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Abstract—OFDM combines the advantages of high achievable rates 4) Data-aided channel estimation:The receiver uses the channel
and relatively easy implementation. However, for proper recovery of the estimate to detect the data, which in turn can be used to enhance the
input, the OFDM receiver needs accurate channel information. In this  p40ne| estimate, giving rise to an iterative technique for channel and
paper, we propose an expectation-maximizationEM) algorithm for joint . .
channel and data recovery. The algorithm makes use of the rich structure da.ta recovery [1]_-]1 (12]. Other works, like [13], [16_]1 and [17], amV?d
of the underlying communication problem— a structure induced by the at iterative techniques more rigorously by employing the expectation-
data and channel constraints. These constraints include pilots, the cyclic maximization EM) algorithm. The data-aided approach seems the
prefix, and the finite alphabet constraints on the data, and sparsity, finite ,ost sensible for channel estimation as it is more general.

delay spread, and the statistical properties of the channel (frequency and . - .
time correlation). The algorithm boils down to a forward-backward (FB) The afformentioned works utilizenly a subsedf the constraints

Kalman filter. We also suggest a suboptimal modification that is able to 0N the channel and data. In this paper, however, we present a (data-
track the channel and recover the data with no latency. aided EM) method that can make use of all the constraints in
I. INTRODUCTION Table . The method boils down to a forward-backwaFBj Kalman
L . . . filter. One disadvantage of our approach is the storage and latenc
Orthogonal frequency division multiplexingEDM) is an effec- . g P 9 y
. X . . L ) r%quwements of th&B-Kalman as it has to process multigE-DM
tive technique for high bit-rate transmission. It has found widesprea . :
L . séymbols simultaneously. We thus suggest a suboptimal forward-only
applications and is already part of many standards. For proper oper- . . ) ;
. . . “'Version (basically a Kalman filter) that is able to perform channel
ation of anOFDM system, the receiver needs an accurate estimate .
. . ) . : ecovery with no latency.
of the channel state information. For rapidly time-variant channel'é, S
. " . remark about notation: We use bold face letters (e.qy) to
the receiver faces the additional challenge of performing channde : . . - :
. enote vectors and caligraphic notation to denote variables in the
(and data) recovery for eac®FDM symbol. In performing these frequency domain (e.g is the DFT of 1)
two operations, the receiver takes advantage of the rich structure St y 9 Y
the underlying communication problem. This structure can be either
traced back to some inherent constraints on the data or on the channel.
Table | lists the most common of these constraints and the works thaonsider a sequence @f+ 1 data symbolsY'{ to be transmitted.
employed them. In an OFDM system, each symbaoX; ( length4V) undergoes an

IDFT operation to produce the time domain symbol

Il. SYSTEM MODEL

TABLE |
Data and channel constraints used for channel estimation T; = \/NQ*Xi Q)
[ CONSTRAINTS || A_S_SUMPT'ONS : | REFERENCE | where Q is the DFT matrix. The transmitter then appends a cyclic
Data Finite alphabet constraint | [1] prefix (CP) z, (of length P) to x;, resulting finally in a sequence
Constraints Cnge _ . [g] . of super-sybmolse? .
Transmit precoding (21-5] We assume that the channgél, (of maximum lengthP + 1)
Pilots [6].[7] - v .
— remains fixed over any on®@FDM symbol (and associatedP) and
Channel Finite delay spread [2],[3],[6] ies f bol to th " ding t tat del
Constraints Sparsity ] varies from one symbol to the next according to a state-space mode
Frequency correlation [2],[9],[10] - ) -
Time correlation [11]-[13] hiyy = Fhi+ Gui by~ N(0,Th) )

(In the Appendix, we show how we can construct such a model from

the Doppler frequency (time-correlation), the power-delay profile
Several algorithms were suggested in literature for channel egfrequency-correlation), and the receive filter). At the channel output,

mation in OFDM transmission. Each of these algorithms makes Usge obtain a sequence of time-domain super-symp@lswhich after

of a subset of the constraints in Table |. These algorithms can gﬂpp"]g the Cyc”c prefixyi’ produces a sequence Of time_domain

classified into one of the following categories symbolsy?. The input/output(O) relationship of th@OFDM system
1) Training-based estimation: Pilots are used to perform channelg past described in the frequency domain

estimation as in [6] and [7].

