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Abstract—Orthogonal Frequency Division Multiplexing
(OFDM) is a modulation scheme widely used in wired
systems, including Digital Subscriber Lines (DSL), Powerline
Communications (PLC), and wireless standards (e.g., IEEE
802.11a/g/n/ac, WiMax (IEEE 802.16) and 3GPP LTE). While
OFDM is ideally suited to deal with frequency selective channels
and AWGN, its performance may be dramatically impacted
by the presence of impulse noise. In fact, very strong noise
impulses in the time domain might result in the erasure of whole
OFDM blocks of symbols at the receiver. Impulse noise can be
mitigated by considering it as a sparse vector in time, and using
recently developed algorithms for sparse signal reconstruction.
We propose an algorithm that utilizes the guard band null
subcarriers for the impulse noise estimation and cancellation.
Instead of relying on ℓ1 minimization as done in some popular
general-purpose compressive sensing schemes, the proposed
method jointly exploits the specific structure of this problem
and the available a priori information for sparse signal recovery.
The computational complexity of the proposed algorithm is
very competitive with respect to sparse signal reconstruction
schemes based onℓ1 minimization. The proposed method is
compared with respect to other state-of-the art methods in
terms of achievable rates for an OFDM system with impulse
noise and AWGN.

Index Terms—OFDM, discrete multitone, sparse signal recon-
struction, impulse noise, estimation, compressive sensing.

I. I NTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM), also
referred to as Discrete Multi-Tone (DMT), is a modula-
tion scheme widely used in wired systems, including Dig-
ital Subscriber Lines (DSL) [2], [3], Powerline Communi-
cations (PLC) [4], [5], and wireless standards (e.g., IEEE
802.11a/g/n/ac, WiMax (IEEE 802.16) and 3GPP LTE) [6].
Focusing on the single-link aspect of such systems, the physi-
cal layer must cope with linear distortion due to inter-symbol-
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interference (ISI), additive white Gaussian noise (AWGN) and
impulse noise, which may be generated by spurious sources
such as switching of electrical AC devices. While OFDM is
ideally suited to handle ISI by frequency domain transmission
and equalization using the Inverse Discrete Fourier Transform
(IDFT)/Discrete Fourier Transform (DFT) and cyclic prefix
approach, and the effect of AWGN is eliminated using an
appropriate level of coded modulation [2], impulse noise
remains as an important limiting factor. In this work we focus
on a scheme for impulse noise estimation and cancellation at
the receiver.1

A. Impulse Noise Types, Models and Approaches for its Re-
moval

Impulse noise can be broadly divided into two types.Ape-
riodic impulse noise (also commonly known asasynchronous
impulse noise in the context of PLC systems) is characterized
by impulses occurring at random times, with short duration
and high power (as high as 50 dB above the background
noise level [7]). In contrast,periodic impulse noise consists
of impulses of longer duration and occurring periodically in
time. In this paper, we focus on aperiodic impulse noise. It is
worthwhile to point out, though, that periodic impulse noise or
block-sparse impulse noise (i.e., bursty impulse noise [8]) can
be converted into the model treated in this paper by using time
domain interleaving of the OFDM samplesafter the modulator
IDFT [9]. This technique, referred to as TDI-OFDM [10], is
analogous to what is done in coding in order to convert a bursty
channel into a random error channel. Clearly, if the burstiness
or the periodicity of the impulse noise is explicitly taken into
account by the receiver, better performance can be achieved.
However, if the goal is to design a general purpose robust
algorithm that works for all impulse noise statistics provided
that the average number of impulses per OFDM symbol is
not larger than some target threshold, it is meaningful to
focus on aperiodic random impulses of short duration, and use

