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Impulse Noise Estimation and Removal for OFDM
Systems
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Abstract—Orthogonal ~ Frequency — Division  Multiplexing interference (ISI), additive white Gaussian noise (AWGHNjl a
(OFDM) is a modulation scheme widely used in wired jmpulse noise, which may be generated by spurious sources
systems, including Digital Subscriber Lines (DSL), Poweihe g,ch as switching of electrical AC devices. While OFDM is
Communications (PLC), and wireless standards (e.g., |IEEE . . . L

ideally suited to handle ISI by frequency domain transrissi

802.11a/g/n/ac, WiMax (IEEE 802.16) and 3GPP LTE). While = : . .
OFDM is ideally suited to deal with frequency selective chanels and equalization using the Inverse Discrete Fourier Taansf

and AWGN, its performance may be dramatically impacted (IDFT)/Discrete Fourier Transform (DFT) and cyclic prefix
by the presence of impulse noise. In fact, very strong noise approach, and the effect of AWGN is eliminated using an
impulses in the time domain might result in the erasure of whée appropriate level of coded modulation [2], impulse noise
OFDM blocks of symbols at the receiver. Impulse noise can be . - L .

remains as an important limiting factor. In this work we fecu

mitigated by considering it as a sparse vector in time, and Lrg ) . ; . .
recently developed algorithms for sparse signal reconstrtion. 0N @ SChen'l_:e for impulse noise estimation and cancellation at
the receiver.

We propose an algorithm that utilizes the guard band null
subcarriers for the impulse noise estimation and cancellan.

Instead of relying on ¢; minimization as done in some popular . .
general-purpose compressive sensing schemes, the prombse” IMpulse Noise Types, Models and Approaches for its Re-

method jointly exploits the specific structure of this problem moval

and the available a priori information for sparse signal recovery. : L :
The computational pcomplexity of the prr)oposedg algorithmryis . '"_”09'59 n0|se_ can be broadly divided into two typape-
very competitive with respect to sparse signal reconstrugen 1odic impulse noise (also commonly known aasynchronous
schemes based or¢; minimization. The proposed method is impulse noisein the context of PLC systems) is characterized
compared with respect to other state-of-the art methods in by impulses occurring at random times, with short duration
terms of achievable rates for an OFDM system with impulse and high power (as high as 50 dB above the background
noise and AWGN. noise level [7]). In contrastperiodic impulse noise consists
Index Terms—OFDM, discrete multitone, sparse signal recon- of impulses of longer duration and occurring periodicatly i
struction, impulse noise, estimation, compressive sengn time. In this paper, we focus on aperiodic impulse noises It i
worthwhile to point out, though, that periodic impulse reots
block-sparse impulse noise (i.e., bursty impulse noisgdah

I. INTRODUCTION
Orthogonal Frequency Division Multiplexing (OFDM), alsoPe converted into the model treated in this paper by using tim

referred to as Discrete Multi-Tone (DMT), is a moduladomain interleaving of the OFDM samplafier the modulator

tion scheme widely used in wired systems, including DigPFT [9]- This technique, referred to as TDI-OFDM [10], is
ital Subscriber Lines (DSL) [2], [3], Powerline Communi-2nalogous to what is done in coding in order to convert a purst

cations (PLC) [4], [5], and wireless standards (e.g., IEEEannelinto a random error channel. Clearly, if the buestin
802.11alg/n/ac, WiMax (IEEE 802.16) and 3GPP LTE) [6P" the periodicity of t_he impulse noise is explicitly takema_
Focusing on the single-link aspect of such systems, theiphy%‘:count by the receiver, better performance can be achieved

cal layer must cope with linear distortion due to inter-syab HOWeVer, if the goal is to design a general purpose robust
algorithm that works for all impulse noise statistics po®d
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protocols. Of course, in a comprehensive system design lomélds evaluate
the proposed single-link methods in the context of the whodgwork,
including resource sharing and multi-access interferehimgvever, including
these aspects here would be completely out of the scopesétihiy, which
focuses exclusively on impulse noise estimation and chatioel techniques.
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interleaving to convert any a priori unknown impulse statss on convex relaxation methods usiig minimization [33] is
to this one, which can be handled by the receiver. used for estimation from a small subset of frequency domain
There are different statistical models present in literatuobservations. The drawbacks of using this method aré; 1)
for modeling aperiodic impulse noise in different applioas. minimization requires high complexity (polynomial aveeag
The three widely used models are the Gaussian mixture [12hmplexity in the problem dimension); 2) It does not make use
the Middleton’s Class A [13], and the symmetric alphaef any a priori statistical information (apart from the sggr
stable [14] models. In this paper, we focus on the Gaussigformation); 3) It does not exploit the structure of the sieg
mixture model and assume the impulse noise to be Bernoultiatrix. This method has been extended for detecting bursty
Gaussian [15]-[17]. Specifically, we model impulse nois@asimpulse noise using block CS in [34]. Recently several low
Gaussian process modulated by very narrow and randombymplex alternatives have been proposed for sparse signal
placed squared pulses, of duration approximately equal recovery, including algorithms based on belief propagatio
the inverse of the signal bandwidth, i.e., the time doma|5], Bayesian methods applied to CS [36], and iterative
sampling interval of OFDM. Thus, in the absence of estinmtiagyreedy approaches such as orthogonal matching pursuit JOMP
and cancellation, these impulses in the time domain corrp], [38], and fast Bayesian matching pursuit (FBMP) [39].
all the subcarriers of an OFDM block, yielding a burst ofn this paper, similar to [28], [29], we also make use of the
very noisy frequency domain symbols that may significantfyee guard band subcarriers present by default in any OFDM
degrade the performance of the coded modulation schersgstem to estimate and cancel impulse noise. This workrdiffe
which is targeted to AWGN and to the nominal channel SNR:om [28], [29] as instead of employing CS based on convex
The effect of impulse noise on OFDM as well as comrelaxation methods to estimate impulse noise, we make a
munication engineering solutions based on impulse estimat collective use of the a priori statistical and sparsity infation
and cancellation has been widely studied and representstagether with the structure of the problem to obtain nearly
area of active research (see for example [16], [18], [19)). Foptimal estimates at low complexity.
the conventional concatenated error control coding based o
inner convolutional and outer Reed-Solomon codes, a tlmg
frequency interleaving is used in order to avoid that bIoclﬁ
of noisy symbols cause the Viterbi decoder to introduce long
bursts of decoding errors, which may be beyond the cornectio In practical OFDM systems, several subcarriers are not used
capacity of the outer Reed-Solomon code. Alternativeljneso t0 send modulation symbols. For example, in IEEE 802.11
techniques try to detect the presence of impulses and pypsste subcarriers at the edges of the channel band are not
their location and use that to enhance the performance_u,ﬁed in order to avoid to spill inter-channel interference t
popu'ar method Consists of detecting the presence Of %Wacent channels [30] AlSO, in DSL the channel attenaatio
impulse using some thresholding scheme, and erasing fig@r the lower and upper edges of the spectrum is typically
whole OFDM block in order not to exceed the error correctio¥e!y strong, such that the bit-loading algorithm, remiaisc
capability of the channel coding ([20] and the referencéd the information-theoretic “waterfilling” power allodah
therein). Such schemes require the use of channel cofidd] [32]). allocates zero rate and zero power to these sid
able to handle errors and erasures [21]. When the physigdpPcarriers.
layer is not able to deal with erasures through forward error We shall exploit these unused/null frequencies in order to
correction, it tags the uncertain OFDM symbols and let thefiPtain a signal-free subspace onto which the impulse noise
to be handled by higher protocol payers. Some recent DSRN be projected. Although this projection is rank-defitien
standard contributions have proposed retransmissionsvay a (dimension of the null subcarrier subspace is less than the
to deal with these cases [22]-[24]. However, it is apparefltmension of the total space), exploiting the fact that the
that handling efficiently the presence of impulse noise at timpulse noise is sparse in the time domain, we can still lpint
receiver, instead of requesting retransmissions, can bg vestimate the locations of the impulses and their amplitaets
desirable from the viewpoint of spectral efficiency, delay a eventually subtract these estimates from the receivedakign
simplicity of protocol operations. Estimation is obtained with a new low complexity scheme,
Precoding techniques and frequency domain algebraic Ry exploiting the structure of the projection matrix whigh,
terpolation techniques inspired by Reed-Solomon codirty afUr case, is a submatrix of a unitary DFT matrix obtained
decoding over the Comp|ex numbers were proposed in [29},/ extraCting a block of adjacent subcarriers. Furthermﬂa
[26] to cope with the very same problem. The drawbacks 8fS0 exploit the a priori probability distribution of the jralse
such techniques are that: 1) they require a certain Stmct@pise, which is assumed to be Bernoulli Gaussian with known
of the null frequencies or pilots; 2) they are very sensitii@arameters.
to background noise and rounding/quantization errors due t
finite precision arithmetic (in fact, these schemes reqaire Il. TRANSMISSIONMODEL
number of non-trivial intermediate steps to ensure that the
impulse noise decoding algorithm does not malfunction & ﬂ}n
presence of AWGN and/or rounding errors [25], [26]).
In [28], [29], impulse noise is modeled as a sparse signal
in the time domain and compressive sensing (CS) based y=Hx+e+z, (1)

