequence ofT +1 data symbolsX T
0 to be transmitted.

In an OFDM system, each symbolX i ( length-N ) undergoes an
IDFT operation to produce the time domain symbol

xi =
√

NQ∗X i (1)

whereQ is the DFT matrix. The transmitter then appends a cyclic
prefix (CP) xi (of lengthP ) to xi, resulting finally in a sequence
of super-sybmolsxT

0 .

We assume that the channelhi (of maximum lengthP + 1)
remains fixed over any oneOFDM symbol (and associatedCP) and
varies from one symbol to the next according to a state-space model

hi+1 = Fhi + Gui h0 ∼ N (0,Π0) (2)

(In the Appendix, we show how we can construct such a model from
the Doppler frequency (time-correlation), the power-delay profile
(frequency-correlation), and the receive filter). At the channel output,
we obtain a sequence of time-domain super-symbolsyT

0 , which after
stripping the cyclic prefixy

i
, produces a sequence of time-domain

symbolsyT
0 . The input/output (I/O) relationship of theOFDM system

is best described in the frequency domain

Yi = diag(X i)Hi + N i (3)

= diag(X i)QP+1hi + N i (4)

1Due to space limitation, we don’t elaborate on how the algorithm makes
use of the code and sparsity. However, the algorithm can incorporate these
constraints in a straightforward manner [18].



The second line (4) follows from theDFT relationship

Hi = Q

[
hi

0

]
= QP+1hi (5)

whereQP+1 consists of the firstP +1 columns ofQ. Alternatively,
with

Xi
∆
= diag(X i)QP+1 (6)

we can write

Yi = Xihi + N i (7)

We can also construct a similarI/O relationship that incorporates (7)
as well as the effect of the cyclic prefix observation

Yi = Xihi + N i (8)

A. Pilot/output relationships

The receiver needs pilots to initialize channel estimation. Let the
index setIp = {i1, i2, . . . , iLp} denote the pilot locations within
the OFDM symbol. Also, let the notationXIp denote the matrixX
pruned of the rows that don’t belong toIp. Then, the pilot/output
equation can be derived from theI/O relationship (7) as

YiIp = XiIphi + N iIp (9)

III. T HE EM ALGORITHM FOR JOINT CHANNEL AND DATA

ESTIMATION

A. The EM algorithm

Ideally, we estimatehi using someI/O relationship, e.g. (7), by
maximizing the corresponding log-likelihood function

ĥ
MAP

i = max
hi

ln p(Yi|Xi, hi) + ln p(hi)

In our case, however, the inputX i (or Xi) 2 is not observable. Thus,
we use the expectation-maximization algorithm and maximize instead
an averaged form of the log-likelihood function. Specifically, starting

from an initial estimatêh
(0)

i , the estimatêhi is calculated iteratively,
with the estimate at thejth iteration given by

ĥ
(j)

i = arg max
hi

E
Xi|Yi,ĥ

(j−1)
i

ln p(Yi|Xi, hi) + ln p(hi)

For example, when the channel obeys theI/O relationship (7) andhi

is N (0,Π), the EM-based estimate (at thejth iteration) is given by

ĥ
(j)

i = arg min
hi

‖Yi − E[Xi]hi‖2σ−2
n

+ ‖hi‖2Cov[X∗
i ]

+ ‖hi‖2Π−1

where the two moments ofXi are taken given the outputYi and
the most recent channel estimateh

(j−1)
i . We now derive theEM

algorithm for the time-variant case.

B. TheEM-based forward-backward Kalman

Consider theOFDM system of section 2, essentially described by
the state-space model

hi+1 = Fhi + Gui (10)

Yi = Xihi + N i (11)

with h0 ∼ N (0,Π0) and ui ∼ N (0, σ2
uI). Given a sequence of

T + 1 input and output symbolsXT
0 andYT

0 , we obtain theMAP

2SinceXi = diag(X i)QP+1, conditioning onX i can be replaced by
conditioning onXi.

estimate of the channel sequencehT
0 by the maximizing the log-

likelihood

L = ln p(YT
0 |XT

0 , hT
0 ) + ln p(hT

0 )

Now, using (11), we can express the first term of the log-likelihood
(up to some additive constants) as

ln p(YT
0 |X T

0 , hT
0 ) =

T∑
i=0

ln p(Yi|X i, hi)

= −
T∑

i=0

‖Yi −Xihi‖21
σ2

n

Similarly, using (10), we can express the second term (again up to
some additive constants) as

ln p(hT
0 ) =

T∑
i=0

ln p(hi|hi−1) + ln p(h0) (12)

= −
T∑

k=1

‖hk − Fhk−1‖21
σ2

u
GG∗ − ‖h0‖2Π−1

0
(13)

Combining these two expressions yields

L = −
T∑

i=0

‖Yi −Xihi‖21
σ2

n

−
T∑

i=1

‖hi − Fhi−1‖21
σ2

u
GG∗ − ‖h0‖2Π−1

0
(14)

Since the channel sequencehT
0 is jointly Gaussian, theMAP estimate

of the channel sequence given the input and output sequencesXT
0

andYT
0 is the same as theMMSE estimate given the same sequences.