1In general, all mentioned systems are multiuser networks where multiuser
interference and multi-access coordination represent themajor problems to
be addressed in a comprehensive system design. Nevertheless, existing multi-
access protocols (e.g., OFDMA/TDMA in cellular or CSMA/CA in WiFi) and
signal processing schemes (e.g., for cancellation of cross-talk in DSL bundles)
have been developed and standardized in order to reduce suchmultiuser
networks to a set of non-interfering (or weakly interfering) links. This paper
focuses on a single link and addresses impulse noise from external sources
of disturbance, not taken into account explicitly by existing standardized
protocols. Of course, in a comprehensive system design one should evaluate
the proposed single-link methods in the context of the wholenetwork,
including resource sharing and multi-access interference. However, including
these aspects here would be completely out of the scope of this study, which
focuses exclusively on impulse noise estimation and cancellation techniques.
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interleaving to convert any a priori unknown impulse statistics
to this one, which can be handled by the receiver.

There are different statistical models present in literature
for modeling aperiodic impulse noise in different applications.
The three widely used models are the Gaussian mixture [12],
the Middleton’s Class A [13], and the symmetric alpha-
stable [14] models. In this paper, we focus on the Gaussian
mixture model and assume the impulse noise to be Bernoulli-
Gaussian [15]-[17]. Specifically, we model impulse noise asa
Gaussian process modulated by very narrow and randomly
placed squared pulses, of duration approximately equal to
the inverse of the signal bandwidth, i.e., the time domain
sampling interval of OFDM. Thus, in the absence of estimation
and cancellation, these impulses in the time domain corrupt
all the subcarriers of an OFDM block, yielding a burst of
very noisy frequency domain symbols that may significantly
degrade the performance of the coded modulation scheme,
which is targeted to AWGN and to the nominal channel SNR.

The effect of impulse noise on OFDM as well as com-
munication engineering solutions based on impulse estimation
and cancellation has been widely studied and represents an
area of active research (see for example [16], [18], [19]). For
the conventional concatenated error control coding based on
inner convolutional and outer Reed-Solomon codes, a time-
frequency interleaving is used in order to avoid that blocks
of noisy symbols cause the Viterbi decoder to introduce long
bursts of decoding errors, which may be beyond the correction
capacity of the outer Reed-Solomon code. Alternatively, some
techniques try to detect the presence of impulses and possibly
their location and use that to enhance the performance. A
popular method consists of detecting the presence of an
impulse using some thresholding scheme, and erasing the
whole OFDM block in order not to exceed the error correction
capability of the channel coding ([20] and the references
therein). Such schemes require the use of channel codes
able to handle errors and erasures [21]. When the physical
layer is not able to deal with erasures through forward error
correction, it tags the uncertain OFDM symbols and let them
to be handled by higher protocol payers. Some recent DSL
standard contributions have proposed retransmissions as away
to deal with these cases [22]-[24]. However, it is apparent
that handling efficiently the presence of impulse noise at the
receiver, instead of requesting retransmissions, can be very
desirable from the viewpoint of spectral efficiency, delay and
simplicity of protocol operations.

Precoding techniques and frequency domain algebraic in-
terpolation techniques inspired by Reed-Solomon coding and
decoding over the complex numbers were proposed in [25],
[26] to cope with the very same problem. The drawbacks of
such techniques are that: 1) they require a certain structure
of the null frequencies or pilots; 2) they are very sensitive
to background noise and rounding/quantization errors due to
finite precision arithmetic (in fact, these schemes requirea
number of non-trivial intermediate steps to ensure that the
impulse noise decoding algorithm does not malfunction in the
presence of AWGN and/or rounding errors [25], [26]).

