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Abstract— Broadcast (or point to multipoint) communication has
attracted a lot of research recently. In this paper, we consider the group
broadcast channel where the users’ pool is divided into groups, each
of which is interested in common information. Such a situation occurs
for example in digital audio and video broadcast where the users are
divided into various groups according to the shows they are interested
in. The paper obtains upper and lower bounds for the sum rate capacity
in the large number of users regime and quantifies the effect of spatial
correlation on the system capacity. The paper also studies the scaling
of the system capacity when the number of users and antennas grow
simultaneously.

I. I NTRODUCTION

Future breakthroughs in wireless communications will be mostly
driven by applications that require high data rates [1]. While
increasing the link budget and/or bandwidth can accommodate this
increase in data rate, such a solution would not be economical. A
more cost effective solution is to exploit the space dimension by
employing multiple antennas at the transmitter and receiver. Multiple
input multiple output (MIMO) communication has thus been the
focus of a lot of research [1], [2], [3] which basically demonstrated
that the capacity of a point to point MIMO link increases linearly
with the number of transmit and receive antennas (an excellent
overview of the research on this problem can be found in [4]).

Research focus has shifted recently to the role of multiple antennas
in multiuser systems, especially broadcast scenarios (i.e.,point to
multipoint communication) as downlink scheduling is the major
bottleneck for future broadband wireless networks. The broadcast
channel resembles downlink communication in a cellular system,
where the base station is to transmit to a group of users. In these and
other broadcast scenarios, one is usually interested in 1) quantifying
the system capacity or the maximum possible sum rate to all users,
2) quantifying the scaling behavior of the sum rate forlarge number
of users, and 3) devising computationally efficient algorithms for
capturing most of the sum rate in thelargenumber of users regime. In
this paper, we distinguish between two types of broadcast scenarios
depending on whether the users are interested in common information
or not

A. The broadcast problem: The independent users case

In this problem, users are interested in independent information.
Much work has been devoted to answer the three questions raised
above for this problem. The capacity region question was recently
settled by a technique similar to writing on dirty paper and hence
bearing the name dirty paper coding (DPC). Specifically, [5] and
[6] have shown that DPC is capable of achieving the maximum
possible sum-rate capacity. Subsequently, [7] showed that DPC is
able to achieve any point in the capacity region.

While DPC solves the broadcast problem optimally, it is com-
putationally expensive and requires a great deal of feedback as the
transmitter needs perfect channel state information of all users [8].
Thus, there has been increased interest to match the DPC capacity

for large number of users using simple techniques. In [9] and [10],
Sharif and Hassibi showed that the sum rate capacity behaves like
ρ log n log n for largen (wheren is the total number of users andρ
is the signal to noise ratio). They also showed that opportunistic beam
forming matches this limit. Other promising techniques for capturing
most of the DPC capacity were proposed in [7], [10], [11], [12], [13],
[14]. They all rely on multiuser diversity to match the DPC for large
number of users. Here, each user experiences a different channel and
therefore the transmitter can exploit this diversity and choose the set
of users that have the best channel conditions.

B. The broadcast problem: The group of users case

The broadcast scenario considered above assumes that the various
users are interested inindependentstreams of data. More common
is the situation that one group of users would be interested in one
stream of data, another group with another stream, and so on. An
example where this might occur is digital audio and video broadcast
where there is a limited number of shows and users are classified
according to the shows they are interested in [15], [16], [17]. Here,
similar questions to the (independent user) broadcast problem would
be relevant.

To make the discussion more rigorous, assume that there aren
users each equipped with a single antenna. The users are partitioned
into K groups where each group is interested in the same stream
of data. The transmitter, which is equipped withM antennas, is to
schedule transmission to these groups so as to maximize the sum-rate
capacity of the system. If the transmitter had one antenna only, this
would be a trivial problem. For in this case, all channels involved
would be single input single output. Thus, to transmit to any group
of users, one simply needs to take care of the user with the weakest
link (i.e., the one with the least channel gain). Such ordering of users,
however, is not possible in the multiple antenna case and the problem
becomes more challenging.

The group broadcast problem includes the (independent users)
broadcast problem as a special case. Specifically, the independent
users broadcast is a group broadcast problem in which each group
consists of one user only. The other extreme is when all users belong
to one group and are all interested in the same information. This is
known as a multicast problem and has started to attract some attention
recently. In [18], Khitsi et. al. characterized the system capacity
for the two user binary multicast problem. When multicasting to
more than 2 users or for Gaussian multicast, [18] was only able
to obtain upper and lower bounds. In [19], Steinberg and Shamai
considered a two user situation with a hybrid of broadcast and
multicast in which the two users can have common as well as
independent messages. Exact capacity expressions were only possible
in the degraded message sets case (which is similar to having one
antenna only at the base station).