Our Approach: Utilizing Null carriers for Impulse Noise
etection and Cancelation

The discrete-time complex baseband equivalent channel
odel for the OFDM signal under consideration in this work
:im be written as
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wherey € C" andx € C" are the time domain OFDM even a small SNR decrease yields a dramatic increase of
receive and transmit signal blocks (after cyclic prefix realo the post-decoding error probability. In Section VI, inder

[11], H is ann x n circulant matrix induced by cyclic prefix to evaluate our scheme and compare with other approaches
precoding, with first columrh is formed by the zero-paddedproposed in the literature in a way independent of the specifi
channel impulse responde;, is the complex white Gaussiancoded modulation scheme employed, we will express the link
additive noiseCV/(0, NoI), ande is the impulse noise vector performance in terms of achievable rates with a Gaussian
with i.i.d. Bernoulli-Gaussian entries, i.e., the compaise random coding ensemble, under different assumptions on how
e; are statistically independent random variables disteibutthe impulse noise is handled by the receiver. Expressing
as a Gaussian mixture whose distribution has a mass athe system performance in terms of information theoretic
with probability 1 — p and a Gaussian pdfN(0, I;) with achievable rates is more meaningful than the classical BER
probability p. Thus, the support (set of non-zero componentsf some uncoded modulation (e.g., [9],[20],[21],[25])ne

7 has Binomially distributed cardinality with megm. We virtually any modern wired or wireless system make use of
define the channel SNR &5, /N, and the impulse to noise power channel coding at the physical layer.

ratio (INR) asIy/Ny. Letting F denote then x n unitary

DFT matrix with (k, () element[Fli, = —-e™/>™/" with lIl. PROBLEM FORMULATION

k.t € {0,...,n — 1}, the time domain signal is related to

the frequency domain signal by — F"x. The circulant Consider the OFDM frequency domain channel model (2).

convolution matrixH can be decomposed & — FHDF, We use the sparse nature t_afto estlm_ate it and then re-
move it from the received signal. As in [25], [26], we use

whereD = diagh) andh = /nFh is the DFT of the channel e subcarriers free of modulation symbols to estimate

impulse response. Demodulation amounts to computing the” " .
DFQI' P puting pecifically, we assume that these form a block of consezutiv

subcarrier indices (with subcarrier index taken modujcas
y = Fy=Dx+z+ Fe, (2) usually done in periodic DFT). We construct the time domain
transmit signal ax = F"S,d, whered is frequency domain
data symbol vector of dimensioh < n and whereS, is
an n x k “selection matrix” containing only one element
%ual to 1 per column, and with = n — k zero rows. The

wherez = Fz has the same statistics of Without impulse
noise, it is well-known that (2) reduces to a setroparallel
Gaussian channelg; = h;@; + %, fori = 0,...,n — 1.
In the presence of the impulse noise, the performance o

) . pOsitions of the single 1s in the columns $f indicate the
standard OFDM demodulator may dramatically degrade SIN&8bcarrier used for data transmission in the OFDM system.
even a single impulse in the OFDM block (1) may causg

S . ) The remaining subcarriers are either not used, or used for
significant degradation to all frequency domain symbols Wansmitting known pilot symbols in the frequency domain,

the plock, after DFT demodulauo.n. This can be epramgd kWhich are not shown here since we do not deal with channel
celns”dze‘rmg thif‘ﬁt thas ha.s [Z] impulses with p_robablllty estimation. These known pilot symbols can be subtracted fro
(IZI)p (1 -p) . Conditioned on|Z], the variance per the received signal at the receiver, such that for the pearpos
frequency domain component #l7,. Thus, forlo/n > No, of this paper pilot symbols are equivalently treated as zero
even a single impulse may cause significant degradations¥imbols (i.e., unused subcarriers). We denot& tiie matrix

all the frequency domain symbols. The probability that thgith a single element equal to 1 per column, spanning the

OFDM block contains at least one impulselis- (1 — p)".  orthogonal complement of the columns$f. The frequency
For example, let us consider the casegef 1074, n = 1000, domain vector is thus given by

Iy = 40 dB, Ny = 0 dB, and&, = 20 dB. In this case, .