In [28], [29], impulse noise is modeled as a sparse signal
in the time domain and compressive sensing (CS) based

on convex relaxation methods usingℓ1 minimization [33] is
used for estimation from a small subset of frequency domain
observations. The drawbacks of using this method are: 1)ℓ1
minimization requires high complexity (polynomial average
complexity in the problem dimension); 2) It does not make use
of any a priori statistical information (apart from the sparsity
information); 3) It does not exploit the structure of the sensing
matrix. This method has been extended for detecting bursty
impulse noise using block CS in [34]. Recently several low
complex alternatives have been proposed for sparse signal
recovery, including algorithms based on belief propagation
[35], Bayesian methods applied to CS [36], and iterative
greedy approaches such as orthogonal matching pursuit (OMP)
[37], [38], and fast Bayesian matching pursuit (FBMP) [39].
In this paper, similar to [28], [29], we also make use of the
free guard band subcarriers present by default in any OFDM
system to estimate and cancel impulse noise. This work differs
from [28], [29] as instead of employing CS based on convex
relaxation methods to estimate impulse noise, we make a
collective use of the a priori statistical and sparsity information
together with the structure of the problem to obtain nearly
optimal estimates at low complexity.

B. Our Approach: Utilizing Null carriers for Impulse Noise
Detection and Cancelation

In practical OFDM systems, several subcarriers are not used
to send modulation symbols. For example, in IEEE 802.11
the subcarriers at the edges of the channel band are not
used in order to avoid to spill inter-channel interference to
adjacent channels [30]. Also, in DSL the channel attenuation
near the lower and upper edges of the spectrum is typically
very strong, such that the bit-loading algorithm, reminiscent
of the information-theoretic “waterfilling” power allocation
([31], [32]), allocates zero rate and zero power to these side
subcarriers.

We shall exploit these unused/null frequencies in order to
obtain a signal-free subspace onto which the impulse noise
can be projected. Although this projection is rank-deficient
(dimension of the null subcarrier subspace is less than the
dimension of the total space), exploiting the fact that the
impulse noise is sparse in the time domain, we can still jointly
estimate the locations of the impulses and their amplitudesand
eventually subtract these estimates from the received signal.
Estimation is obtained with a new low complexity scheme,
by exploiting the structure of the projection matrix which,in
our case, is a submatrix of a unitary DFT matrix obtained
by extracting a block of adjacent subcarriers. Furthermore, we
also exploit the a priori probability distribution of the impulse
noise, which is assumed to be Bernoulli Gaussian with known
parameters.

II. T RANSMISSION MODEL

The discrete-time complex baseband equivalent channel
model for the OFDM signal under consideration in this work
can be written as

y = Hx+ e+ z, (1)
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where y ∈ C
n and x ∈ C

n are the time domain OFDM
receive and transmit signal blocks (after cyclic prefix removal
[11], H is ann× n circulant matrix induced by cyclic prefix
precoding, with first columnh is formed by the zero-padded
channel impulse response,2 z is the complex white Gaussian
additive noiseCN (0, N0I), ande is the impulse noise vector
with i.i.d. Bernoulli-Gaussian entries, i.e., the components
ei are statistically independent random variables distributed
as a Gaussian mixture whose distribution has a mass at0
with probability 1 − p and a Gaussian pdfCN (0, I0) with
probabilityp. Thus, the support (set of non-zero components)
I has Binomially distributed cardinality with meanpn. We
define the channel SNR asEx/N0 and the impulse to noise
ratio (INR) as I0/N0. Letting F denote then × n unitary
DFT matrix with (k, ℓ) element[F]k,ℓ = 1√

n
e−j2πkℓ/n with

k, ℓ ∈ {0, . . . , n − 1}, the time domain signal is related to
the frequency domain signal byx = FHx̌. The circulant
convolution matrixH can be decomposed asH = FHDF,
whereD = diag(ȟ) andȟ =