By examining the techniques used in [18] and [19] and the results
arrived at, one can be convinced that finding the exact capacity for
multicast (let alone the more general group broadcast problem) can



be quite challenging. As such, several authors have resorted instead
to evaluate the capacityasymptotes.In his Masters Thesis [20],
Khitsi considered the multicast problem where there is exactly one
group ofn users interested in a common message transmitted from
a base station withM antennas. He showed that forlarge n, the
capacity decreases in proportion ton−

1
M . In a recent paper [21],

Jindal and Luo built on the work of Khisti and obtained the scaling
order of various techniques when used in a multicast scenario. These
techniques include transmit beamforming and group broadcast using
spatially white or orthogonal signaling.

In this paper, we consider the multiple group in the large number of
users and antennas regime. In contrast to [20] and [21] which consider
the multicast problem, we consider themultiple group broadcast
problem. Moreover, in a further contrast to [20] and [21] which
obtain order relationships for the multicast problem, we obtain upper
and lower bounds that more tightly characterize the system sum-rate
capacity.

The paper is organized as follows. In the first part of the paper,
we consider the large number of users(n) case and obtain upper
bounds (in Section IV) and lower bounds (in Section V). In the rest
of the paper, we consider the scaling for the large number of antennas
(M) regime. We do so forn = βM (Section VI) and forn = eM

(Section VII). We set the stage, however, by introducing the system
model.

II. SYSTEM MODEL

Consider a broadcast channel with a base station equiped withM
antennas andn users each equipped with a single receive antenna.
The received signal at theith user is given by

yi = h∗i s + ni

wherehi ∼ CN(0, IM ) and is assumed to be iid over the users,s is
the transmitted signal, andni ∼ CN(0, IM ) is the additive Gaussian
noise. For simplicity of exposition, we will assume that the number
of users in each group isn

K
. The different number of users case can

be treated similarly.

III. SCALING LAW FOR THE MINIMUM OF A NUMBER OF RANDOM

VARIABLES

Group broadcast is intuitively limited by the worst of otherwise
identical users. As such, we digress in this section to develop a theory
for finding the minimum of a large number of random variables.
To this end, letx1, x2, · · · , xn be iid nonnegative random variables
with CDF F (x) and characteristic functionφ(x). We would like
to find the scaling law of the minimum of these random variables,
xmin = {x1, x2, · · · , xn} . The CDF of the mimimum is given by

Fmin(x) = 1− (1− F (x))n

Now let’s expandF (x) in a Taylor series

F (x) =

∞X
i=0

F (i)(0)
xi

i!
(1)

Note thatF (0) = 0 and letF (i0)
min (0) be the first nonzero derivative

of F (x), then

Fmin(x) = 1−
 

1− F (i0)(0)

i0!
xi0 −

∞X
i=i0+1

F (i)(0)
xi

i!

!n

Now, for large enoughn, we have

Fmin(
x

n
1
i0

) = 1−
�

1− F (i0)(0)

i0!

xi0

n

�n

Taking the limit asn grows yields

lim
n→∞

Fmin(
x

n
1
i0

) = 1− exp

�
−F (i0)(0)

i0!
xi0

�
(2)

The above expression shows thatFmin( x

n
1
i0

) is not concentrated.

Rather, it converges to a distribution which is independent ofn. We
thus say that

xmin converges to E

n
1
i0

whereE is the expectation that arises from the distribution in (2).

E =

Z ∞

0

exp

�
−F (i0)(0)

i0!
xi0

�
(3)

=
Ci0

F (i0)(0)
1
i0

(4)

and where

Ci0 =
Γ( 1

i0
)(i0!)