the probability that an OFDM block is corrupted by at least y =Fy =DS,d + Fe + z. ©)
one impulse is equal t0.0952. Thus aboutl0% of the time, projecting onto the orthogonal complement of the signal
a block of» OFDM frequency domain symbols is corruptedypspace, we obtain

by one or more impulses and the nominal SNR20f dB

is reduced by at leasf;/n = 10 dB. As a consequence, y =8Ty=S"Fe+7. (4)

if the underlying coded-modulation scheme is designed fRfotice thaty’ is a noisy rank-deficient projection of the

the nominal SNR of 20 dB (|.e., taking only AWGN N0 jimensional impulse noise vector onto a subspace of dimen-
account), the link post-decoding frame error rate will NCUinn 1 < n. The AWGN 2/ is a subsampling of;, and

a dramatic degradation, since about 10% of the symbols Wlerefore it is an AWGN vector of length: and variance

be significantly noisier than the target SNR for the giveﬂ,0 per component. For later use, we shall denotesthe n

coded modulation scheme. This will be particularly evide ojection matrix by® —= [¢ ¥,] = STF, where,
for systems employing powerful “modern” codes, such %érenotes the-th column of\Il.hWh;ennthe supp(’Jrf of e i;
Turbo Codes or LDPC codes [27], which perform close nown. we can equivalently write (4) as

capacity but have a very shawmterfall behavior, such that
y/ =Wrer + Z/7 (5)

2Although the channel impulse response is of lengthl wherev denotes where ¥ denotes the submatrix formed by colum{\$- .
I

the length of the cyclic prefix, typically significantly lesBan n, here h . . .
denotes its zero-padded version obtained by appendingu — 1 zeros, in  J € 7} of ¥, andez denotes the vector of dimensiqa|

order to form the first column cH. containing only the Gaussian not identically zero comptsmen
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of e. Let € denote the resulting estimate efproduced some Given our model, we have(Z) = p’ (1—p)"~7 with J = |Z|.

reconstruction algorithm with inpyt’. Then, we can subtract It remains to calculate(y’|Z). From (5),y’ is conditionally

the estimated impulse noise from the received signal sumh tiBaussian givert, therefore

the signal actually fed to the channel decoder is given by L Ml
exp (—N—Oy DIT G )

y =DS,d +F(e —8) + z. (6) p(y'|T) = detTa ) ,
z

The decoder treats this signal as if it was the output of @, 5 5 constant multiplicative factor. The denominator in
St?”dafd OFDM system W"_[hOUt !mpulse noise. Note that(i‘Z) involves the summation over all the possible supports
naive OFDM receiver that simply ignores the presence of G-, js computationally prohibitive. We discuss differen

impulse noise, would treat (3) as the output of an OFDM,n04ches in the following subsection that intelligemtipid

system with Gaussian noise. It is apparent that the gaineof {is complex computation exploiting the sparsity of thensig
proposed scheme is significant if the variance per component

of the residual noise,

(13)

C. Edtimation of the support Z

Instead of summing over al2™ possible supports, we
is significantly less than the variance per component of tigensider only the set of the most probable (or “dominant”)
corresponding frequency domain Gaussian plus impulsenosipports. This is obtained by considering the problem of

v=F(e—¢€)+z, (7)

vectorFe + z. support estimation from the observation model (4). Support
recovery (i.e., finding the non-identically zero elemenis)
IV. OPTIMAL IMPULSE NOISE ESTIMATION a sparse signal observed through a rank-deficient projectio

The MMSE estimate ok given the observatiory’ mini- and possibly in additive noise is the central problem in the
mizes the covariance of the residual noise; &, and is given CS literature. Next, we review some of these techniques and

by compare them with our new proposed algorithm that exploits
LA '
62 Elely’] = mey/)E[elyl’I]’ 8) the particular structure of the pr_ob.lem at _hand.
7 1) CS based on convex relaxation: Starting from (4), we
n use the standard convex relaxation tools [40] - [45] to

. C
where 7 ranges over the set of possible support sets af%gtain an estimate of the sparse veatorThree alternatives

fﬁengmag?/\é? aquIIualt—II%Cve(i/aer; ti)teisscgvegrgn;/vt?]aia% rel\;a;luewidely proposed in the literature to implement sparse digna
) ' PP 9Y€estimation in the presence of noise are reviewed in the

n, the computational complexity required by the brme'forcf%llowin
evaluation of the MMSE estimator is prohibitive (as therd wi a) %andes—Romberg—Tao SOCP etimator: The original

be 2" such support sets). The idea is to approximate equatlggcond—Order Cone Programming (SOCP) problem proposed

(8) by expiating the_speaal struct.ure of the problem in Ord%y [40], [45] is formulated for the reals. In our notationisth
to reduce computational complexity. is given by

A. Calculating Elely’, 7] min |[&; s.t. ||y’ — ¥, <, (14)

Conditioned on the suppoff (that is assumed to follow for some small enough. This is a convex problem for
Gaussian distribution)y” and ez are jointly Gaussian (e poth real and complex vectors, but in this form belongs to
(5)) and therefore the conditional MMSE estimator coinsidghe SOCP class only for real vectors. In order to obtain a

with the linear MMSE estimator, given by convenient formulation for complex vectors, we use “sum
. A b Ao a1 of norms” SOCP approach [46] and define the additional
ér = Elezly', Z] = FO\PIE‘I’IY 7 ) variablest, . ..., 1. The resulting SOCP problem becomes
where S
1 T min t;
Su, 2 B )T =T+ £ e (10) = (15)
No No ~ . , -
_ _ _ _ _ st |8 <ti, Vi=0,....,n—1 A ||y — 8|y <e.
Then, lettingSz denote the selection matrix of dimensiorx ) )
|Z| such that each columais all zero with a single element D) Dantzig selector: An LP estimator was also proposed
equal to 1 in the position of thieth component of the supportfor real vectors which is as follows [41]
T, we have min [[&]|; s.t. |y’ — ¥8|_ < \. (16)
I
Elely’,Z] = Széz = FOSI\I/QZ\}}I)”. (11) For complex vectors, we arrive at a different SOCP given by
0
n—1
B. Calculating p(Z|y’) min Z ti (17)
Using Bayes’ rule, we can write =0 , ) N
' [Dp(D) v/ [D)p(T) st.le;| <ti, Vi=0,...,n—1 A |y; — ;€| < A.
Py |£)p Py |£)p
p(Zly') = ) = Sy [Tp(T) (12) where®; is theit? row of .
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c) LASSO: In [42], the following convex relaxation Energy of all carriers except muliple of 4
method was considered which is known as LASSO [43] ‘ ‘ ‘ ‘ ‘ ‘

0.9y i

1 12 ~
min ) ”y/ - ‘1’9”2 + VHeHl- (18) 08l

The parameters, A and~ are related to the AWGN variance
Ny and are discussed, for example, in [41], [42], [45]. Either
one or a combination of the three above algorithms can be
employed to estimate the suppdrt

The drawback of the convex relaxation approaches reviewec
above is that they do not make use of any a priori statistical
information on the signal to be estimated, other than it is