The MMSE estimate itself is obtained by theFB Kalman filter. This
allows us to state the following theorem

Theorem 1:Channel estimation–Known input caseConsider the
state-space model (10)–(11). Given the input and output sequences
XT

0 andYT
0 , the MAP (or equivalentlyMMSE) estimate ofhT

0 is
obtained by applying the following (forward-backward Kalman) filter
to the state-space model (10)–(11)
Forward run: For i = 1, . . . , T, calculate

Re,i = σ2
nIN+P + XiP i|i−1X

∗
i P 0|−1 = Π0 (15)

Kf,i = P i|i−1X
∗
i R−1

e,i (16)

ĥi|i = (IN+P −Kf,iXi) ĥi|i−1 + Kf,iYi, (17)

ĥi+1|i = F ĥi|i, h0|−1 = 0 (18)

P i+1|i = F i

(
P i|i−1 −Kf,iRe,iK

∗
f,i

)
F ∗ +

1

σ2
n

GG∗(19)

Backward run: Starting fromλT+1|T = 0 and for i = T, T −
1, . . . , 0, calculate

λi|T =
(
IP+N −X∗

i K∗
f,i

)
F ∗i λi+1|T + XiR

−1
e,i

(
Yi −Xiĥi|i−1

)
(20)

ĥi|T = ĥi|i−1 + P i|i−1λi|T (21)

The desired estimate iŝhi|T . For a proof, see problem 10.9 in [19].

This theorem allows us to obtain the estimate ofhT
0 when the input

sequenceXT
0 is not available. For in this case, we maximize the

log-likelihood (14)averagedover the sequenceXT
0 . Thus, thej-th

iteration of theEM algorithm is now obtained by maximizing the
averaged log-likelihood

L = EXT
0 |hT

0 ,YT
0
L (22)



By inspecting (14), we note that the only term that is modified under
expectation is the first summand, and its expectation is given by

E ‖Yi −Xihi‖2 1
2σ2

n

= ‖Yi − E [Xi] hi‖2 1
2σ2

n

+ ‖hi‖2 1
2σ2

n
Cov[X∗i ]

=

∥∥∥∥
[ Yi

0P×1

]
−

[
E[Xi]

Cov[X∗
i ]

1/2

]
hi

∥∥∥∥
2

1
2σ2

n

where the expectations are taken given the previous estimateĥ
(j−1)

0

and the output symbolsYT
0 . We thus have

L = −
T∑

i=0

∥∥∥∥
[ Yi

0P×1

]
−

[
E[Xi]

Cov[X∗
i ]

1/2

]
hi

∥∥∥∥
2

1
2σ2

n

−

T∑
i=1

‖hi − Fhi−1‖21
σ2

u
GG∗ − ‖h0‖2Π−1

0
(23)

Note that we can obtain the averaged likelihood (23) from the original
likelihood (14) by performing the substitution

Xi −→
[

E[Xi]

Cov[X∗
i ]

1/2

]
Yi −→

[ Yi

0P×1

]

We can thus state the following theorem
Theorem 2:Channel estimation–Unknown input caseConsider

the state-space model (10)–(11) and assume that the receiver does
not have access to the transmitted dataXT

0 . The channel estimate at
the jth iterationhT

0

(j)
of the EM algorithm is obtained by applying

the forward-backward Kalman (15)–(21) to the following state-space
model

hi+1 = Fhi + Gui (24)[ Yi

0P×1

]
=

[
E[Xi]

Cov[X∗
i ]

1/2

]
hi +

[ N i

ni

]
(25)

whereni is virtual noise that is independent of the physical noise
N i.

To fully implement theEM algorithm, we need to initialize the
algorithm and calculate the first and second moments of the input,
which we do next.

C. Calculating the input moments

Using the relationshipX i = diag(X i)QP+1, we can write

E[Xi] = diag(E[X i])QP+1 (26)

Cov[X∗
i ] = Q∗

P+1Cov[X ∗
i ]QP+1 (27)

Now we can calculated the mean and covariance ofX i by calculating
the first two moments of the individual elementsXi(l) l = 1, · · ·N
since these elements are independent. Assuming thatXi(l) takes
its values from the alphabetA =

{
A1, . . . , A|A|

}
with equal

probability, we can show that

E[Xi(l)|Yi(l)] =

∑j=|A|
j=1 Aje

− |Yi(l)−H(l)Aj |2
σ2

n

∑|A|
j=1 e

− |Yi(l)−H(l)Aj |2
σ2

n

(28)