1
i0

i0

It remains to find the leasti0 such thatF i0(0) 6= 0. Fortunately, we
can do so without having to explicitly find the CDF and its derivatives
by relying instead on the initial value theorem

limx→0 F (i0)(x) = lims→∞ si0φ(s)

a) Example:Let’s find the scaling laws forminhi ‖hi‖2 when
hi are iid CN(0, R). The pdf and CDF of‖hi‖2 will both have
different forms depending on the whether some of the eigenvalues
λl of R are the same or different. On the other hand, the characteristic
function takes one form and is given by

φ(s) =

MY
l=1

1

1 + λls

From this, it is easy to see that

lim
s→∞

siφ(s) = F (i)(0) = 0 for i < M

and that

lim sMφ(s) = F (M)(0) =
1QM
l=1

1

λl
=

1

det(R)

We thus conclude that

mini ‖hi‖2 scales asCM det(R)
1

M 1

n
1

M

IV. U PPERBOUNDS

A. An Upper Bound Using the MAC-BC Duality

We use the MAC-BC duality [22] to obtain an upper bound on the
group broadcast problem. Specifically, the maximum sum rate forK
users, chosen one from each group, is given by

CK users= log det

 
I +

KX
k=1

hikbkh∗ik

!
(5)

Since, this rate has to appeal to all user groups, we can write

C ≤ min
hi1

· · ·min
hiK

max
bk ≥ 0PK

k=1 bk = P

log det

 
I +

KX
k=1

hikbkh∗ik

!
(6)

This is an upper bound because thebk ’s are optimized for each set of
K users when in the group broadcast problem thebk ’s should be fixed



over all user groups. Now, to get rid of the determinant in (6), we use
the arithmetic-mean geometric-mean (AM-GM) inequalitydet(A) ≤�

tr(A)
M

�M

to write

C ≤M log(1 + min
hi1

· · ·min
hiK

max
bk

1

M

KX
k=1

bk‖hi‖2) (7)

=M log(1 +
P

M
min
hi1

· · ·min
hiK

max
k
{‖hi1‖2, · · · , ‖hiK‖2})(8)

=M log(1 +
P

M
max

k
min
hi1

· · ·min
hiK

{‖hi1‖2, · · · , ‖hiK‖2})(9)

=M log

 
1 +

P

M
CM

K
1

M

n
1

M

!
(10)

where the 3rd line follows from the Neuman-Peterson theorem.
Alternatively, and with the aid of the relationshipdet(I + AA∗) =
det(I + A∗A), we can show that

C ≤ K log

 
1 +

P

K
CM

K
1

M

n
1

M

!
(11)

From (10) and (11), we conclude that

C ≤ min{M, K} log

�
1 + P

min{M,K}CM
K

1
M

n
1

M

�
(12)

Using the approximation that for smallx, log(1 + x) ' x, we can
write

C ≤ PCM
K

1
M

n
1

M
(13)

The above results apply for the iid case. In the correlated case, the
maximization in (8) is done overhi’s with autocorrelationR and that
results in a hitdet(R)

1
M on the upper bound

C ≤ PCMdet(R)
1

M K
1

M

n
1

M
(14)

B. How loose is the upper bound?

The use of the AM-GM inequality might raise some concern about
how tight the upper bound is. So, instead of using the AM-GM in
(6), we use the approximationdet(I + A) ∼ 1 + tr(A). By doing
so and going through the same arguments in (7)-(10), we obtain

C = log

 
1 + P

K
1

M

n
1

M

!
(15)

or using thelog(1 + x) ' x approximation, we get

C = PCM
K

1
M

n
1

M
(16)

which is the same as the bound (13). So we don’t loose much by
applying the AM-GM inequality.

C. An Alternative Upper Bound

An alternative upper bound is obtained by allocating all available
power to one group of users only. The attainable rate in this case is

given by

Cone group = max
Tr(B)≤P

min
hi

log (1 + h∗i Bhi)

= log

�
1 + max

Tr(B)≤P
min
hi

h∗i Bhi

�
= log(1 +

P

M
CM

K
1

M

n
1

M

)

' P

M
CM

K
1

M

n
1

M

(17)

where in (17), we used the fact that the maximum in
maxTr(B)≤P minhi h∗i Bhi is attained atB = P

M
I (see [23]). Thus,

the achievable rate forK such groups is upper bounded byK times
the rate of (17)

C ≤ K
P

M
CM

K
1

M

n
1

M

Combining this with (13) yields

C ≤ min{1, K
M
}PCM

K
1

M

n
1

M

In a similar manner, we can easily obtain the effect of spatial
correlation as

Ccorr ≤ min{1, K
M
} det(R)

1
M PCM

K
1

M

n
1

M

V. L OWER BOUND

Having obtained an upper bound, we now quantify how various
methods for scheduling (or resource allocation) behave for large
number of users. This would give us an idea about the achievable
rates and also provides lower bounds on the group broadcast problem.
In what follows we consider the following scheduling schemes

1) Opportunistic beamforming
2) Scheduling by treating interference as noise
3) Time sharing

A. Opportunist beamforming

In random beamforming the transmitter attempts to choose the
best M out of K users to transmit to. To do this, the transmitter
uses itsM antennas to sendM random beams. Each user calculates
the M SINR’s (signal to interference and noise ratio), one SINR
for each beam, and feeds back the maximum SINR along with its
index. The transmitter would in turn rank theK users according to
their SINR’s and transmits to theM best ones. Not only does this
method require much less feedback than the DPC approach, but it
also asymptotically (i.e., in the presence of large number of users)
achieves the same performance [9].

