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Abstract

Several areas in signal processing and communications rely on various tools in order

statistics. Studying the scaling of the extreme values of iid random variables is of particular

interest as it is sometimes only possible to make meaningful statements in the large number

of variables case. This paper develops a new approach to finding the scaling of the minimum

of iid variables by studying the behavior of the CDF and its derivatives at one point, or

equivalently by studying the behavior of the characteristic function. The theory developed is

used to study the scaling of several types of random variables and is confirmed by simulations.

Keywords: scaling of random variables — extreme values — order statistics— characteristic

function — initial value theorem

1 Introduction

Extreme value theory (EVT) is an important tool in statistics, signal processing, and commu-

nications. EVT is concerned with the behavior of the maximum/minimum of a sequence of n

iid random variables when n becomes large (which is known as scaling analysis). This tool has

for example been used in abnormality detection in biomedical signal processing [1], for level

detection in hidden Markov models [2], and in characterization of sonar reverberations [3]. ETV
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has also found wide application in multiuser information theory where it was used to schedule

users, maximize system throughput, and study fairness issues, ..., etc [5, 4, 6, 7].

Performing the scaling analysis in turn requires closed form expressions for the CDF and

pdf of the variables involved [9, 8] which might still be too prohibitive. Thus, at times we don’t

have closed expressions for the pdf or CDF at all points of support or these expressions might

only be available at specific points. Moreover, sometimes it might be easier to characterize the

behavior of the characteristic function instead.

In this paper, we show how the scaling law of the minimum of iid random variables can be

obtained by studying the behavior of the CDF and its derivatives at one point. We also show

how this can be obtained by studying the behavior of the characteristic function at infinity.

2 What Does Scaling Mean?

Let X1, X2, · · · , Xn be iid random variables with pdf f(x), CDF F (x), and characteristic function

φ(s). Let a also be the infimum of the support of Xi
1 We would like to find the scaling law of

the minimum, Xmin(n) = {X1, X2, · · · , Xn} . We say that a variable scales for large n if there

are sequences an and bn such that Fn(anX + bn) → G(x) as n →∞ at all continuity points of

G(x). It has been shown that when such a G(x) exists, it falls into one of three categories [9]:

(Fréchet) G1(x;α) = exp(−x−α)u(x) α > 0

(Weibull) G2(x;α) = exp(−(−x)α)u(−x) α < 0 (1)

(Gumbel) G3(x) = exp(−e−x)

Similar asymptotic distributions exist for the minimum of iid random variables. Specifically,

there are 3 limiting distributions [9] G∗
i (x) defined in terms of the maximum pdf counterpart

G∗
i (x) = 1−Gi(−x). We illustrate this definition with an example.

1If no finite infimum exists, we can obtain the scaling of the minimum by considering the scaling of

−max{−X1,−X2, · · · ,−Xn}.
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Example: Beamforming for multicast In a multicast beamforming scenario, the trans-

mitter has M antennas and is to multicast some common data to a group of n users. The

transmission rate is eventually limited by the worst user. The transmitter sends M beams

φ1, φ2, . . . , φM , and asks each user to feedback the SINR associated with each beam [4]. For

example the SINR associated with beam φ1 for user i is given by

SINRi =
|h∗i φ1|2

1
ρ +

∑M
m=2 |h∗i φm|2

(2)

where hi is the channel impulse response for user i and ρ = M
P is the signal to noise ratio. Since

the base station has to appeal to all users in the group, we are constrained by the worst user.

For a given beam, the SINRi’s are iid with CDF [4]

FSINR(x) = 1− e
−x

ρ

(1 + x)M−1
x ≥ 0

So the CDF of the minimum of n such SINR’s is

Fmin(x) = 1− (1− FSINR(x))n = 1− e
−nx

ρ

(1 + x)n(M−1)
x ≥ 0 (3)

Now, it is easy to show that

lim
n→∞Fmin(

x

(1
ρ + M − 1)n

) = 1− e−x = 1−G2(−x; 1)

This shows that for large n, mini SINRi scales as 1
( 1

ρ
+M−1)n

. The method of Example 1 might

not apply all the time as it is difficult to find the CDF in closed form sometimes.

Example 2: Scaling of spatially correlated channel norms Consider the issue of finding

the scaling of the mini ‖hi‖2 where hi is circularly symmetric Gaussian distributed hi ∼ N (m, R).