√
nFh is the DFT of the channel

impulse response. Demodulation amounts to computing the
DFT

y̌ = Fy = Dx̌+ ž+ Fe, (2)

where ž = Fz has the same statistics ofz. Without impulse
noise, it is well-known that (2) reduces to a set ofn parallel
Gaussian channelšyi = ȟix̌i + ži, for i = 0, . . . , n − 1.
In the presence of the impulse noise, the performance of a
standard OFDM demodulator may dramatically degrade since
even a single impulse in the OFDM block (1) may cause
significant degradation to all frequency domain symbols in
the block, after DFT demodulation. This can be explained by
considering the fact thate has |I| impulses with probability(
n
|I|
)
p|I|(1 − p)n−|I|. Conditioned on|I|, the variance per

frequency domain component is|I|n I0. Thus, forI0/n ≫ N0,
even a single impulse may cause significant degradation in
all the frequency domain symbols. The probability that the
OFDM block contains at least one impulse is1 − (1 − p)n.
For example, let us consider the case ofp = 10−4, n = 1000,
I0 = 40 dB, N0 = 0 dB, andEx = 20 dB. In this case,
the probability that an OFDM block is corrupted by at least
one impulse is equal to0.0952. Thus about10% of the time,
a block ofn OFDM frequency domain symbols is corrupted
by one or more impulses and the nominal SNR of20 dB
is reduced by at leastI0/n = 10 dB. As a consequence,
if the underlying coded-modulation scheme is designed for
the nominal SNR of 20 dB (i.e., taking only AWGN into
account), the link post-decoding frame error rate will incur
a dramatic degradation, since about 10% of the symbols will
be significantly noisier than the target SNR for the given
coded modulation scheme. This will be particularly evident
for systems employing powerful “modern” codes, such as
Turbo Codes or LDPC codes [27], which perform close to
capacity but have a very sharpwaterfall behavior, such that

2Although the channel impulse response is of lengthυ+1 whereυ denotes
the length of the cyclic prefix, typically significantly lessthan n, hereh

denotes its zero-padded version obtained by appendingn − υ − 1 zeros, in
order to form the first column ofH.

even a small SNR decrease yields a dramatic increase of
the post-decoding error probability. In Section VIII, in order
to evaluate our scheme and compare with other approaches
proposed in the literature in a way independent of the specific
coded modulation scheme employed, we will express the link
performance in terms of achievable rates with a Gaussian
random coding ensemble, under different assumptions on how
the impulse noise is handled by the receiver. Expressing
the system performance in terms of information theoretic
achievable rates is more meaningful than the classical BER
of some uncoded modulation (e.g., [9],[20],[21],[25]), since
virtually any modern wired or wireless system make use of
power channel coding at the physical layer.

III. PROBLEM FORMULATION

Consider the OFDM frequency domain channel model (2).
We use the sparse nature ofe to estimate it and then re-
move it from the received signal. As in [25], [26], we use
the subcarriers free of modulation symbols to estimatee.
Specifically, we assume that these form a block of consecutive
subcarrier indices (with subcarrier index taken modulon, as
usually done in periodic DFT). We construct the time domain
transmit signal asx = FHSxď, whereď is frequency domain
data symbol vector of dimensionk ≤ n and whereSx is
an n × k “selection matrix” containing only one element
equal to 1 per column, and withm = n − k zero rows. The
positions of the single 1s in the columns ofSx indicate the
subcarrier used for data transmission in the OFDM system.
The remaining subcarriers are either not used, or used for
transmitting known pilot symbols in the frequency domain,
which are not shown here since we do not deal with channel
estimation. These known pilot symbols can be subtracted from
the received signal at the receiver, such that for the purpose
of this paper pilot symbols are equivalently treated as zero
symbols (i.e., unused subcarriers). We denote byS the matrix
with a single element equal to 1 per column, spanning the
orthogonal complement of the columns ofSx. The frequency
domain vector is thus given by

y̌ = Fy = DSxď+ Fe+ ž. (3)

Projecting onto the orthogonal complement of the signal
subspace, we obtain

y′ = STy̌ = STFe+ z′. (4)