To be more specific, the transmitter choosesM random orthonor-
mal beam vectorsφm (of size M × 1) generated according to
an isotropic distribution. Now these beams are used to transmit
the symbolss1(t), s2(t), . . . , sM (t) by constructing the transmitted
vector

s(t) =
√

P

MX
m=1

φm(t)sm(t), t = 1, . . . , T (18)

After T channel uses, the transmitter independently chooses another
set of orthogonal vectors{φm} and constructs the signal vector
(according to (18)) and so on. From now on and for simplicity, we



will drop the time index. The signalyk at somek’th receiver is given
by

yk = h∗ks + nk (19)

=
√

P

MX
m=1

h∗kφmsm + nk, k = 1, . . . , K(20)

Here, E(ss∗) = P
M

I since thesm’s are assumed to be identically
distributed and independently assigned to different users. Thek’th
receiver estimates the effective channel gainh∗kφm, something that
can be arranged by training, to calculateM SINR’s, one for each
transmitted beam

SINRk,m =
|Hkφm|2

M
P

+
P

j 6=m |Hkφj |2
, m = 1, . . . , M (21)

Each receiver then feeds back its maximum SINR, i.e.
max

1≤m≤M
SINRk,m, along with the maximizing indexm. Thereafter,

the transmitter assignssm to the user with the highest corresponding
SINR, i.e. max

1≤k≤K
SINRk,m. If we perform this kind of scheduling,

the throughput for largen can be written as [10]

RRBF = ME log

�
1 + max

1≤i≤n
SINRi,m

�
+ o(1) (22)

where the termo(1) accounts for the small probability that userk
may be the strongest user for more than one beamφm [10].
In the group broadcast scenario, we replace each beam’s SINR by
the minimum SINR over all users in the group

RRBF = ME log

�
1 + max

k

�
min

i1
SINRi1 , . . . , min

iK

SINRik

��
The SINR for theith user of thekth group is given by

SINRik =
|h∗ik

φ1|2
M
P

+
PM

m=2 |h∗ik
φm|2

It is easy to show that SNIR pdf is given by

f(x) =
e− x

ρ

(1 + x)M

�
1

ρ
(1 + x) + M − 1

�
from which we conclude that

F ′SINR(0) = fSINR(0) =
M

P
+ M − 1

It thus follows that the minimum SINR scales as

min
ik

SINRik =
C1

F (1)(0)

=
1

M
P

+ M − 1

K

n

and the sum-rate capacity would be

RRBF = M log
�
1 + 1

M
P

+M−1

K
n

�
(23)

B. Time Sharing

A tighter lower bound is obtained by time sharing. Thus, assume
all groups take the same time share, then

RTS ≥ 1

K
max

Tr(B)=P

KX
k=1

min
hik

log det
�
1 + h∗ik

Bhik

�
(24)

=
1

K
max

Tr(B)=P

KX
k=1

log

�
1 + min

hik

h∗ik
Bhik

�
(25)

We now relax the problem further by settingB = P
M

I, from which
we conclude that

RTS ≥ log

 
1 +

P

M
CM

K
1

M

n
1

M

!
or using the approximationlog(1 + x) = x,

RTS ≥ P
M

CM
K

1
M

n
1

M

Just like the upper bound, correlation results in a hitdet(R)
1

M on
the lower bound

RTS ≥ P
M

CM det(R)
1

M K
1

M

n
1

M

C. Treating Interference as Noise

The other extreme would be to allow all groups to transmit
simultaneously. Each group would then ignore signals that are meant
for the other groups, treating them as additive noise. The rate that
the 1st group achieves with this strategy would be

R1 = min
hi1

log

 
h∗i1B1i1

hi1

1 + h∗i1
PK

k=2 Bki1
hi1

!
Now, relax the problem further by assuming equal isotropic covari-
ances for all user groups, i.e. set