Contribution
o
(%)

some arbitrary vector with a certain sparsity. Moreoveregi o1r
the highly structured nature of the sensing matixin the O o e am oo oor e
problem at hand,these methods do not perform as well as in Tones

the case of random selection of subcarriers over the whole Fig. 1: Energy of the columns (Magnitude square of the inner

signal bandwidth. : .
. ) product) of ¥ captured by the left and right basis vectors for
2) BCH-type Error Correction over the Reals. In the n=1024, m = 256, and{ = 2 = 4,

language of coding theory, the support recovery problem is
analogous to solving the “locator polynomial” to find thés an integer. Assume also that we haveonsecutive carriers
location of the errors. Building on this analogy, [25], [26]vhich we assume to lie at the edge of the b&ral this case,
replicates the BCH/Reed-Solomon framework over the regdnsidering the projected observation defined in (4), weewri
field and proposed a method to find impulse noise support (i.¢! = We + 2/, where¥ is anm x n submatrix of the DFT
the location of the “errors”) by polynomial extrapolatiofhis  matrix F, corresponding to a block af. consecutive rows.
method, however, is not numerically stable in the presehee oConsider the columns o with indices in the setF,, =
non-negligible AWGN component. Furthermore, the selemtio{o, 0,2¢,...,(m—1)¢}. The collection of such rows oF forms
of the free carriers is constrained by the required algebrai scaled version of the: x m DFT matrixF,, and thus span
properties, and it is akin of choosing the zeros of the codge column space d¥. In fact, spanning happens in a special
generator polynomial in a BCH/Reed-Solomon constructiofway. Note that it is not difficult to show that the magnitude
For example, it would be impossible to adaptively take advaborrelatiom/;j and P of ¥ is given by
tage of unused frequencies which may depend on the channel o,
frequency response and on the corresponding waterfilling | |, L, =17
power allocation. ‘ ¥l = M ( # ')

3) Fast Bayesian Matching Pursuit (FBMP): A fast mein(rg=31/m) |
Bayesian recursive algorithm, presented in [39], finds tiEBased on (19) we see that columpsnd j’ of ¥ are nearly
dominant support and the MMSE estimate of the sparsethogonal for large index distan¢g— j/|. As a consequence,
vector jointly, based on the Bernoulli-Gaussian priorsisThthis means that the columns of indicgse [rf, (r + 1)¢],
scheme uses a greedy tree search over all the combinati@ith » = [¢], are spanned by the columns of indieesand
in pursuit of the dominant support. The algorithm startshwit(;- +- 1)¢ (referred to as the left and right basis vectors) in the
empty active elements set. At each step, an active elemengjithonormal basisF,, defined above. This can be evidenced
added to the current set that maximizes the MAP-Gaussi@y Fig. 1 which shows that most of the energy of all columns
metric (13). This procedure is repeated till we reachctive (exceptF,,) is captured by the left and right basis vectors.
elements in a branch wheteis selected such that(J > s) This semi-orthogonal structure of ¥ leads to two obser-
is very small. The number of branches in the tree searghtions. First, we can get an initial guess at the impulse
is controlled by a paramete which governs the tradeoff noise location as follows: first, projegt’ on F,, to obtain
between performance and complexity. Contrary to standayd — F, y’; then, the location of the elements of’
convex relaxation techniques, this algorithm makes use With largest magnitude indicate (with high probability)eth
the a priori statistical information and reduces complekly neighborhood of the position of the impulses. We construct
employing a recursive implementation. clusters of sizel around these locations (details are discussed

in Section VI). Thus, after this preliminary estimation pha
V. EINDING DOMINANT SUPPORT USINGSTRUCTURE we can identify a set of clusters that contain the support of
. he impulse noise, with high probability.

None of the methpds mer_moned above make use o_f theThe second observation is that the semi-orthogonal streictu

structure of the sensing matrik. It turns out that using this allows us to calculate the MMSE estimate (8) in a divide-

structure Is very “S?’f“' n reducing the_ complexity invaiva and-conquer manner, assuming that effectively the supgort
calculating (8). To simplify the exposition, assume that= ¢

(19)

4The consecutive selection of carriers is motivated by thecsire of the
3This is due to the fact that the carriers belong to a contisuset of guard band. The carriers could also be split between thesedfjthe band
frequencies in the guard band. for the carriers are still consecutive (mad.
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contained in the set of clusters identified as described@boand (26) into (12), we obtain
We start by illustrating an example. Suppose that the suppor

1

7 of e is contained in the union of two disjoint clustef3; Lz ~p”(1—p)" 7 exp <—|Y/|2) :

: : . No

and 5, which are known to the estimator. In particular, we . B

letZ, 2 TN, andZ, 2 TNQ,, such thal = 7, UZ,. As a exp (*N%ymzwzl y') exp (*N%,Y'HEWQY'>

consequence, we have; = [Pz, ¥z ]. Any pair of columns det¥y_) det¥y )

. 1 2

¥, and ), with j € ©; and j' € Qo are mutually near- 1

orthogonal (if two clusters are very close to each othely the =p”(1—p)" 7 exp (F|y’|2) p(y'|T1)p(y' | T2),
0

can be lumped into a single cluster). Therefob@,1 w7, = 0.
where, consistently with (13), we define the support Likeli-

hood Function

exp (— N%)YIHEE,; yl)

. . . p(y'|Ti) = ] (27)

In order to calculate the likelihood functigriy’|Z) in (13), et(Xe,,)
we need to calculate the inverse and determinan®ef,  Generalizing this derivation in the case ofdisjoint clus-
defined in (10). Using the matrix inversion lemma, we Caggrs Oy, ..., ., whose union contains the suppdit letting

write 2\1, as shown in (20) at the bottom of the page Wherg,L N, J; =|I;], and ¥z, denote the submatrix of
con5|stently with (10), we lebg, =1+ 100 W7, ¥, for obtained by taking the columng;, with j € Z;, we obtain
i =1,2. Using semi-orthogonality, (20) can be approximatesh approximation of the unnormalized a posteriori support
as shown in (21) at the bottom of the page. By utilizing theistribution in the form
matrix inversion lemma and some simplification, (21) leads 1 c Ji
to (23) which is valid up to an error term of ordéf(L). It L7 ~ (1—p)" exp C—||y’|\2 H . p(y'|Z;). (28)
m No - 1— p
follows that 1

I mse-1 Ly e, b me-1 o/, 1 He-1 ., Summing over all possible suppoffsncluded in the union of
NV Yy.¥ ~—F0||y I TN Do YINY ZvnY e clusters);, we find the posterior probability normalizing
e . o (24)  term as shown in (29) at the top of the next page, where we
Similarly, the determinant oy, is given by wrote the sum of products as a product of sums. Eventually,
det(E.I, using (12), the (normalized) posterior support distribnati
I under the assumption that C (J;_, ©; is obtained in the
- det( \I:Zl o2 \1112\1112) form .
c _p_ /Ii
- det(l fo Tzlql;l)det( F oy \111211;22*11) p@ly') =] (1‘p) p,m : . (30)