2) Blind estimation: At the other extreme, blind algorithms rely Y: = diag(X)H: + N 3)
completely on natural constraints underlying the communication diag(X:)Q py h; + N 4)
problem to perform recovery (as in [2]-[4]). e

3) Semi-blind estimation: Semi-blind techniques are a hybrid of 1Due to space limitation, we don't elaborate on how the algorithm makes

blind and training based techniques, utilizing pilots and other natuf@le of the code and sparsity. However, the algorithm can incorporate these
constraints to perform channel estimation (as in [2], [10]-[15]). constraints in a straightforward manner [18].

A. Approaches to channel estimation@FDM



The second line (4) follows from thBFT relationship estimate of the channel sequenkg by the maximizing the log-

h. likelihood
Hi=Q { 0 } =Qpiih; ©) L=p(Y5|Xs.hy)+Inp(hd)
whereQp, , consists of the firsP + 1 columns ofQ. Alternatively, Now, using (11), we can express the first term of the log-likelihood
with (up to some additive constants) as
X 2 diag(X)Qp,, (6)

T
Zhlp(yi\xmﬂi)

1=0

T
> Y- Xibz‘HZJT
i=0 7

Inp(Y§ | X5, h)

we can write

Yi=Xih; +N; 7

We can also construct a simild© relationship that incorporates (7)

as well as the effect of the cyclic prefix observation Similarly, using (10), we can express the second term (again up to

V. =X:h, +N; (8) some additive constants) as
A. Pilot/output relationships T
Inphl) = Inp(h,|h; ,)+Inp(h 12
The receiver needs pilots to initialize channel estimation. Let the p(o) ; Pl ) + Inp(ho) (12)

index setl, = {i1,%2,...,4r,} denote the pilot locations within
the OFDM symbol. Also, let the notatioX ;, denote the matrixX
pruned of the rows that don't belong % . Then, the pilot/output
equation can be derived from th®© relationship (7) as

T
=2 Iy = Fhy 1% g = lIBollf 1 (13)
k=1 Tu

Combining these two expressions yields

Vi, = Xir,h, + Ny, ) - -
I1l. THE EM ALGORITHM FORJOINT CHANNEL AND DATA L==|¥:- Xz'billi2 => |k, — th‘leQ%GGf‘ - Hbo\l?lgl (14)
ESTIMATION i=0 =t o
A. The EM algorithm Since the channel sequenkg is jointly Gaussian, th&IAP estimate
deally, we estimatéz, using somel/O relationship, e.g. (7), by ©Of the channel sequence given the input and output sequeXiges
maximizing the corresponding log-likelihood function andy{ is the same as thdMSE estimate given the same sequences.
VAP The MMSE estimate itself is obtained by tHeB Kalman filter. This
h;" =max Inp(Y;| X4, h;) +1Inp(h,) allows us to state the following theorem

Theorem 1:Channel estimation—Known input caseConsider the
In our case, however, the inpat; (or X ;) 2 is not observable. Thus, state-space model (10)—(11). Given the input and output sequences
we use the expectation-maximization algorithm and maximize insteaf; and Y%, the MAP (or equivalentlyMMSE) estimate ofh! is
an averaged form of the log-likelihood function. Specifically, startingbtained by applying the following (forward-backward Kalman) filter

from an initial estimatés. ", the estimatéh, is calculated iteratively, t0 the state-space model (10)—(11)