Notice thaty′ is a noisy rank-deficient projection of then-
dimensional impulse noise vector onto a subspace of dimen-
sion m ≪ n. The AWGN z′ is a subsampling of̌z, and
therefore it is an AWGN vector of lengthm and variance
N0 per component. For later use, we shall denote them× n
projection matrix byΨ = [ψ1, . . . ,ψn] = STF, whereψi

denotes thei-th column ofΨ. When the supportI of e is
known, we can equivalently write (4) as

y′ = ΨIeI + z′, (5)

whereΨI denotes the submatrix formed by columns{ψj :
j ∈ I} of Ψ, and eI denotes the vector of dimension|I|
containing only the Gaussian not identically zero components
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of e. Let ê denote the resulting estimate ofe produced some
reconstruction algorithm with inputy′. Then, we can subtract
the estimated impulse noise from the received signal such that
the signal actually fed to the channel decoder is given by

ŷ = DSxď+ F(e− ê) + ž. (6)

The decoder treats this signal as if it was the output of a
standard OFDM system without impulse noise. Note that a
naive OFDM receiver that simply ignores the presence of the
impulse noise, would treat (3) as the output of an OFDM
system with Gaussian noise. It is apparent that the gain of the
proposed scheme is significant if the variance per component
of the residual noise,

v = F(e− ê) + ž, (7)

is significantly less than the variance per component of the
corresponding frequency domain Gaussian plus impulse noise
vectorFe+ ž.

IV. OPTIMAL IMPULSE NOISE ESTIMATION

The MMSE estimate ofe given the observationy′ mini-
mizes the covariance of the residual noise,e− ê, and is given
by

ê
∆
= E[e|y′] =

∑

I
p(I|y′)E[e|y′, I], (8)

where I ranges over the set of possible support sets of
e. The above equation can be solved if we can evaluate
the sum over allI. However, it is apparent that for large
n, the computational complexity required by the brute-force
evaluation of the MMSE estimator is prohibitive (as there will
be2n such support sets). The idea is to approximate equation
(8) by expiating the special structure of the problem in order
to reduce computational complexity.

A. Calculating E[e|y′, I]
Conditioned on the supportI (that is assumed to follow

Gaussian distribution),y′ and eI are jointly Gaussian (see
(5)) and therefore the conditional MMSE estimator coincides
with the linear MMSE estimator, given by

êI
∆
= E[eI |y′, I] = I0

N0
ΨH

IΣ
−1
ΨI

y′, (9)

where

ΣΨI

∆
=

1

N0
E[y′(y′)H|I] = I+

I0
N0

ΨIΨ
H

I . (10)

Then, lettingSI denote the selection matrix of dimensionn×
|I| such that each columni is all zero with a single element
equal to 1 in the position of thei-th component of the support
I, we have

E[e|y′, I] = SI êI =
I0
N0

SIΨ
H

IΣ
−1
ΨI

y′. (11)

B. Calculating p(I|y′)

Using Bayes’ rule, we can write

p(I|y′) =
p(y′|I)p(I)

p(y′)
=

p(y′|I)p(I)∑
I′ p(y′|I ′)p(I ′)

. (12)

Given our model, we havep(I) = pJ(1−p)n−J with J = |I|.
It remains to calculatep(y′|I). From (5),y′ is conditionally
Gaussian givenI, therefore

p(y′|I) =
exp

(
− 1

N0
y′HΣ−1

ΨI
y′
)

det(ΣΨI
)

, (13)

up to a constant multiplicative factor. The denominator in
(12) involves the summation over all the possible supports
which is computationally prohibitive. We discuss different
approaches in the following subsection that intelligentlyavoid
this complex computation exploiting the sparsity of the signal.

C. Estimation of the support I
Instead of summing over all2n possible supports, we

consider only the set of the most probable (or “dominant”)
supports. This is obtained by considering the problem of
support estimation from the observation model (4). Support
recovery (i.e., finding the non-identically zero elements)of
a sparse signal observed through a rank-deficient projection
and possibly in additive noise is the central problem in the
CS literature. Next, we review some of these techniques and
compare them with our new proposed algorithm that exploits
the particular structure of the problem at hand.