Ji
=Y (15) 7 ey

Notice that the denominator in the above expression inglve

det <I + No \Ilz1 \IIL> det <I + F‘I'Zzzizl \Ilzz>

Iy the sum over all the possible suppdffsC 2, i.e., the subsets
(I TN \Ilzl ‘I’L) det (I TN ‘1’12‘1112) (25) of the support included in the clust®;. This sum containg”
_ det(E\I, ) det(E\I, ) , (26) terms apd calculating all of them can also_ be.computgtipnall
z expensive. Fortunately, for practical applications of ilse

where to obtain (25) we again used the fact trat and ¥, noise,p < 1, and thus the weighting coefficie t— %

, A
are cIosg to orthogo_na_l. De”"“”g mﬁ_ N p(y'|IT)p(Z) the becomes negligible for large values @f. For example |n the
unnormalized a posteriori support distribution and using (24)

I, I, -1
S = (1+ _O\III\III) ( \I:L\I:Il 0\1112\1112)
_ 1 _ _
- 3 by \1;7_2< “\11222‘1, \1112) 200> (20)
s o~ 1oLy (1 IO\I: U _1\11 Dg (11 loghy _I\I:H 21
‘I’I ~ - NO Il + Il Z1 Il NO Z2 + NO IQ Z2 Ig ( )

—1 —1
1 1
H 0 0 o H H
_I + <I NO \Ill'l < NO ‘Ilzl ‘I’Il> ‘III]> + <I - FQ‘I’I2 (I + FO‘]?Iz \111'2) \Il12> (22)
-1

Iy W) Iy H
S <I+ FO\I:L\I/L) + <1+ L, (23)
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p(y') =

>

A

-1
(1—p)"exp <CTO

—1
(- e (SIVIR)

—1
(- e (SIV1E)

|y’||2>

(29)

case wherp = 1074, the value of the term is of the orderB. Cluster Formation

—12 ! __ i . . . .
107°% for J; = 3. Thus, we can truncate the sum to include g cjysters are constructed using the indices obtained fro
supports of limited size such that the sum in the denomma@m in the above step.

contains a polynomial number of terms in the cluster dize
(further details are discussed in Section VI).
Using again quasi-orthogonality, we can easily show that

(7)

\11;12‘1,111
H —1
A Io cve-1._ Do ‘11122‘1’1 /
ér = FO‘I’IE\I’IY ~ N f 1y (31)
L2 >H
Letting Sz = [Sz,,Sz,,--.,Sz,], where the selection matri- (&)

cesSz, are the vertical slices of columns 6f corresponding
to the support positions i#;, and using (31) into (11), we can
write

Iy < _
Elely’. 7] = - >_Sz¥12q, Y (32)  (iii)
=1
Finally, combining (30) and (32), we obtain
& = > p(Ily)Elely’, 7]
A
Ji B —1 ,
~ o e Xz, (%) p(y IZi)SIi‘I’;iz‘I’Iiy, (33)

No >z, (%)“ p(y'1Z:)

The argument of truncating the sum to include supports of
limited size for the practical small values pfis valid here as
well.

To summarize, we have obtained an approximated expres-

=1

Let 8 denote the index of the largest value of.

As it is very likely that an impulse is located in the
neighborhood of the column o¥ indexed byg¢, a
cluster() is formed around witf) = {3¢, 8¢ + 1, ¢ +
2,...,B0 £ (£2)}, where L = 2¢ — 1 is the length

of the cluster. The effect of choosing different lengths
of the cluster on the performance of the algorithm are
discussed in Section IX.

If two constructed clusters are overlapping or close to
each other (i.e., the difference between the last index
and the first index of two clusters is less théﬂg—l),
they are joined into one big cluster. Thus, this results in
formation of clusters with variable lengths.

The above two steps are repeated tillclusters are
formed. Notice that/ follows a binomial distribution. In
practical applications, the mean is very small. Hence,
we can use the Poisson approximation of the binomial
probability mass function, i.eP(J = ¢) =~ %e*’m.

For example, fon = 1000 andp = 10~* we havepn =

0.1, yielding P(J > 1) = 0.0952, P(J > 2) = 0.0045,
P(J >3) =15x10"% P(J > 4) = 3.8 x 1076,
We select the value of for which P(J = ¢) > 107°.
Hence, in this case; can be safely limited to supports
of cardinality up t o 4.

sion for the MMSE estimate of the impulse noise vector thit Evaluating the impulse noise estimate for each cluster

can be calculated in a divide-and-conquer manner, by trgati

For clusteri with indices2; and of lengthL;, > L (As the

each cluster separately. This is possible provided thatame clusters are semi-orthogonal, these calculations can beido

identify the set of clusters); that contains the suppoff.
The above discussion motivates the development of orthedgon (i)
clustering algorithm for impulse noise estimation which is
described in the following.

VI. ALGORITHM
A. Initial Guess

First of all, an initial guess of the impulse noise locations
is obtained. It consists of the following steps. B
(1) Projecty’ onF,, to obtainy” = F,,y’. (i)
(ii) The elements ofy” with large magnitude determine
(with high probability) the neighborhood of the position
of the impulses.

parallel),

Calculate the support likelihood functiop(y’|Z) for
support of cardinality/; = 0,1,..., J/** using (27).
As J; also follows binomial distribution,/™** is ob-
tained using the Poisson approximation, i.B(J; =
Jmax

Jmex) L oopn - Similar to ¢, JP* s also
selected for whichP(J; = J™a) > 107%. Note
that this calculation will be performed for a total of
Ni=()+ (%) 4+ (dex) combinations.
Evaluate the estimate of the impulse noise using the
following expression (similar to (33))

So, (25) " o170 82,95, By v

e; = )

Sz, ()" p17)
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where &; consists of0s at all positions except fof; VIlIl. PERFORMANCEANALYSIS

and the summation is performed oulf terms. . .
In this section we compare the performance of the proposed

scheme with respect to other competing schemes for impulse
D. Evaluating the complete MMSE estimate é noise estimation/cancellation, as well as with a “naive” re
o ) R . ceiver that does not try to actively cancel the impulse noise
Obtainé by adding thee;s calculated in the above step agecq|) that the received frequency domain OFDM symbol after
follows (33) estimation/compensation is given by

TN & €i: y=DS,d+F(e—¢&)+z. (37)

In the following section, we discuss how the complexity af th

proposed algorithm can be reduced using the inherent steuct™0F Simplicity, we assume that the signal is restricted @nsp
of the partial DFT sensing matris. the same set of subcarriers € S, corresponding to the

positions of the 1s in the columns of the selection mafijx
for all systems under consideration. As discussed in Sectio
VIl. REDUCING COMPUTATIONAL COMPLEXITY I-B, such subcarriers may be determined by other system
nstraint€. The relevant channel output for a naive receiver
that does not explicitly compensate for the impulse noise is
obtained from (37) by setting = 0.