When R = I and m = 0, ‖hi‖2 is chi-square distributed with M degrees of freedom. On the

other hand, when we deviate from this ideal case, say when R 6= I, the CDF has different forms

depending on whether some of the eigenvalues of the R are the same or not. In the case that

m 6= 0, we don’t even have a closed expression for the CDF (or pdf). As such, it would be difficult

to find the scaling of the minimum using available techniques. In the following subsection, we

provide a general method for finding the scaling of the minimum.
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3 Evaluating the Scaling Using the Characteristic Function

In the following section, we demonstrate how the scaling of the minimum can be obtained directly

from the characteristic function. To this end, note that the CDF of the minimum is given by

Fmin(x) = 1− (1− F (x))n. Let’s expand F (x) in a Taylor series

F (x) =
∞∑

i=0

F (i)(a)
(x− a)i

i!
(4)

Note that F (a) = 0 and let F
(i0)
min (a) be the first nonzero derivative of F (x) around a. Then

Fmin(x) = 1− (1− F (i0)(a)
i0!

(x− a)i0 −
∑

i≥i0

F (i)(a)
(x− a)i

i!
)n (5)

Now, we claim that F (i0)(a) > 0. For if it were negative, then F (i0−1)(a) would be decreasing

in an interval (a, a + ε). Or as F (i0)(a) = 0, we see that F (i0−1)(x) is negative in this interval.

Continuing this way, we can show that F (i0−1)(x), . . . , F (0)(x) are negative in (a, a + ε) which

contradicts the nonnegative nature of F (x). We can thus replace x by i0!
1
i0

F (i0)(a)
1
i0

x+a

n
1
i0

. Then

Fmin(
i0!

1
i0

F (i0)(a)
1
i0

x + a

n
1
i0

) = 1−
(

1− xi0

n
+ O(

1

n
i0+1

i0

)

)n

which for large n reads

lim
n→∞Fmin(

i0!
1
i0

F (i0)(a)
1
i0

x + a

n
1
i0

) = 1− exp
(−xi0

)
(6)

This is of the form

lim
n→∞Fmin(anx + bn) = 1− exp

(−xi0
)

(7)

= 1−G2(−x; i0) (8)

where

an =
i0!

1
i0

F (i0)(a)
1
i0

1

n
1
i0

and bn =
i0!

1
i0

F (i0)(a)
1
i0

a

n
1
i0

(9)
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3.1 Finding the derivatives of F (a)

The scaling above is determined above up to the first nonzero derivative of F (i0)(a). Fortunately,

we can find this value without having to explicitly find the CDF and its derivatives, by using

the characteristic function and relying instead on the initial value theorem. To do so, define

D(x) = F (x + a), then limx→0 D(j)(x) = limx→a F (j)(x). Now recall that the pdf f(x) and

the characteristic function φ(s) form a Laplace transform pair. Then by the time-shift and

differentiation properties

D(j)(x) → s(j−1)e−asφ(s)

Now applying the initial value theorem to the Laplace transform pair above yields

lim
x→0

D(j)(x) = lim
s→∞ sje−asφ(s)

i.e.

lim
x→a

F (j)(x) = lim
s→∞ s(j−1)e−asφ(s) (10)

We can summarize the results of this section in the following theorem.

Proposition 1 Let X1, X2, · · · , Xn be iid random variables with CDF F (x), and characteristic

function φ(s). Assume that Xi is bounded from below and let a be the infimum of the support of

Xi. Let Xmin(n) denote the minimum of these random variables min {X1, X2, · · · , Xn} . Then

anxmin(n)+ bn converges in distribution to random variable y with CDF Fy(y) = 1− exp
(−yi0

)

where i0 is the first non-zero derivative of F (x) at zero, i.e., F (i0)(a) 6= 0 and F (j)(a) = 0 for

all j < i0 and where an and bn are defined in (9). Furthermore, we can find F (i0)(a) using the

initial value theorem, limx→a F (j)(x) = lims→∞ s(j−1)e−asφ(s).

3.2 When does the method fail?

The method introduced in this paper has wide applicability. However, as can be inferred from

the paper, it fails if for all i, F (i)(a) = 0. One example for which this is the case is the inverse
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chi-square pdf given by f(x) = e−
1
x /x2, x > 0, for which f(x) and all higher order derivatives

are zero at x = 0.

4 Examples and Numerical Simulations

4.1 Example: Scaling of spatially correlated channel norms revisited

Let’s find the scaling law for minhi ‖hi‖2 when hi are iid CN(0, R). The pdf and CDF of ‖hi‖2

will both have different forms depending on whether some of the eigenvalues λl of R are the

same or different, and so the direct method for scaling can be quite challenging. On the other

hand, the characteristic function takes one form and is given by φ(s) =
∏M

l=1
1

1+λls
. From this,

it is easy to see that

lim
s→∞ siφ(s) = F (i)(0) = 0 for i < M

and that lims→∞ sMφ(s) = F (M)(0) = 1QM
l=1

1
λl

= 1
det(R) . We thus conclude that mini ‖hi‖2 scales

as (M !)
1
M det(R)

1
M

1

n
1
M

.