with the estimate at thgth iteration given by Forward run: Fori=1,...,T, calculate
b = arg max By, qo-0 mp(Yil X, hy) + Inp(h;) Rei = onInep+XiPyi X, P =1 (15)
) Kji = Py XR; (16)
For example, when the channel obeys i@ relationship (7) and, - _ v _
is V(0, II), the EM-based estimate (at thith iteration) is given by X by, = (If’“’ — KX by + Kpad, 17)
~(4) ﬁiﬂ\i = Fﬁi\iv QO\—l =0 (18)

by = argmin |¥; — B[Xih |2 > + R l1E xRl N B
By " covit ] Py = Fi(Pyy— KR Kj) F' + —GG'(19)

where the two moments oX; are taken given the outpQy; and
the most recent channel estimdﬁ’l). We now derive theEM  Backward run: Starting fromAp . = 0 and fori = 7,1 —

algorithm for the time-variant case. 1,...,0, calculate
B. TheEM-based forward-backward Kalman Xt = (IP+N - X;‘K}yi) FiXqr+ XZ-R;} (yi - Xzﬁmﬂ@)
Consider theOFDM system of section 2, essentially described b, . = h;_; + Pyi—1 i (21)

the state-space model

The desired estimate is, .. For a proof, see problem 10.9 in [19].

h; .y = Fh;+Gu; (10) . T . P " P . 19]
This theorem allows us to obtain the estimatehdf when the input

Yi = Xih; +Ni (11) sequenceXg is not available. For in this case, we maximize the

with hy ~ N'(0,TI) andu; ~ A'(0,02I). Given a sequence of !og-llkellhood (14)averaged0v§r the sequgncXO. Thug, thgj-th

T 41 input and output symbolX? and Y7, we obtain theMAP iteration of tthM algorithm is now obtained by maximizing the
averaged log-likelihood

2Since X; = diag(X;)Qp 1, conditioning onX’; can be replaced by _
conditioning onX;. L= EXOT |Eg“‘yg“£ (22)



By inspecting (14), we note that the only term that is modified undé@. Initial channel estimation

expectation is the first summand, and its expectation is given by e can obtain the initial channel estimate from the pilot/output
equation (9). We do this by applying tHeB Kalman to the state-
E|Yi= Xih|?y, = |1V~ E[Ximiuzl g ©) y applying

X /1 space model
‘H 0Px1 } [ Cov[X1]V/? }bi

where the expectations are taken given the previous estﬁféfel)
and the output symbolZ. We thus have X — Xir,, Yi— y“p

2
h,,, = Fh,+Gu; (30)

a3 YVir, = Xinh; +Nip, (31)

n

i.e., by applying theFB Kalman (15)—(21) with the substitutions

T E[X ] 2 E. Summary of th&M-basedFB Kalman
Z { Opxl } { Cov[X }1/2 } h, e N In the following, we summarize thEB Kalman for channel and
207 data recovery

1) Obtain the initial channel estimaileg(0> by applying theFB
Kalman filter (15)—(21) to the state-space model (30)—(31)

) o ~2) lterate between the expectation and maximization steps for
Note that we can obtain the averaged likelihood (23) from the original = | n, .

likelihood (14) by performing the substitution

T
2 i = Fhi I go- — ol (23)

a) Expectation Compute the first two moments of the input
X E[X ] v, V; X7 given the cngjtpuDIO and the previous estimate of the

‘ Cov[X {]'/? : channel A7V ™" using (6), and (28)- (29). ‘
b) Maximization: Obtain the channel estimatgoT(J) by

We can thus state the f°”9W'”_9 theorem . ) employing theFB Kalman (15)—(21) to the state-space
Theorem 2:Channel estimation—Unknown input caseConsider model (24)—(25).

