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Abstract—Broadcast (or point to multipoint) communication has for large number of users using simple techniques. In [9] and [10],
attracted a lot of research recently. In this paper, we consider the group - Sharif and Hassibi showed that the sum rate capacity behaves like
broadcast channel where the users’ pool is divided into groups, each log nlog n for largen (wheren is the total number of users apd
of which is interested in common information. Such a situation occurs p g . 8 . . .
for example in digital audio and video broadcast where the users are IS the signal to noise ratio). They also showed that opportunistic beam
divided into various groups according to the shows they are interested forming matches this limit. Other promising techniques for capturing
in. The paper obtains upper and lower bounds for the sum rate capacity most of the DPC capacity were proposed in [7], [10], [11], [12], [13],
in the large number of users regime and quantifies the effect of spatial 114] They all rely on multiuser diversity to match the DPC for large
correlation on the system capacity. The paper also studies the scaling . .
of the system capacity when the number of users and antennas grow number of users. Here, each user experiences a different channel and
simultaneously. therefore the transmitter can exploit this diversity and choose the set

of users that have the best channel conditions.
I. INTRODUCTION

Future breakthroughs in wireless communications will be mostE/' The broadcast problem: The group of users case

driven by applications that require high data rates [1]. While The broadcast scenario considered above assumes that the various
increasing the link budget and/or bandwidth can accommodate thRers are interested independenstreams of data. More common
increase in data rate, such a solution would not be economical.iAthe situation that one group of users would be interested in one
more cost effective solution is to exploit the space dimension Igjream of data, another group with another stream, and so on. An
employing multiple antennas at the transmitter and receiver. Multiphxample where this might occur is digital audio and video broadcast
input multiple output (MIMO) communication has thus been thwhere there is a limited number of shows and users are classified
focus of a lot of research [1], [2], [3] which basically demonstrateg@iccording to the shows they are interested in [15], [16], [17]. Here,
that the capacity of a point to point MIMO link increases linearlgimilar questions to the (independent user) broadcast problem would
with the number of transmit and receive antennas (an excelldi relevant.
overview of the research on this problem can be found in [4]). To make the discussion more rigorous, assume that there: are
users each equipped with a single antenna. The users are partitioned
Research focus has shifted recently to the role of multiple antenrié#® K groups where each group is interested in the same stream
in multiuser systems, especially broadcast scenarios fignt to of data. The transmitter, which is equipped witli antennas, is to
multipoint communication) as downlink scheduling is the majoschedule transmission to these groups so as to maximize the sum-rate
bottleneck for future broadband wireless networks. The broadc&gpacity of the system. If the transmitter had one antenna only, this
channel resembles downlink communication in a cellular systemipuld be a trivial problem. For in this case, all channels involved
where the base station is to transmit to a group of users. In these #lld be single input single output. Thus, to transmit to any group
other broadcast scenarios, one is usually interested in 1) quantifyipfgusers, one simply needs to take care of the user with the weakest
the system capacity or the maximum possible sum rate to all usdik (i.e., the one with the least channel gain). Such ordering of users,
2) quantifying the scaling behavior of the sum rate lfloge number however, is not possible in the multiple antenna case and the problem
of users, and 3) devising computationally efficient algorithms fdrecomes more challenging.
capturing most of the sum rate in ttegge number of users regime. In  The group broadcast problem includes the (independent users)
this paper, we distinguish between two types of broadcast scenati¢gadcast problem as a special case. Specifically, the independent
depending on whether the users are interested in common informatitsers broadcast is a group broadcast problem in which each group
or not consists of one user only. The other extreme is when all users belong
to one group and are all interested in the same information. This is
known as a multicast problem and has started to attract some attention
In this problem, users are interested in independent informatiaecently. In [18], Khitsi et. al. characterized the system capacity
Much work has been devoted to answer the three questions raifedthe two user binary multicast problem. When multicasting to
above for this problem. The capacity region question was recenthore than 2 users or for Gaussian multicast, [18] was only able
settled by a technique similar to writing on dirty paper and hende obtain upper and lower bounds. In [19], Steinberg and Shamai
bearing the name dirty paper coding (DPC). Specifically, [5] antbnsidered a two user situation with a hybrid of broadcast and
[6] have shown that DPC is capable of achieving the maximumulticast in which the two users can have common as well as
possible sum-rate capacity. Subsequently, [7] showed that DPCiridependent messages. Exact capacity expressions were only possible
able to achieve any point in the capacity region. in the degraded message sets case (which is similar to having one
While DPC solves the broadcast problem optimally, it is comantenna only at the base station).
putationally expensive and requires a great deal of feedback as th&y examining the techniques used in [18] and [19] and the results
transmitter needs perfect channel state information of all users [8frived at, one can be convinced that finding the exact capacity for
Thus, there has been increased interest to match the DPC capauitjticast (let alone the more general group broadcast problem) can