Bk =
1

K

P

M
I

then

R1 = log min
i1

1
K

P
M
‖hi1‖2

1 + K−1
K

P
M
‖hi1‖2

= log min
i1

1

K − 1

 
1− 1

1 + K−1
K

P
M
‖hi1‖2

!
= log

1

K − 1

 
1− 1

1 + K−1
K

P
M

mini1 ‖hi1‖2

!
= log

 
1
K

P
M

mini1 ‖hi1‖2
1 + K−1

K
P
M

mini1 ‖hi1‖2

!
= log

0B@ 1
K

P
M

CM
K

1
M

n
1

M

1 + K−1
K

P
M

CM
K

1
M

n
1

M

1CA
' 1

K

P

M
CM

K
1

M

n
1

M

Thus, the sum rate forK such user groups is upper bounded
according to

RInterf ≥ P
M

CM
K

1
M

n
1

M

Correlation will again introduce a hitdet(R)
1

M on the lower bound.

RInterf, corr ≥ det(R)
1

M P
M

CM
K

1
M

n
1

M

From the bounds obtained in this section and the previous section,
we conclude that the group broadcast capacity scales as

C = αPCM
K

1
M

n
1

M



where
1

M
≤ α ≤ min{1,

K

M
}

For the spatially correlated case, the capacity incurs adet(R)
1

M hit
on the SINR

Ccorr = α det(R)
1

M PCM
K

1
M

n
1

M

This is an unfortunate result as it shows that the sum-rate decreases
with the number of users. To counter this, we increase the resources
(i.e., number of antennasM ). In the rest of this paper, we study the
scaling of group broadcast capacity with the number of antennas for
1) M

n
= β and 2)M = log n.

VI. SCALING WITH M AND n, M
n

= β

Here we consider the scaling of the upper and lower bounds when
both the number of users and antennas grow to infinity while their
ratio remains constantM

n
= β. To this end, note first that both the

upper and the lower bounds depend on the value ofminhi

‖hi‖2
M

and
so we need to evaluate the scaling of this quantity asn, M → ∞.
To do this, define the matrix

Ψ = H∗
i Hi

where

Hi = [ h1 h2 · · · h n
K

]

Note thatdiag(Ψ) =
� ‖h1‖2 ‖h2‖2 · · · ‖h n

K
‖2 �T . Note

also that

λmin(
Ψ

M
) ≤ min

i

‖hi‖2
M

≤ λmax(
Ψ

M
) ≤ max

i

‖hi‖2
M

(26)

Moreover asn, M →∞ with M
n
K

= Kβ, the eigenvalues ofΨ
M

be-

come uniformly distributed in the range[(1−√Kβ)2, (1+
√

Kβ)2].
We can thus write

(1−
p

Kβ)2 ≤ lim
n,M→∞

min
i

‖hi‖2
M

≤ (1 +
p

Kβ)2

This allows us to get a lower bound on capacity which is obtained
using time-sharing

C ≥ K max
B≥0 Tr(B)≤P

1

K
log(1 + min

i
h∗i Bhi) (27)

C ≥ log

�
1 + P min

i

‖hi‖2
M

�
(28)

i.e.,

C ≥ log
�
1 + P (1−√Kβ)2

�
(29)

We obtain the upper bound through another matrix construction.
Our starting point is the bound (see Subsection IV-C)

C ≤ K max
B≥0 Tr(B)≤P

log(1 + min
i

h∗i Bhi)

= K log(1 + max
B≥0 Tr(B)≤P

min
i

h∗i Bhi)

We need an upper bound formaxB≥0 Tr(B)≤P mini h∗i Bhi. To do
so, we replace the minimization over thehi’s with the sum average

(as done in [21])

max
B≥0 Tr(B)≤P

min
i

h∗i Bhi ≤ 1

n
max

B≥0 Tr(B)≤P

nX
i=1

h∗i Bhi

=
1

n
max

B≥0 Tr(B)≤P

nX
i=1

Tr(Bhih
∗
i )

=
1

n
max

B≥0 Tr(B)≤P
Tr

 
B

nX
i=1

hih
∗
i

!
=

1

n
max

B≥0 Tr(B)≤P
Tr (BHiH

∗
i )

=
1

n
Pλmax(HiH

∗
i )

Now, asn, M →∞ with M
n
K

= Kβ, the eigenvalues ofHiH∗i
n

will

be confined to the range[(1 − 1√
Kβ

)2, (1 + 1√
Kβ

)2]. We can thus
obtain the following upper bound on capacity

C ≤ K log(1 + P (1 + 1√
Kβ

)2)

Thus, if we allow the number of antennas to grow linearly with the
number of users, we can guarantee a constant sum rate. But is it still
possible to do so without straining the resources as much?