the state-space model (10)—(11) and assume that the receiver dﬂ1 loorithm can be st d when the difference between t N
not have access to the transmitted dA&t4. The channel estimate at | "¢ &90thm ca g(f)oppeT(]wlga 9 € difierence between two con-
secutive estimategh,, h, ||* is below a certain threshold

the jth |terat|onhT @) of the EM algorithm is obtained by applying h h ! b fi : . hed
the forward- backward Kalman (15)—(21) to the following state- spa@é when the maximum number of iterationé.. is reache

Opx1

model IV. TWO EXTENSIONS
h,., = Fh,+Gu, (24) A. Kalman- (forward-only) based estimation
¥, E[X] N One disadvantage of theB Kalman is the storage and latency
{ 0P>Z<1 } = { Cov[X }1/2 } h; + { } } (25) involved. The algorithm needs to wait for &ll4- 1 symbols before it

can execute the backward run and hence obtain the channel estimate.
wheren; is virtual noise that is independent of the physical nois@ne way around this is to reduce the window siZeAlternatively,

Ni. we can run the filter in the forward direction only (i.e., run (15)—(19))
To fully implement theEM algorithm, we need to initialize the for both the initial estimation and thEM iteration. The algorithm
algorithm and calculate the first and second moments of the inptiien collapses to the Kalman-based filter proposed in [20] where the
which we do next. data and channel are recovered within @€DM symbol.

B. Using the cyclic prefix observation

The FB Kalman can also make use of tléP observation. Here
pilot-based estimation remains the same while Edé algorithm is
E[X;] = diag(E[X.])Qp., (26) funon theI/Q eqaation (8) which contains the effect of the cyclic
prefix. Thus, in this case, we apply th® Kalman (15)—(21) to the

C. Calculating the input moments

Using the relationshigt’; = diag(X:)Qp,,, we can write

Cov[Xi] = QpyCovlXi]Qpy 27) state-space model
Now_we can calculated the mean and covarianc& pby calculating h,, = Fh,+Gu, (32)
the first two moments of the individual elemems(l) [ =1, --- N - —
since these elements are independent. Assuming Ah@l takes { Vi } = { E[if,f']lm }Qﬁ_ { Ni } (33)
its values from the alphabeft = {Ai,..., A4} with equal 0px1 Cov[X;] n;
probability, we can show that The two moments ofX; can be obtained from (28)—(29) but the
Vi)MW A, 12 calculations become more cumbersome due to the presence of the
S A A CP (see [18]).
EX,(0)|Vi(1)] = =2 —— (28)
|A‘ # V. SIMULATIONS
Z We consider anOFDM system that transmits a sequence of 5
) symbols each with 64 carriers and a cyclic prefix of lenfth= 15.
S=lal |4 v|26_% The input data is 1QAM mapped from a binary bit stream through
EX:OP V() = =222 J . (29) 9ray coding. We will use two pilot configurations. The first employs
Y =H@D A

‘A‘ = 16 pilots in the first symbol and number of them in the subsequent
Z " four symbols withz = 4,8,12,16. We denote this configuration



by 16zxxx. The second configuration, denoted16xx, is a cyclic Figure 2 shows that increasing the level of signal processing pays off
rearrangement of the first with the 16 pilots in the middle (3rd)roducing better BER performance. This applies for different number

symbol andz pilots in the other symbols. of pilots and different degrees of time variation.

The channellR consists of 16 complex taps (the maximum
length possible). The initialR h, has an exponential delay profile (@) f=.9; 2 pilots (b) f=.7; 4 pilots
E[|hy(k)]?] = e °2*. Fori > 0, h; is generated according to the 1™} v
dynamical modeh,,, = Fh, + Gu;. Both F and G are diagonal . AN Wt
matrices. Specifically, we sef' = fI with 0 < f < 1 and set AN AN
the diagonal entries oG as G(k,k) = /(1 — f)E[hy®)[?]. " o Pe s NANEN
Throughout the simulations, we run the EM algorithm for 10 iter- *° \\\\\ N \\ s
ations. R BN GSEN