A. The broadcast problem: The independent users case



be quite challenging. As such, several authors have resorted inst@aking the limit asn grows yields

to evaluate the capacitpsymptotesin his Masters Thesis [20], . plio) 0)
Khitsi considered the multicast problem where there is exactly one lim Fuin(—) =1 —exp (—%'x")) 2
group ofn users interested in a common message transmitted from e nto [k

a base station with\/ antennas. He s{howed that ftarge n, the The above expression shows th&f.:,(—%-) is not concentrated.
c_apacity decrease_s in proportion m_ﬁ _In a recer?t paper [21]3 Rather, it converges to a distribution wTﬁil(O:h is independent.oiVe
Jindal and Luo built on the work of Khisti and obtained the scallng~|us say that
order of various techniques when used in a multicast scenario. These
techniques include transmit beamforming and group broadcast using
spatially white or orthogonal signaling.

In this paper, we consider the multiple group in the large number Where £ is the expectation that arises from the distribution in (2).

Tmin CONVerges to--

n'0

users and antennas regime. In contrast to [20] and [21] which consider oo Flio) )
the multicast problem, we consider theultiple group broadcast E = / exp (*Tfﬂ 0) ®3)
problem. Moreover, in a further contrast to [20] and [21] which 0 C, o
obtain order relationships for the multicast problem, we obtain upper = % (4)
and lower bounds that more tightly characterize the system sum-rate Fi0)(0) %
capacity. and where .
The paper is organized as follows. In the first part of the paper, [‘(ii)(z‘ol)%
we consider the large number of usdrs) case and obtain upper Ci, = OT

bounds (in Section V) and lower bounds (in Section V). In the rest

of the paper, we consider the scaling for the large number of antenHamains to find the least such that”™ (0) # 0. Fortunately, we
(M) regime. We do so forn = M (Section VI) and forn = ¢ €an do so without having to explicitly find the CDF and its derivatives

(Section VII). We set the stage, however, by introducing the syste® relying instead on the initial value theorem

model. ’ lim, o FO (z) = lims— o0 50 ¢(s)

[I. SYSTEM MODEL
a) Example:Let's find the scaling laws fominy, ||h;||*> when

nhi are iid CN(0, R). The pdf and CDF of||h;||*> will both have
(?lfferent forms depending on the whether some of the eigenvalues
\; of R are the same or different. On the other hand, the characteristic
yi =his+n; function takes one form and is given by

Consider a broadcast channel with a base station equipedMith
antennas ane users each equipped with a single receive anten
The received signal at thih user is given by

whereh, ~ CN(0, 1)) and is assumed to be iid over the userss 1
the transmitted signal, and; ~ C'N (0, I /) is the additive Gaussian ¢(s) = H 1+ s
noise. For simplicity of exposition, we will assume that the number =
of users in each group i&. The different number of users case carrom this, it is easy to see that

be treated similarly. lim s'é(s) = F(i)(o) —0fori< M
S— 00
I1l. SCALING LAW FOR THE MINIMUM OF A NUMBER OF RANDOM

VARIABLES and that

Group broadcast is intuitively limited by the worst of otherwise lim sM¢)(s) = F(M>(0) = }w L = L
identical users. As such, we digress in this section to develop a theory | A det(R)
for finding the minimum of a large number of random variablesie thus conclude that
To this end, letz1, z2, - - - , z, be iid nonnegative random variables

. L
with CDF F(z) and characteristic functio(z). We would like min; [|h;]|* scales asCis det(R) T
to find the scaling law of the minimum of these random variables,
ZTmin = {Z1,%2, - ,zn}. The CDF of the mimimum is given by IV. UPPERBOUNDS

A. An Upper Bound Using the MAC-BC Duality

We use the MAC-BC duality [22] to obtain an upper bound on the
group broadcast problem. Specifically, the maximum sum ratéfor
users, chosen one from each group, is given by

Froin(z) =1— (1= F(z))"

Now let's expandF'(z) in a Taylor series

F(z) = Z F(”(O)f,—:

K
, Cx users= log det (1 +> hi bkh:k) (5)
Note thatF'(0) = 0 and Ietﬂgffn)(o) be the first nonzero derivative k=1
of F(x), then Since, this rate has to appeal to all user groups, we can write
F0) ; = om@ ) K
Fuin(z) =1~ (1 e o _ Z F (O)W C < min- - - min max logdet | I + Zhikbkh:k (6)
i=ig+1 hiy hig b >0 k=1
Now, for large enough, we have Z,f:l by =P
P (i) 1 (1— FG0) (@) gt " This is an upper bound because thés are optimized for each set of
min nic. il  n K users when in the group broadcast probleméifie should be fixed



over all user groups. Now, to get rid of the determinant in (6), we uggven by
the arithmetic-mean geometric-mean (AM-GM) inequatityt(A) <

M — i *Bh.
(tr](\/?>) to write Cone group Tr?lBa)’)éP n’}lllln log (1 + hz th)
X = log (1 + max min thhi)
1 ) Tr(B)<P h;
C SMIOg(l+I}Illin"-IgliHHll)aXMZkahi” ) @) p P
i1 i Uk k—1 = log(l+ —Cn—F)
P . 2 2 M na
= Mlog(1+ 3 min- - minmax{|[hi, |2, [, [*118) P
hi, hig K ~ — a7)
P . . 2 2 - MM n
=Mlog(1 + — maxmin - - - min{||hi, |7, - -+, [ |7} X9) _ _ _
Mk hiy hig where in (17), we used the fact that the maximum in

P K maxTy(p)<p Ming, hi Bh; is attained atB = .1 (see [23]). Thus,
=Mlog |1+ MCME (10) ' the achievable rate fak™ such groups is upper bounded Bytimes
the rate of (17)

where the 3rd line follows from the Neuman-Peterson theorem. C< KECMKﬁ
Alternatively, and with the aid of the relationshifet(l + AA™) = - M nr
det(I + A"A), we can show that Combining this with (13) yields
1
P KM N
C < Klog (1 + ?C]\/I 1) (11) C <min{l, £}PCy EH
nMm nM
From (10) and (11), we conclude that In a similar manner, we can easily obtain the effect of spatial
correlation as
. P KW L 1
C < min{M, K}log (1 + min{ M, K} Cu niT ) (12) Coorr < min{1, %} det(R)3 PCy Kil
n M
Using the approximation that for smatl log(1 + x) ~ x, we can V. LOWERBOUND
write Having obtained an upper bound, we now quantify how various
N methods for scheduling (or resource allocation) behave for large
C < PCuXf (13) number of users. This would give us an idea about the achievable
n rates and also provides lower bounds on the group broadcast problem.

The above results apply for the iid case. In the correlated case, lHeWhat follows we consider the following scheduling schemes

maximization in (8) is done over;'s with autocorrelation? and that 1) Opportunistic beamforming
results in a hitdet(R)ﬁ on the upper bound 2) Scheduling by treating interference as noise
3) Time sharing

S8

C < PCydet(R) ™ X

n

(14)  A. Opportunist beamforming

=

In random beamforming the transmitter attempts to choose the
B. How loose is the upper bound? best M out of K users to transmit to. To do this, the transmitter

Th fthe AM-GM i lity miaht rai b uses itsM antennas to sendl/ random beams. Each user calculates
€ use ofthe Al inequality might raise some concern a O.H’;e M SINR'’s (signal to interference and noise ratio), one SINR

hé)w tight th(:hupper bo_undt_i;iES(}, injead 10f using thg Acli\/l-_GM "®br each beam, and feeds back the maximum SINR along with its
(6), we use the approximatiotet( + 4) ~ 1 + tr(4). By doing index. The transmitter would in turn rank th€ users according to

so and going through the same arguments in (7)-(10), we obtain their SINR’s and transmits to th&/ best ones. Not only does this

K method require much less feedback than the DPC approach, but it
C =log (1 +P— > (15) also asymptotically (i.e., in the presence of large number of users)
nM achieves the same performance [9].

or using thelog(1 + x) = = approximation, we get To be more specific, the transmitter chooddsrandom orthonor-

=R mal beam vectorsp,, (of size M x 1) generated according to
C=PCu*t (16) an isotropic distribution. Now these beams are used to transmit
nM the symbolss (t), s2(t), ..., sm(t) by constructing the transmitted

which is the same as the bound (13). So we don’t loose much %?/ctor

applying the AM-GM inequality. M
PRYIng ey SO =VP S bmt)sm(d) t=1,....T  (18)
m=1
C. An Alternative Upper Bound
Ve Lpp . After T' channel uses, the transmitter independently chooses another

An alternative upper bound is obtained by allocating all availabket of orthogonal vector§¢,,} and constructs the signal vector
power to one group of users only. The attainable rate in this casg@scording to (18)) and so on. From now on and for simplicity, we



will drop the time index. The signal, at somek’th receiver is given We now relax the problem further by settirg) = %I, from which

by we conclude that
* 1
ye = hps+ng 19) Ros > log [ 1+ ECMLIIW
M M ni
= VP hibmsm +ni, k=1,...,K(20)
m—1 or using the approximatiotvg(1l + z) = z,