We have seen before that, in order to compute the MM
estimate knowing that the suppo#f is contained in the union

of disjoint clusters(;, is it sufficient to compute the terms g k I h hievabl ith _
p(y'|Z;) for support subsetg; € ;. This, in turn, requires Using known results on the achievable rate with Gaussian

calculating the inverse and determinanBag,, . In this section 'andom coding ensembles and minimum distance decoding

we will show that it is enough to calculate these quantitees f[47]: the achievable rate (expressed in bit per symbol, or
one cluster (say, fof = 0) and the corresponding quantitieéj't/S/Hz) is given by
for the other clusters can be easily obtained with littleraxt 1 |hi|2gi
computation. To this end, lety;, ..., -+, ;11 4 R= " Z log (1 + T) ’ (38)
and;, ., ---, ¥, denote the columns ofr €Sy ’
corresponding to théth andj-th clusters, respectively. Then,where &; is the energy per symbol allocated to tligh
it is immediate to see that used subcarrier, and? = E[|v;|?] is the variance of the-

th frequency domain noise component. We assume that the

Yjrk =Virk ©%n,,, k=01,...L-1, (34) transr?ﬂtter P):as knowledge of thepchannel frequency regpons

where® denotes element-wise product aﬂj@ji is a vector coefficients{|h;|?} and of the noise variance at each subcarrier
that depends only on the difference between the indicesd  o;. Hence, it can maximize® in (38) with respect to the
i, i.e., Aj; 2 |(j —i)modn]. In particular, for the case wherePOWer allocation{&;}. This yields the classical waterfilling

¥ is formed bym adjacent subcarriers placed at the edge §p!ution 1 a2
the transmission band, we have R=— Z {log (u : ﬂ , (39)
n
+

- 2 A _2r o AT ‘
Qiji_[eXp( w (nmm UAJZ) eXp( w UAﬂ)] " where the Lagrange multiplier (water level)is the solution
Now, assume that we calculate the invefsfglr and determi- of
nant det¥y_ ) for a set of columng; C €, and letZ; C Q; 1 Z {M _ ?f } —&,
denote the same set of columns (i.e., with the same relative n |hil? ], ’
positions in the set) chosen in theth cluster;. Then, In
Appendix A we show that

1€ES,

1€ES,

where []; denotes the positive part arfg). is the average
| y symbol energy. Our numerical results will be given in terms
—1 —1 )
¥ szj y = y/Aﬂz‘pZi YA, (35) of value of S.NR: EI/.NO in dB.
, , . For the naive receiver, we have
wherey) =y ©},,,, and

_ HipH _
detSy, ) = detSa, ). g V() = FElET+ Nol = (plo + o)l (40)

such thato? = ply + Ny for all subcarriers. Similarly, for

In other words, to calculate the terms appearing at the rumggy yeceiver that estimates the impulse noise and subtracts its
ator and denominator of thieth term in the sum with respect ostimate from the received signal, we need to calculate

to ¢ in (33), it is sufficient to pre-calculate the determinant
values de®y, ) and the inverse matriceSy,!, for a set of cov(v) = FE[(e — &)(e — &)"]FH + NI (41)

. . . . . 0 . .
supportsZ, of limited siz€ contained in a suitable definedyere, the challenge is to calculate the error covarianceixnat
reference clustef)y, and then use (35) and (36) to obtain th@[(e — &)(e — &)1, sinceeé is, in general, the result of a

terms for arbitrary clusterg;.
61f the set of unused subcarriers can be set freely, then itemaknse to

5See discussion on the fact that the sums can be truncategpporssi of — optimize such set for each specific impulse noise estimatibeme. However,
small size, for practical values ¢f < 1. this goes beyond the scope of this paper and it is left foréuimvestigation.
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complicated sparse signal estimation scheme. In genéial, t For a smart receiver that explicitly estimates and suldract
can be obtained by Monte Carlo simulation. More details dhe impulse noise (as the proposed scheme), we introduze als
the error covariance matrix for the scheme proposed in ttds“genie-aided” upper bound, beyond the rate in (39) that
paper are given in Section VIII-A. requires no information on the residual interference latel

It has been observed that the naive receiver performance & given OFDM symbol at the decoder input. This bound
be improved by estimating the level of impulse noise powéssumes perfect knowledge of the number of impuldes
present in any given OFDM symbol by using the power offfecting each OFDM block. Hence, we have
the unused subcarrier, i.e., from the observatiog’of STy, - 1 " /n |B-|26-
and by incorporating this information in the decoder. RE ot = - SN (S)Ps(l —p)"° log<1+ G;(S)Z), (46)

Notice also that this “informed receiver” that makes use €8s 5=0 '
of the knowledge of the impulse noise level in each OFDMheres?(J) is the i-th diagonal element of the conditional
block is akin a soft version of the receiver that erases th@nocovariance matrixov(v||Z| = J). The rate RS can be
OFDM blocks [20], [21] (in this case, the receiver is told ynl optimized with respect to the power allocation by solving
“Good” or “Bad”, and the bad symbols are treated as erasures)nvex optimization a problem formally identical to (44),
Here, for simplicity, we assume that the receiver is givem tlonce the coefficients?(J) are known. Next, we focus on
exact knowledge of the number of impulsés- |Z| presentin the calculation of the residual noise varianegsand o2(.J)
the OFDM symbol. The resulting conditional noise covare@ndor the system at hand.
matrix is given by

cov(v||Z] = J) = L Z (Z féf£H> Ip + NoI, (42) A Approximate Residual Noise Covariance using the Orthog-

(7}) T:|T|=J \LeZ Ona.lity of Clusters
with diagonal elements? = JI, /n + Ny, independent of. ~ We compute (approximately) the quantitiey and o7 (/)
Since J is a binomial random variable, the achievable rate i#Sing the orthogonality of clusters for the case when the
this case is given by impulse noise suppoff is known. Recall that = Szez (see

o definitions in Section IIl). We start by calculating the arro
i 1 "~ (n _ hi|*&; covariance matrix resulting from the MMSE estimate egf
RENe == *(1—p)"*log( I+———] . g

- (S)p (1-p) og( + )

naive = = sly/n + Ny givenZ andy’. After some simple algebra, we obtain
(43) 1 1 -1
The above rate cannot be maximized by straightforward water cov(er —éz|7) = <I_I + F\IJ%\III) . 47)
filling, since the number of impulses occurring in any OFDM 0 0

symbol, i.e., the random variablg, is unknown a priori to As before, assume thitis included in the union of disjoint

the transmitter. On the contrary, the transmitter can dpém clustersy, ..., Q., and let agairZ; = ZN ;. Then, we can
the input power allocation by solving the convex optimiaati write ¥z = [¥z,,..., ¥z ]. Replacing this expression into
problem: (47), we obtain
: 1 : Ay A o AL
max RESMNC st = E <&, E>0Vi. (44 1 12 le
naive n lGZSI g x g ( ) A21 A22 - AQC

cov(er —éz|Z) = E
This can be solved by the standard method of Lagrangian : :
multipliers and KKT conditions [48]. Details are omittedrfo Ay An - A
the sake of space limitation. Furthermore, for the prafifica, hare

relevant case of large and smallp, the already mentioned . Lo o
Poisson approximation of the binomial distribution allotes A — I+ ¥ ¥z, =
easily calculateP(J = s) = (")p*(1 — p)»* ~ B2l empn, Y LY, i Fj

s!
and truncate the sum with respect4do the first dominant _. . .
P Since the clusters that are disjoint and therefore semi-

terms. ) __orthogonal, we approximate
As mentioned, several current proposals to deal with im- Y
pulse noise in OFDM (e.g., for DSL, and Powerline Com- W7 ¥z, ~0 for(j—i)modn>Q, (49)

or some suitable integery, which is a parameter that
many OFDM blocks and introducing erasure of the symbo ' L
. ) verns the accuracy of the approximation and allows us
corresponding to OFDM blocks corrupted by the impuls] y bp