10 -3, 10

A. Comparing the Kalman and the forward-backward Kalman 5 10 15 20 25 5 10 15 20 25

In Figure 1 we compare the performance of the Kalman receiver (©) = 5: 8 pilots , (d) f=3; 12 pilots
employing thel6zzzx pilot configuration with that of theFB- J 10 — — nocplhard
Kalman receiver employing thexz16z2 configuration®. We carry 0 \\\ chisat
out this comparison for different levels of time variationf & 1072 AN
.1,.3,.5,.7,.9.) We note that théBER curves are quite comparabler, ‘\\\ R Paot ~_
for the extreme cases of time variation (low and high values ofio™ NN B S -
f). However, for moderate levels of variatiorf (= .7), the FB- SN o
Kalman consistently outperforms the the forward Kalman. This is vl -
not unexpected for when the variation is too slow, the two filters are 5 10 E:ﬁ“ 20 25 5 10 E:ﬁq 20 25

equally able to track the channel with only a few pilots. When the
time variation is too high, time correlation information becomes dfig 2. The FB-Kalman based receiver demonstrates improved BER with
little use. It is only at a moderate level of time-variations that thmcreasing levels of signal processing

additional signal processing of tHeB-Kalman becomes valuable.

4 pilot: b) 8 pilot: .
10 (@4 plots 10 (©)8 plots C. Bench marking

Finally, we bench mark thd8ER performance of the Kalman
S0bnnpann ] —,x X @A%Q%MAMA&A@é and FB-Kalman receivers against receivers that have been suggested
P, ﬁgﬁﬁwﬁﬁﬁfﬁ P, Sgieayo0nn0nl in literature and also against the known-channel case. Specifically,
102 Oooo;OOoOO 102 m Figure 3 compares th&ER performance of the following five
o © receivers: 1)EM-based least-squarekS) receiver (i.e. a receiver
employing frequency correlation only), 2) tHeM-based receiver
proposed by Lu, Wang, and Li in [13] 3) the EM-based Kalman
receiver 4)EM-basedFB-Kalman receiver, and 5) a receiver with
perfect channel knowledge. All receivers implementthexzxzx pilot
configuration except thEB Kalman which implements thex16zx
configuration and the receiver with perfect channel knowledge which
uses no pilots. We test these receivers againsiftee.7 case.
Figure 3 demonstrates that the Kalman &fiKalman outperform
the LS receiver and the receiver of [13], especially for low number
of pilots. Moreover, for this case of moderate time variation, the FB-

5 o2 25 5 o l8 2 25 Kalman consistently outperforms the Kalman receiver.
b o
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(c) 12 pilots (d) 16 pilots

W
LNLw

. . VI. CONCLUSION
Fig. 1. Comparing the Kalman anBB-Kalman for various levels of

time-variation (Solid and dotted lines are for the Kalman receiver). In this paper, we considered the problem of semi-blind channel
and data recovery i©OFDM transmission over time-variant channels.
Motivated by theEM approach, the algorithm boils down toRB

B. Effect of increased signal processing Kalman filter. It makes a collective use of the channel and data

. . . . nstraints in Table I. ifically, the algorithm mak f th
We next consider the effect of increased signal processing C%. straints able 1. Specifically, the algorit akes use of the

the BER curves for theFB-Kalman receiver’. Specifically, we inite alphabet constraints (in (28—(29)), the data in its soft form

. . . . . in (24)—(25)), pilots (in (30)—(31)), transmission precoding (in (32)—
implement this receiver using 1) the CP observation and the s g%( ). ( ). P (in ( ) (31) N precoc g (_ )

. i . ), finite-delay spread (in that channel estimation is done in the
estimate of the input, 2) the CP and the hard estimate of the . : . . .
. . . . _time domain), and frequency- and time-correlation (in (2)). It is also
input, and 3) no CP observation and the hard estimate of the |np|{t. . . )

straightforward to incorporate the effect of an outer code and sparsity

3Both simulation and intuition suggest that the Kalman performs bette_§§ee [18]). We also suggested a relaxed version of the algor'thm that
with the 16zzzz configuration whileFB Kalman does better with the is able to perform recovery with no latency and hence avoid the
zx16zx configuration.