Here, E(ss*) = L1 since thes,,’s are assumed to be identically R S
distributed and independently assigned to different users. £Tthe Rrs > 37C0m e
receiver estimates the effective channel gajrb,., something that
can be arranged by training, to calculaté SINR's, one for each Just like the upper bound, correlation results in adit(R)3 on
transmitted beam the lower bound
|Hk¢m|2 _ 1
S ST me b e Rrs > J5Cas dot(R) &

n

o

SINRy, m =

2

Each receiver then feeds back its maximum SINR, i.(-é_ Treating Interference as Noise

max SINRy .., along with the maximizing indexn. Thereafter, .
1<m<M The other extreme would be to allow all groups to transmit

the transmitter assigns;, to the user with the highest correspondingjntaneously. Each group would then ignore signals that are meant
SINR, i.e. max SINRy,m. If we perform this kind of scheduling, ¢o the other groups, treating them as additive noise. The rate that

the throughput for large: can be written as [10] the 1st group achieves with this strategy would be
_ _ hi B, hi
Rrer = MFElog |1+ max SINR;,m | + o(1) (22) R1 = min log 1514, iy
e L+ hi, 35y Br,, hiy

where the termp(1) accounts for the small probability that usker
may be the strongest user for more than one bean10].

In the group broadcast scenario, we replace each beam’s SINR
the minimum SINR over all users in the group 1

Now, relax the problem further by assuming equal isotropic covari-
aw:es for all user groups, i.e. set

P
By,=—=—1
"TKM
Rrpr = MElog (1 + max {min SINR;,, ..., min SINR;, }) then
71 1K
1 P 2
The SINR for theith user of thekth group is given by R, = logmin % a1 |
w1+ B R |2
‘h:k ¢1|2 K M
SR = 37 + M |hE ml? — logmin — 1- L
Pt Zum=z i, Om I (g U 552 2 e |12
It is easy to show that SNIR pdf is given by L )
. (1 - )
e = — K—1P in: 12
fl@) = vy (1(1+$)+M—1> K—1 1+ 5= 57 ming, [|hi, |
(1+z) P 1P 2
from which lude that g [ zar v [
rom which we conclude tha " 1+ 512 ing hn |2
Fénr(0) = fanr(0) = 3 +M-1 1Pg .
KMYM nﬁ
It thus follows that the minimum SINR scales as = log L+ Klpo KW
in SINR. & ©OMT
K O () L P K
- 1 K T KM M
oMoy 1n .
P Thus, the sum rate forX such user groups is upper bounded
and the sum-rate capacity would be according to
1
P KM
RRBF = M]Qg (1 + %5) (23) RInterf Z WCIM ﬁ
Hym—1n n
B. Time Sharing Correlation will again introduce a hiiet(R)ﬁ on the lower bound.
A tighter lower bound is obtained by time sharing. Thus, assume L 2
all groups take the same time share, then Rinters, corr > det(R) M £:Cy Kﬁ
K
Rrs > L ax Zmin log det (1+ A}, Bhi,) (24) From the bounds obtained in this section and the previous section,
K m(B)=P =7 Mk we conclude that the group broadcast capacity scales as

K
1 . * 1
= % Trr(r}g)ip kg_l log (1 + Iilllkn hi, Bhik> (25) C = QPCM%




where (as done in [21])

1 K
— < a<min{l, —
o mln{,M}

M= = max minh; Bh; < 1 max thBhi
. B>0 Tr(B)<P i n B>0 Tr(B)<P =
For the spatially correlated case, the capacity incudstdR) 2 hit ) n
on the SINR = = max > Tr(Bhih])
n B>0 Tr(B)<P —
1 1
Ccorr: dtRmPC KM n
ade ( ) M s = l max Tr (BZhﬂlZ)
n B>0 Tr(B)<P et
This is an unfortunate result as it shows that the sum-rate decreases 1 .
with the number of users. To counter this, we increase the resources I B>OHT1r(B)<PTr (BH:H;)
(i.e., number of antenna®l). In the rest of this paper, we study the .
scaling of group broadcast capacity with the number of antennas for = *P)‘maw(HiHi )

1) % = and 2) M = logn.