VII. SCALING WITH M AND n, M = log n

For M À K, the group capacity sales asα P
M

CM
K

1
M

n
1

M
. Now it

is easy to see thatCM ' M for large M, so the sum-rate scales
approximately asα P

n
1

M
. Thus, to guarantee constant rate, we need

to setM = log n. To prove this rigourously, let’s study the behavior
of mini

‖hi‖2
M

for M = log n which we do using the Chernof bound.

To this end, letY = ‖hi‖2
M

, and defineg(Y ) by

g(Y ) =

�
1 if Y ≤ 1− ε
0 if Y > 1− ε

Then forν ≥ 0

g(Y ) ≤ e−ν(Y−(1−ε))

and hence

E[g(Y )] = P (Y ≤ 1− ε) ≤ eν(1−ε)E[e−νY ]

or

P (
‖hi‖2

M
≤ 1− ε) = eν(1−ε) 1�

1 + ν
M

�M (30)

Now we can tighten the upper bound by choosing the optimumν,
which, upon setting the first derivative to zero, turns out to be

ν = M
ε

1− ε
> 0

and the bound reads

P (
‖hi‖2

M
≤ 1− ε) ≤ eMε(1− ε)M (31)

= eM(ε+log(1−ε)) (32)

We can use this to bound the probabilityP (mini
‖hi‖2

M
≤ 1− ε)

P (min
i

‖hi‖2
M

≤ 1− ε) = 1− (1− P (
‖hi‖2

M
≤ 1− ε))n(33)

≤ 1− (1− eM(ε+log(1−ε)))n (34)

= 1− (1− nε+log(1−ε))n (35)



where the last line follows from the fact thatM = log n. For the
above probability to vanish asn grows, we require that

ε + log(1− ε) < −1

Let εl be the infimum of the set{ε : ε + log(1− ε) < −1}, (i.e. εl

satisfiesεl + log(1− εl) = −1 or εl ' .8414). Then,

limn→∞ P (mini
‖hi‖2

M
≥ 1− εl) = 1 (36)

Now let’s obtain an upper bound formini
‖hi‖2

M
. Employing

Chernof bound again, it is easy to show that forν ≥ 0

P (
‖hi‖2

M
≥ 1 + ε) ≤ e−ν(1+ε)E[eν

‖hi‖2
M ] (37)

= e−ν(1+ε) 1

(1− ν
M

)M
(38)

Moreover, the upper bound is tightest for

ν = M
ε

1 + ε

We thus have

P (
‖hi‖2

M
≥ 1 + ε) ≤ e−Mε(1 + ε)M

= eM(−ε+log(1+ε))

or

P (min
hi

‖hi‖2
M

≥ 1 + ε) ≤ (n(−ε+log(1+ε)))n

where we used the fact thatn = log M. This probability vanishes
provided that−ε + log(1 + ε) < 0 and the infimum for which this
is true isεu = 0. We can thus write

limn→∞ P
�
mini

‖hi‖2
M

≤ 1
�

= 1 (39)

From (36) and (39), we see that

limn→∞ P
�
mini

‖hi‖2
M

�
= H ∈ [1− εl, 1] w.p.1 (40)

A. Lower bound for sum-rate capacity (M = log n)

We are now ready to derive the lower bound for the sum rate
capacity which we obtain through time sharing. Specifically, we have

max
B≥0 Tr(B)≤P

log(1 + min
i

h∗i Bhi) = log(1 + P min
i

‖hi‖2
M

)

where the second inequality follows by settingB = P
M

I. Or with
M = log n and asn →∞

C ≥ log(1 + PH) (41)

This lower bound shows that a growth ofM = log n will guarantee a
constant capacity because forM = βn the sum rate is upper bounded
by a constant.

VIII. C ONCLUSION

In this paper, we studied the scaling of multigroup broadcast for
large number of users. Specifically, we obtained upper and lower
bounds for the sum-rate capacity in the large number of users regime.

We showed that the sum rate capacity scales asαPCM
K

1
M

n
1

M
. We also

quantified the effect of the spatial correlation as a hitdet(R)
1

M on
the SNR. This is an unfortunate result as it shows that the capacity
decreases with the number of users. To go around this, we studied

the scaling of the group broadcast capacity with the number of users
and antennas. Specifically, we showed that if we setM = log n, we
can guarantee a constant rate for each user in spite of the increase
in the number of users.
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