4We omit the corresponding simulations for the Kalman filter due to the 5This receiver is similar to our Kalman-based (forward-only) receiver in
lack of space. that it makes use of the time and frequency correlation.



(a) 6 pilots

10 10 ®)8 plots multiplying both sides of (36) byR and noting thatR' R = I °, we
obtainh, , = Fh, + Gu; whereF = RF.R' and G = RG..

Acknowledgement

The authors would like to acknowledge King Fahd University of
Petroleum and Minerals, Saudi Arabia, supporting this work.

REFERENCES

5 10 15 20 25 5 10 15 20 25

[1] Z. Shengli and G. B. Giannakis, “Finite-alphabet based channel
(© 12 piots (d) 16 piot estimation for ofdm and related multicarrier systemdEEE Trans.
10 10 : tiwﬁngiu Commun.vol. 49, no. 8, pp. 1402-1414, Aug. 2001.
~ Kalman [2] G. Alrawi, T. Y. Al-Naffouri, A. Bahai, and J. Cioffi, “Exploiting error-
wl o - FB Kaiman control coding and cyclic prefix in channel estimation for coded ofdm
. systems,”IEEE Commun. Lettvol. 7, no. 7, pp. 388-390, Jul. 2003.
[3] H. Blcskei, R. W. Heath, and A. J. Paulraj, “Blind channel identification
and equalization in ofdm-based multi-antenna systeniEEE Trans.
Signal Proc, vol. 50, no. 1, pp. 96-109, Jan. 2002.
[4] R.W. Heath and G. B. Giannakis, “Exploiting input cyclostationarity
s s for blind channel identification in ofdm systemslEEE Trans. Signal
5 10 Elﬁq 20 2 5 10 EII?\I 2 2 Proc, vol. 47, no. 3, pp. 848-856, Mar. 1999.
b o b o [5] G. Leus and M. Moonen, “Semi-blind channel estimation for block
) . ) . transmissions with non-zero padding,” Rroc. Asilomar Conf. on
Fig. 3. Comparing theBER curves for various receivers. Signals, Syst., and Computeidov. 2001, pp. 762—766.
[6] R. Negi and J. Cioffi, “Pilot tone selection for channel estimation in a
mobile ofdm system,IEEE Trans. Consumer Electrol. 44, no. 3, pp.
) ) ) 1122-1128, Aug. 1998.
delay and storage shortcomings of thB-Kalman. Our simulation [7] Y. Li, “Pilot-symbol-aided channel estimation for ofdm in wireless
show the favorable behavior of the two Kalman filters. Specifically, systems,” inProc. IEEE Vehicular Tech. Confl999, vol. 2, pp. 1131~
simulations show that increased signal processing always results in 1135 _ ) o
betterBER behavior [8] B. Yang, K. Ben Lgta@f, R. (_:heng, a_nd Z. Cao, “Channel estimation
) for ofdm transmission in multipath fading channels based on parametric
channel modeling,IEEE Trans. Communvol. 49, no. 3, pp. 467-479,

VII. APPENDIX: CHANNEL MODEL

Mar. 2001.
The channeh; is the convolution of the physical chanrgl(which  [9] Y. Li, L. J. Cimini, and N. R. Sollenberger, “Robust channel estimation
consists ofL + 1 paths arriving at instantsy, 71 ..., 7.) and the for ofdm systems with rapid dispersive fading channel&§EE Trans.