Now, asn, M — oo with & = K3, the eigenvalues ofq— will
VI. SCALING WITH M AND n, 4 = 3 be confined to the rang&l - W) (1 + ﬁ) ]. We can thus

" obtain the following upper bound on capacity

Here we consider the scaling of the upper and lower bounds when
both the number of users and antennas grow to infinity while their C < Klog(1+ P(1+ \/%6)2)
ratio remains constan% 3. To this end, note first that both the
upper and the lower bounds depend on the valuiof;, \h || and Thus, if we allow the number of antennas to grow linearly with the

so we need to evaluate the scaling of this quantltyLaM = o0 number of users, we can guarantee a constant sum rate. But is it still
To do this. define the matrix possible to do so without straining the resources as much?

V= HH, VIl. SCALING WITH M AND n, M = logn

1
For M > K, the group capacity sales as--Cx Z5-. Now it

where . n M
is easy to see that'y, ~ M for large M, so the sum-rate scales
H;=[hi ha -+ hz ]
M
to setM = logn To prove this rigourously, let's study the behavior
hal> kel - Rl 17 . )
al\lllz‘;et:;?tdmg = [Pl el Ih 1" ] - Note of min, 12 for v = log n which we do using the Chernof bound.
, , To this end, let = 121 and defineg(Y") by
Amin(77) < min ” MH < Amaa(57) < max 25 (26) 1 ify<il-e

g(Y):{ 0 ifY>1-e
Moreover asn, M — oo with 4L = K3, the eigenvalues of be-

come uniformly distributed in the rangél — K B)?, (1++KB)?].
We can thus write

Then forv > 0
g(Y) < e—V(Y—(l—é))

|| ] H and hence

(1-+/KB)*< lim min = < (144K

nM—oo i Elg(Y)]=P(Y <1—¢ <" 9E[e™Y]

This allows us to get a lower bound on capacity which is obtaingg}
using time-sharing

12
Py g = o L )
> — 1+ 2
c > KB>0rrT1ra(B)<P 17 log(l + mlnh Bh;) 27) ( )
(17| Now we can tighten the upper bound by choosing the optimym
C > log (1 + Pmi ) (28)  which, upon setting the first derivative to zero, turns out to be
€
i.e., U:M176>0
’C > log (1 Pl m)g) ‘ (29) and the bound read2s
_ _ _ P( Il ) < M- (31)
We obtain the upper bound through another matrix construction. M
Our starting point is the bound (see Subsection IV-C) = Mletlog(l=<)) (32)
C < K  max log(l+minh!Bh) We can use this to bound the probabili(min, 2 <1 — ¢)
- B>0 Tr(B)<P i
— : * . i 2 hl 2 7
= Klog(l+BEOH’%‘?()§)§PH1¢1nhlBhZ) P(ml H]\4H < 1— ) — 1— (1 _P(HZ\4|| S 1 —6))(33)
S 1- (1 _ el\/I(eﬁ»log(lfe)))n (34)

We need an upper bound fataxp>o Tr(B)<p min; h; Bh;. To do

so, we replace the minimization over thg's with the sum average 1— (1 —ntloel=ayn (35)



where the last line follows from the fact thaf = logn. For the

above probability to vanish as grows, we require that
e+log(l—¢) < —1

Let ¢ be the infimum of the sefe : € +log(1 —€) <
satisfiese; + log(1 — ;) = —1 or ¢ ~ .8414). Then,

-1}, (i.e. &

kil
M

limy,— oo P(min; >1—¢)=1

(36)

Now let's obtain an upper bound fomin, 1%

Chernof bound again, it is easy to show that io]z 0

pclhl” ill®
M

. Employing

g2
€_V<1+€)E[€VT}

>1+¢ < (37)

—v(1l+4e€) 1
e 7(1 —

Moreover, the upper bound is tightest for

(38)

v=M €

the scaling of the group broadcast capacity with the number of users

and antennas. Specifically, we showed that if weldet= log n, we

can guarantee a constant rate for each user in spite of the increase

in the number of users.
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A. Lower bound for sum-rate capacity{ = logn)

We are now ready to derive the lower bound for the sum rat&l
capacity which we obtain through time sharing. Specifically, we have

log(1+ P [1h:]1® 1ol
g mln % )

max  log(1 + min h; Bh;)
B>0 Te(B)<P i

where the second inequality follows by settifity= %I. or with  [16]

M =logn and asn — oo [17]

] C > log(1 + PH) \ (41)

(18]

This lower bound shows that a growth df = logn will guarantee a [19]
constant capacity because faf = 8n the sum rate is upper bounded
by a constant.

[20]
C ONCLUSION

We showed that the sum rate capacity scalasB€' s 1~ . We also

n]w
quantified the effect of the spatial correlation as adm(R)W on
the SNR. This is an unfortunate result as it shows that the capacity
decreases with the number of users. To go around this, we studied