4.2 Examples for the scaling of minimum of a number of random variables

In the following, we evaluate the scaling of various random variables and summarize the results

in the Table 1 below. The table gives the name of the distribution, expressions for pdf, CDF,

and characteristic function whenever they are available. The table also provides the values of

a, i0, and F (i0)(a) which is the information needed to characterize the scaling behavior. For

some of these distributions (namely, Uniform, non-central chi-square, Gamma, and Half normal

distributions), we simulate the empirical and theoretical CDF of the minimum as well as the

actual value of the minimum random variable vs. n (averaged over 300 runs) and the theoretical

scaling value predicted. The figures show very good match between theory and simulation.
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4.2.1 Uniform distribution

Let x be a Uniform random variable, x ∈ (c, d). In this simulation (Figure 1) we take c = 3 and

d = 6. In this case, we have a = c, i0 = 1, and F (i0)(a) = 1
d−c .

4.2.2 Non-central chi-square distribution

Let x be a non-central chi-square random variable with 4 degress of freedom (resulting from the

sum of squares of 4 Gaussian random variables with mean m = 1). In this case, the CDF has

no closed form. However, using the characteristic function approach, we can show that a = 0,

i0 = 1, and F i0(0) = 1/4 e−2 mx
2

σ2 σ−4. The CDF and the plot of Xmin vs n are shown in Figure 2.

4.2.3 Gamma distribution

Figure 3 shows the distribution and scaling of the minimum of gamma random variables. This

random variable has the characteristic function (1−θs)−k so that a = 0, i0 = k and F i0(0) = θ−k.

4.2.4 Half normal distribution

Figure 4 shows the distribution and scaling of the minimum of half-nromal random variables.

In this case, a = 0, i0 = 1 and F i0(0) = 1
σ

√
2
π .
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Figure 1: Uniform Distribution
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Figure 2: Non-Central Chi Square Distribution
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Figure 3: Gamma Distribution

5 Conclusion

In this paper, we devised a new method for characterizing the scaling of the minimum of iid

random variables. The method is based on studying the behavior of the higher order derivatives

of the associated CDF at the infimum of the random variable. Equivalently, the scaling can

be studied directly from the characteristic function. The method thus circumvents the need

to have explicit expressions for the CDF of pdf to study the scaling. The method was used

to characterize the scaling of several random variables. Theoretical results showed very good

match to our simulations. The author is currently expanding this approach to characterize the

scaling of the maximum of iid random variables.
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Table 1:

p(x) P (x) φ(s) a i0 F i0(0)

Uniform Dist. 1
d−c c 1 1

d−c

U-Quatratic

Dist.

α(x− β)2 α
3 ((x− β)3 + (β − α)3) β −

3

√
3
2α

1 3

√
9α
4

Non-Central

Chi Square

Dist.

1
(1−2σ2s)n/2 e

Pn
i=1 m2

i
1−2σ2s 0 n

2
1

2n/2σn e
−Pn

i=1 m2
i

2σ2

Chi- Square

Dist.

1
(1−2σ2s)n/2 0 n

2
1

2n/2σ2

Gamma Dist. xk−1 e−x/θ

Γ(k)θk
γ(k,x/θ)

Γ(k) (1− θs)−k 0 k θ−k

Rayleigh

Dist.

xe−x2/2σ2

σ2 1− e−x2/2σ2
0 2 1

σ2

Pareto Dist. kxk
m

xk+1 1− (xm
x )k 1 1 k

xm

Log-Logistic

Dist.

(β/α)(x/α)β−1

(1+(x/α)β)2
1

1+(x/α)−β 0 1 1

Half Normal

Dist.

∫ x
0

1
σ

√
2
πe−y2/2σ2

dy 0 1 1
σ

√
2
π

Folded Nor-

mal Dist.

∫ x
0

1
σ
√

2π
e−(−y−µ)2/2σ2

dy+
∫ x
0

1
σ
√

2π
e(−y−µ)2/2σ2

dy

0 1 1
σ

√
2
πe−µ2/2σ2

Kumaraswamy

Dist.

cdxc−1(1− xc)d−1 0 c cd(c− 1)!

Beta Dist. xα−1(1−x)β−1

B(α,β) 0 α (α−1)!
B(α,β)
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