Commun,. vol. 46, no. 7, pp. 902-915, Jul. 1998.

receive filterr. Thus, we can write [10] O. Edfors, M. Sandell, J. van de Beek, K. S. Wilson, and P. O. Brjesson,

h. = R.c. (34) “Ofdm channel estimation by singular value decompositionEEE
- =i Trans. Signal Prog.vol. 46, no. 7, pp. 931-939, Jul. 1998.
where R; is the receive filter matrix given by [11] C. Komninakis, C. Fragouli, A. Sayed, and R. Wesel, “Multi-input
multi-output fading channel tracking and equalization using kalman
r(—70) r(—71) <o r(=71L) estimation,” IEEE Trans. Signal Prog.vol. 50, no. 5, pp. 1065-1076,
r(T—m) r(T-mn) - r(T-1) May 2002. . .
R, =| . . ] . [12] R.A. llitis, “Joint estimation of pn code delay and multipath using the

: : : : extended kalman filter,”IEEE Trans. Communwvol. 38, no. 10, pp.
1677-1685, Oct. 1990.
r(PT =) r(PT=m) - r(PT—7L) [13] B. Lu, X. Wang, and Y. Li, “Iterative receivers for space-time block-

Due to the mobile nature of the channel, the physical channel taps gcl)geggdf Sy;é%”gs in dispersive fading channels,” vol. 1, no. 2, pp.
.. e-var i —225, Apr. )

ci(k) _are time varlant: According to _tHA/SSUS model, the process [14] G. Alrawi, T. Y. Al-Naffouri, A. Bahai, and J. Cioffi, “Exploiting error-
ci(k) is zero-mean wide-sense stationary complex Gaussian process control coding and cyclic prefix in channel estimation for coded ofdm

with autocorrelation systems,” inProc. IEEE GlobeComNov. 2002, pp. 1152-1156.
, o [15] Xiao ming Chen and P. A. Hoeher, “Blind equalization with iterative
E [ci(k)ey (K)] = To (owli —4'|) ppr an = 2 fe(k)(N + P)T joint channel and data estimation for wireless dpsk systemsPrar.

. . . IEEE GlobeCom2001, pp. 274-279.
whereT is the sampling (baud) rat¢. (k) is the Doppler frequency [16] T. V. Al-Naffouri, A. Bahai, and A. Paulraj, “Semi-blind channel
associated with théth tap, and7, denotes the zero-order Bessel identification and equalization in ofdm: an expectation-maximization
function of the first kind. We can approximate the time-variant _ approach,” inProc. IEEE Vehicular Tech. Cop2002, vol. 2, pp. 13-17.

- ) et [17] C. Cozzo and B. L. Hughes, “Joint channel estimation and data detection
behavior of the tam: (k) by a first-orderAR model (see [11], [12]) in space-time communicationslEEE Trans. Communvol. 51, no. 8,

pp. 1266-1270, Aug. 2003.
Ciy1(k) = Jo (o) (k) + \/(1 = Jg (k) Ellco (k)[ui (k) (35) [18] T. Y. Al-Naffouri, Adaptive algorithms for wireless channel estimation:
Transient analysis and semi-blind desijdth.D Thesis, Stanford Univer-

The factor /(1 — J3 (aw)) Ellc, (k)[?] ensures that the tap; (k) sity, Jan. 2005.
maintains the same power profile for all time. Collecting (35) for alll9] T. Kailath, A. H. Sayed, and B. Hassiblinear estimation Prentice
taps yields Hall, 2000. _ _ ‘
—Foe 4 G 36 [20] T.Y. Al-Naffouri, A. Bahai, and A. Paulraj, “Em algorithm for channel
Cit1 = Fe€i + Groths (36) estimation and equalization in ofdm,” roc. IEEE GlobeCom2002,
where F.=diag( Jo(ea), -+, Jo(ar41) )and G = pp. 589-593.
diag (/= 7g (@) Bl -0 (4 = TF(ar ) Bl (L + DT ). We SFor this to be true, the matriR has to be tall which will be the case if

can use this dynamical relationship along with (34) to derive @e sampling rate is high enough so that the number of channelRaps
dynamical relationship for the impulse responie Specifically, is larger than the number of physical paths.