E[|Xi(l)|2|Yi(l)] =

∑j=|A|
j=1 |Aj |2e−

|Yi(l)−H(l)Aj |2
σ2

n

∑|A|
j=1 e

− |Yi(l)−H(l)Aj |2
σ2

n

(29)

D. Initial channel estimation

We can obtain the initial channel estimate from the pilot/output
equation (9). We do this by applying theFB Kalman to the state-
space model

hi+1 = Fhi + Gui (30)

YiIp = XiIphi + N iIp (31)

i.e., by applying theFB Kalman (15)–(21) with the substitutions

Xi −→ XiIp , Yi −→ YiIp

E. Summary of theEM-basedFB Kalman

In the following, we summarize theFB Kalman for channel and
data recovery

1) Obtain the initial channel estimatehT
0

(0)
by applying theFB

Kalman filter (15)–(21) to the state-space model (30)–(31)
2) Iterate between the expectation and maximization steps forj =

1, . . . , Niter :

a) Expectation: Compute the first two moments of the input
XT

0 given the outputYT
0 and the previous estimate of the

channel,hT
0

(j−1)
, using (6), and (28)– (29).

b) Maximization: Obtain the channel estimatehT
0

(j)
by

employing theFB Kalman (15)–(21) to the state-space
model (24)–(25).

The algorithm can be stopped when the difference between two con-
secutive estimates‖hT

0

(j) − hT
0

(j−1)‖2 is below a certain threshold
or when the maximum number of iterationsNiter is reached

IV. T WO EXTENSIONS

A. Kalman- (forward-only) based estimation

One disadvantage of theFB Kalman is the storage and latency
involved. The algorithm needs to wait for allT +1 symbols before it
can execute the backward run and hence obtain the channel estimate.
One way around this is to reduce the window sizeT. Alternatively,
we can run the filter in the forward direction only (i.e., run (15)–(19))
for both the initial estimation and theEM iteration. The algorithm
then collapses to the Kalman-based filter proposed in [20] where the
data and channel are recovered within oneOFDM symbol.

B. Using the cyclic prefix observation

The FB Kalman can also make use of theCP observation. Here
pilot-based estimation remains the same while theEM algorithm is
run on theI/O equation (8) which contains the effect of the cyclic
prefix. Thus, in this case, we apply theFB Kalman (15)–(21) to the
state-space model

hi+1 = Fhi + Gui (32)[ Yi

0P×1

]
=

[
E[Xi]

Cov[X
∗
i ]

1/2

]
hi +

[ N i

ni

]
(33)

The two moments ofXi can be obtained from (28)–(29) but the
calculations become more cumbersome due to the presence of the
CP (see [18]).

V. SIMULATIONS

We consider anOFDM system that transmits a sequence of 5
symbols each with 64 carriers and a cyclic prefix of lengthP = 15.
The input data is 16QAM mapped from a binary bit stream through
gray coding. We will use two pilot configurations. The first employs
16 pilots in the first symbol andx number of them in the subsequent
four symbols withx = 4, 8, 12, 16. We denote this configuration



by 16xxxx. The second configuration, denotedxx16xx, is a cyclic
rearrangement of the first with the 16 pilots in the middle (3rd)
symbol andx pilots in the other symbols.

The channelIR consists of 16 complex taps (the maximum
length possible). The initialIR h0 has an exponential delay profile
E[|h0(k)|2] = e−0.2k. For i > 0, hi is generated according to the
dynamical modelhi+1 = Fhi + Gui. Both F andG are diagonal
matrices. Specifically, we setF = fI with 0 < f < 1 and set
the diagonal entries ofG as G(k, k) =

√
(1− f2)E[|h0(k)|2].

Throughout the simulations, we run the EM algorithm for 10 iter-
ations.

A. Comparing the Kalman and the forward-backward Kalman

In Figure 1 we compare the performance of the Kalman receiver
employing the16xxxx pilot configuration with that of theFB-
Kalman receiver employing thexx16xx configuration3. We carry
out this comparison for different levels of time variations (f =
.1, .3, .5, .7, .9.) We note that theBER curves are quite comparable
for the extreme cases of time variation (low and high values of
f ). However, for moderate levels of variation (f = .7), the FB-
Kalman consistently outperforms the the forward Kalman. This is
not unexpected for when the variation is too slow, the two filters are
equally able to track the channel with only a few pilots. When the
time variation is too high, time correlation information becomes of
little use. It is only at a moderate level of time-variations that the
additional signal processing of theFB-Kalman becomes valuable.
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Fig. 1. Comparing the Kalman andFB-Kalman for various levels of
time-variation (Solid and dotted lines are for the Kalman receiver).