. . significantly reduce the computation complexity. In arde
noise. Such methods yield rates not larger than (43). In fa% evaluate the covariances of interest, nametyi(e — &)
the erasure technique can yield at most the rate ' '

munications), consist of interleaving long codewords ov%Q

and cov(e — é||Z|] = J), it is sufficient to perform the
erasure 1—p)" hil2E; corresponding expectation with respect to the suppoive
naive ! Z log (1 + L) ’ (45) have
n NO

i€S,

which is strictly less thamRe™ in (43).

naive

cov(e — &) = Zp‘](l —p)"7Szcov(er — é7|T)SY, (50)
T



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. X, NO. X, JANUARY2014 10

where, as usual/ = |Z|. This expression is generally hard

to compute, although the sum can be truncated to include  °* ‘ ‘ ‘ !
only supports of small cardinality, for sufficiently smail 5.48M e o
i i.e., includi ly the di | blocks of ANGR el EEY Sy
Letting @ = 1, i.e., including only the diagonal bloc so sark '-!--l::g-_-_-g
cov(er — éz|Z), and lettingSz = [Sz,,...,Sz,], we obtain % P
the simplified approximated expression < %0 ‘\ A /C-\:gal);icfal
I N -Ref
covle — &)~ Y p'(1-p)" 'Srdiag(Arl,... A SE 2% e
z S 544 e b OomMP
c '4 = = = CR
. — ] _ ! — Naive
=>_ > p"(-p*lSrAGISE. (81)
i=1 I 5.42(36 oK
3.4
where L denotes the cluster size. Finally, the sought residual 54| ° 0% 0t \\
noise covariance is given by o = = o Yy 1
Probability of impulse, p X107

cov(v) = Feov(e — &)F" 4+ NI, (52)
Fig. 2: Comparison of the achievable rate of the uninformed

and o7 is the i-th diagonal element. For the conditionaleceivers as a function of the probability of impujse
residual noise covariance givéh| = .J, we have just to limit

our summation to the supports of given cardinalityi.e.,

1 10° ; ; ; :
cov(e—é||Z| = J) = -~ > Sgcov(er—ér[T)s%. (53) [TTTTTTooms - e e
(J) :|T|=J =l =FBMP
10" F = @ = Proposed |{
Again letting @ = 1, we obtain the simplified approximated omP
expression
5 10" £
1 - 2
cov(e—é||Z| = J) ~ — Z ZSLA#SE- (54) £ L.m-@--E-p-p--E--m-al,
() T:\Z|=J i=1 T
Unfortunately, this expression cannot be simplified furthe
. ; I S 0--0=--0-0--0--0-0=0
since when we constraifiZ| = J, then the cardinalities 107 =0 7 @7 =@ " "0 = O
of the partial support$Z;| = J; are constrained to satisfy
Yoo Ji = J with 0 < J; < L. Hence, we cannot sum "

independently over the partial suppotts, unlike in (51). 0 02 bromabilty of mpulse, p 08 10,31
Finally, the sought conditional residual noise covariaige
given by Fig. 3: Comparison of the mean runtime of the uninformed

. H receivers as a function of the probability of impulse
cov(v||Z| = J) = Fcov(e — é||Z| = J)F" + NoI, (55)

andco?(J) is thei-th diagonal element. _ S
the solution of the convex optimization in the case .bf

IX. SIMULATIONS known (43) depends only on the coefficientd and o?(J)
respectively and not on the channel frequency response.
In the following, we first present a comparison of different
%c%;orithms with respect to achievable rates and mean rentim
the uninformed and the informed cases (derived in Sectio
), followed by the effect of different parameters on the
erformance of the proposed algorithm.

We consider a system with = 1024 subcarriers per OFDM
symbol andm = 7 = 256 null carriers at the edge of the
transmission band. The channel SNR is equal to 20 dB. T
Bernoulli-Gaussian impulse noise has probabilityanging Vil
from1x107°to 1 x 1073 (i.e., approximately one impulse per
100 DMT symbols to one impulse in every DMT symbol). Wg
assume that the average power of the impulse noise process,
given by ply, is constant, i.e.]o is inversely proportional to A Comparison for the uninformed receiver case
p. This reflects a scenario where more catastrophic events are _ _
rare, and less catastrophic events are more frequent, widgh In this sub_sect|on, we compare the performance and runtime
be meaningful in practical settings. We gd = 10 for which  Of the following receivers.

INR changes fron60 dB to 40 dB for p ranging froml x 10~° « Naive receiver (no impulse noise estimation),

to 1 x 103, respectively. A frequency-flat channel response is « Genie-aided receiver (this is the upper bound (bench-
assumed, i.eJh;|? = 1 for all i (subcarriers). In this way, the mark), i.e., the case whefl is perfectly known and
results are independent of the specific channel response and MMSE is used for estimation of impulse amplitudes),
focus on the impact of impulse noise and gains achieved by. Receiver that calculates the approximate residual noise
smart receivers with estimation/cancellation. Thankshig t covariance analytically using the orthogonality of cluste
assumption, the waterfilling power allocation (39) and also (given in (55)) for the case when is known,
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5.49 . . . . 5.484
83
5481~ TAAA—A 54821
LA™ -
. - gaw -
. e okt EE T
547} R 5.48
. Genie-aided
546t * < A Analytical _ 5478
g . CR-Ref g
L s545f e = W = Proposed 2
8 N = @ = FBMP 8 5476
o) LS o)
2 re OMP 2
@ S44r gg = = =CR € 5474
543 5 — Naive I
4.8 L 5.472 Genie-aided
46 q —o—1L=3
5.4214.4 s~ b -e-L=5
0 05 1 N 5471 . 0~ L=7
5411 XlO’g -~ Bl O L=9
: : " 5.468 ; ; ; ; ; ; ; ;
0 0.2 0.4 0.6 0.8 1 0 1 2 3 4 5 6 7 8 9

Probability of impulse, p x10° Probability of impulse, p 4

Fig. 4: Comparison of the achievable rate of the informeegig. 5: Effect of the cluster length on the performance of the
receivers as a function of the probability of impujse proposed algorithm.