B. Effect of increased signal processing

We next consider the effect of increased signal processing on
the BER curves for theFB-Kalman receiver4. Specifically, we
implement this receiver using 1) the CP observation and the soft
estimate of the input, 2) the CP and the hard estimate of the
input, and 3) no CP observation and the hard estimate of the input.

3Both simulation and intuition suggest that the Kalman performs betters
with the 16xxxx configuration while FB Kalman does better with the
xx16xx configuration.

4We omit the corresponding simulations for the Kalman filter due to the
lack of space.

Figure 2 shows that increasing the level of signal processing pays off
producing better BER performance. This applies for different number
of pilots and different degrees of time variation.
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Fig. 2. The FB-Kalman based receiver demonstrates improved BER with
increasing levels of signal processing

C. Bench marking

Finally, we bench mark theBER performance of the Kalman
andFB-Kalman receivers against receivers that have been suggested
in literature and also against the known-channel case. Specifically,
Figure 3 compares theBER performance of the following five
receivers: 1)EM-based least-squares (LS) receiver (i.e. a receiver
employing frequency correlation only), 2) theEM-based receiver
proposed by Lu, Wang, and Li in [13]5, 3) the EM-based Kalman
receiver 4)EM-basedFB-Kalman receiver, and 5) a receiver with
perfect channel knowledge. All receivers implement the16xxxx pilot
configuration except theFB Kalman which implements thexx16xx
configuration and the receiver with perfect channel knowledge which
uses no pilots. We test these receivers against thef = .7 case.

Figure 3 demonstrates that the Kalman andFB-Kalman outperform
the LS receiver and the receiver of [13], especially for low number
of pilots. Moreover, for this case of moderate time variation, the FB-
Kalman consistently outperforms the Kalman receiver.

VI. CONCLUSION

In this paper, we considered the problem of semi-blind channel
and data recovery inOFDM transmission over time-variant channels.
Motivated by theEM approach, the algorithm boils down to aFB
Kalman filter. It makes a collective use of the channel and data
constraints in Table I. Specifically, the algorithm makes use of the
finite alphabet constraints (in (28–(29)), the data in its soft form
(in (24)–(25)), pilots (in (30)–(31)), transmission precoding (in (32)–
(33)), finite-delay spread (in that channel estimation is done in the
time domain), and frequency- and time-correlation (in (2)). It is also
straightforward to incorporate the effect of an outer code and sparsity
(see [18]). We also suggested a relaxed version of the algorithm that
is able to perform recovery with no latency and hence avoid the

5This receiver is similar to our Kalman-based (forward-only) receiver in
that it makes use of the time and frequency correlation.
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Fig. 3. Comparing theBER curves for various receivers.

delay and storage shortcomings of theFB-Kalman. Our simulation
show the favorable behavior of the two Kalman filters. Specifically,
simulations show that increased signal processing always results in
betterBER behavior.

VII. A PPENDIX: CHANNEL MODEL

The channelhi is the convolution of the physical channelci (which
consists ofL + 1 paths arriving at instantsτ0, τ1 . . . , τL) and the
receive filterr. Thus, we can write

hi = Rici (34)

whereRi is the receive filter matrix given by

Ri =




r(−τ0) r(−τ1) · · · r(−τL)
r(T − τ0) r(T − τ1) · · · r(T − τL)
...

...
...

...
r(PT − τ0) r(PT − τ2) · · · r(PT − τL)




Due to the mobile nature of the channel, the physical channel taps
ci(k) are time-variant. According to theWSSUS model, the process
ci(k) is zero-mean wide-sense stationary complex Gaussian process
with autocorrelation

E
[
ci(k)ci′(k

′)
]

= J0

(
αk|i− i′|) δkk′ αk = 2πfc(k)(N + P )T

whereT is the sampling (baud) rate,fc(k) is the Doppler frequency
associated with thekth tap, andJ0 denotes the zero-order Bessel
function of the first kind. We can approximate the time-variant
behavior of the tapci(k) by a first-orderAR model (see [11], [12])

ci+1(k) = J0 (αk) ci(k) +
√

(1− J 2
0 (αk))E[|c0(k)|2]ui(k) (35)

The factor
√

(1− J 2
0 (αk))E[|c0(k)|2] ensures that the tapci(k)

maintains the same power profile for all time. Collecting (35) for all
taps yields

ci+1 = F cci + Gcui (36)

where F c = diag
( J0(α1), · · · , J0(αL+1)

)
and Gc =

diag (
√

(1 − J2
0 (α1))E[|ci(1)|2], ...,

√
(1 − J2

0 (αL+1))E[|ci(L + 1)|2] ). We
can use this dynamical relationship along with (34) to derive a
dynamical relationship for the impulse responseh. Specifically,

multiplying both sides of (36) byR and noting thatR†R = I 6, we
obtainhi+1 = Fhi + Gui whereF = RF cR

† and G = RGc.
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