o Proposed smart receiver (impulse noise estima- 1™

T
——L=3

tion/compensation with our orthogonal clustering e -L-s
algorithm), -0-L=7
« Other smart receivers (different impulse noise estimation ~ 10™/—>-=° g0
methods, including(i) CR [28] that uses CS based on o
convex relaxation (withe = {/No(n + +/2n)) to find g 0 S N o -—m=@===m0
the impulse support(ii) CR-REF [29] that is similar g w0 RN - o mmm-O--==-0
to [28] but introduces a support refinement stage (basec o _LemTTT
on a priori statistical information) followed by impulse mﬂgz” o
amplitudes refinement using MMSE;:) OMP [37], and /
(iv) FBMP [39]. FBMP is implemented with number of
greedy searched)) set t010). - ‘ ‘ ‘ ‘ ‘ : : :
The waterfilling power allocation (function of the coeffi- e

cientso?) is computed for the uninformed receivers (that do
not know the number of impulses in each OFDM symbolfjig. 6: Effect of the cluster length on the mean runtime of the
using (39). The achievable rate for all the receivers istgtbt proposed algorithm.

versusp in Fig. 2. The performance of the receiver that calcu-

lates the residual noise covariance analytically is quibse .

to the genie-aided receiver. This shows that the residuaknoOPtimization problem (44) foRZ L5 given in (46). For each
covariance derived in Section VIII-A using the orthogotyali Valué of p, the binomial probability is calculated based on
of clusters is a good approximation of the actual noise. THae Poisson approximation withf = 0,1,---,J™% where
performance of the proposed algorithm is quite close to FBMPe value of J™** is computed based on the inequality
while it outperforms CR and OMP easily. It can be observed(/ = J™*) > 10-°. Fig. 4 presents the achievable rate
from Fig. 3 that the proposed algorithm is faster than OM@ these informed receivers as a function of Comparing
and FBMP by more than an order of magnitude while thwith the uninformed case in Fig. 2, the performance of the
long mean runtime of CR indicates its high complexity. It i§aive informed receiver meliorates significantly as exgect
interesting to point out that for fixeal, the naive uninformed This improved performance however is still worse than the
receiver has constant performance (shown as inset in FigSpart uninformed receivers. The performance of the informe
due to very low achievable rate as compared to other recivetmart receivers is marginally improved as compared to the
since its rate depends on the average impulse noise poWginformed case.

(pIp) as shown in (40). This indicates that it is not able to

take advantage of the localization (sparsity) of the impulg Effect of the length of cluster

noise. . . . o
As mentioned in Section VI, the cluster length is fixed at

_ ) _ L =2¢—1 =7 for the current setting. In this subsection, we
B. Comparison for the informed receiver case explore the effect of choosing different initial clustendghs
The achievable rate for all the informed receivers (thdt € 3,5,7,9. Fig. 5 plots the achievable rate of the proposed
are provided with the information of number of impulsealgorithm in this case. It can be seen that the rate of the
in each OFDM symbol) is computed by solving the convealgorithm increases with increase ih though there is not
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and simplicity, when compared to the conventional retrans-

a8 — g O N = mission techniques proposed in many standards. The impulse
g::: ARG ‘:)‘-'-""'"" noise is assumed to be sparse and thus any sparse reconstruc-

546 /$ Rl 1 tion algorithm can be utilized at the receiver. Unlike conve

saalmS’ L7 | relaxation methods or matching pursuit algorithms for sear
- |9 e reconstruction, the proposed approach makes a collectee u
§5-42’ R ‘ ‘ 1 of the structure of the sensing matrix (partial DFT matrix)
2 54t '/ : | in OFDM systems and a priori information of the impulse
x R _ noise distribution, resulting in a fast and efficient algfum.

538 R Comeaided Simulation results demonstrate the superior performahtieo

a6k ',' ::: Proposed | proposed algorithm.

L4 OMP
5.341 " = = = CR

; ; ; ; ; ; ;
100 150 200 250 300 350 400 450
Number of sensing carriers, m APPENDIXA

PROOF OFEQUATIONS (35) AND (36)

a
=]

Fig. 7: Comparison of the achievable rate of the algorithms

for different number of sensing carriers. The covariance&y,  for a set of columng; C Q; can be
written as ’
5 I
10 : : . . . . w _ -0 H
- -gg—Ref : : i E‘I’zj = I+ N W, U7
2 L FBMP ; mmmmTT T DT i 1
i W = Proposed| = = =T : = I+ FO (BA]"L © ‘I’Ii)(BAji © ‘I’Ii)Hv (56)
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W0 b e T ; ; : ; ] where Bx;, is a matrix consisting ofZ. identical columns
I o i Y, 8. Ba, = {’(/JAJ_I, Pa,, ¢Aﬂl- Its inverse can be
5 I T == -=- evaluated by using the matrix inversion lemma,
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Fig. 8: Comparison of the mean runtime of the algorithms for = I- No I+ ole,)

different number of sensing carriers. No\~Zi - Li
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where in the last IineBZ,i and Ba,, cancel each other

. out. As we are actually interested in the quaniity> ' v/,
much difference between the rates for cluster lendths 3. - S &z
ubstituting value oy’ in it
J

This gain in performance is obviously achieved at the exeenss

of higher complexity as presented in Fig. 6. y,HE:I;I‘y,
H H H
D. Effect of the number of sensing carriers m o Hy o y"(Ba,, © ¥z,)(¥7, ©BZ )y’
Fig. 7 compares the performance of the proposed algorithm No I+ ]{]_()()(‘I’%‘I’L)
with FBMP and_ OMP i_n terms of gchievable rate whgn the w1, " @’ﬂzﬂ)(‘I’L‘I’Z)(U’Zﬂ oy
number of sensing carriers is varied from64 to 448 with =YY o N [+ o oP o
increments of64. It can be seen that the performance of all 0 + N (P, ¥z,)

the algorithms improves with the increase in the number of = (y’ ®111*Aﬂ)”(y’ ©Ya,,)

sensing carriers with the proposed algorithm almost atigni I (v © i @ B )y @
with the perfect case after, > 256. Fig. 8 demonstrates the 0 ' 0 %a, ) (2 27)(y O¥h,)
superior speed of the proposed algorithm. It is an order of
magnitude faster than FBMP.
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X. CONCLUSION

. . . =y'1,2e va,,
In this paper, we propose a smart receiver that estimates 3 im %

and removes impulse noise in OFDM-based communicatiog;{jI 1 L PP f o .
schemes (like DSL and PLC). Such intelligent receivers ha ereXy, =I- No 1y fo (T W) (from matrix inversion

significant advantage with respect to spectral efficierfpyed, lemma).
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As for (36), starting from (56), we have

I
detZy, ) det(I + —O(BAN, ©Pr) (T © BZJ_J)

det

det{ I+

(I+ — (vl @BA )(Ba,, @‘I’IJ)
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(\III vl )) = det(E\I,Ii).
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