1) CS based on convex relaxation: Starting from (4), we
can use the standard convex relaxation tools [40] - [45] to
obtain an estimate of the sparse vectore. Three alternatives
widely proposed in the literature to implement sparse signal
estimation in the presence of noise are reviewed in the
following.

a) Candes-Romberg-Tao SOCP estimator: The original
Second-Order Cone Programming (SOCP) problem proposed
by [40], [45] is formulated for the reals. In our notation, this
is given by

min ‖ẽ‖1 s.t. ‖y′ −Ψẽ‖2 ≤ ǫ, (14)

for some small enoughǫ. This is a convex problem for
both real and complex vectors, but in this form belongs to
the SOCP class only for real vectors. In order to obtain a
convenient formulation for complex vectors, we use “sum
of norms” SOCP approach [46] and define the additional
variablest0, . . . , tn−1. The resulting SOCP problem becomes

min

n−1∑

i=0

ti

s.t. |ẽi| ≤ ti, ∀i = 0, . . . , n− 1 ∧ ‖y′ −Ψẽ‖2 ≤ ǫ.

(15)

b) Dantzig selector: An LP estimator was also proposed
for real vectors which is as follows [41]

min ‖ẽ‖1 s.t. ‖y′ −Ψẽ‖∞ ≤ λ. (16)

For complex vectors, we arrive at a different SOCP given by

min

n−1∑

i=0

ti

s.t. |ẽi| ≤ ti, ∀i = 0, . . . , n− 1 ∧ |y′i −Ψiẽ| ≤ λ.

(17)

whereΨi is the ith row of Ψ.
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c) LASSO: In [42], the following convex relaxation
method was considered which is known as LASSO [43]

min
1

2
‖y′ −Ψẽ‖22 + γ‖ẽ‖1. (18)

The parametersǫ, λ andγ are related to the AWGN variance
N0 and are discussed, for example, in [41], [42], [45]. Either
one or a combination of the three above algorithms can be
employed to estimate the supportI.

The drawback of the convex relaxation approaches reviewed
above is that they do not make use of any a priori statistical
information on the signal to be estimated, other than it is
some arbitrary vector with a certain sparsity. Moreover, given
the highly structured nature of the sensing matrixΨ in the
problem at hand,3 these methods do not perform as well as in
the case of random selection ofm subcarriers over the whole
signal bandwidth.

2) BCH-type Error Correction over the Reals: In the
language of coding theory, the support recovery problem is
analogous to solving the “locator polynomial” to find the
location of the errors. Building on this analogy, [25], [26]
replicates the BCH/Reed-Solomon framework over the real
field and proposed a method to find impulse noise support (i.e.,
the location of the “errors”) by polynomial extrapolation.This
method, however, is not numerically stable in the presence of a
non-negligible AWGN component. Furthermore, the selection
of the free carriers is constrained by the required algebraic
properties, and it is akin of choosing the zeros of the code
generator polynomial in a BCH/Reed-Solomon construction.
For example, it would be impossible to adaptively take advan-
tage of unused frequencies which may depend on the channel
frequency response and on the corresponding waterfilling
power allocation.

3) Fast Bayesian Matching Pursuit (FBMP): A fast
Bayesian recursive algorithm, presented in [39], finds the
dominant support and the MMSE estimate of the sparse
vector jointly, based on the Bernoulli-Gaussian priors. This
scheme uses a greedy tree search over all the combinations
in pursuit of the dominant support. The algorithm starts with
empty active elements set. At each step, an active element is
added to the current set that maximizes the MAP-Gaussian
metric (13). This procedure is repeated till we reachs active
elements in a branch wheres is selected such thatP (J > s)
is very small. The number of branches in the tree search
is controlled by a parameterD which governs the tradeoff
between performance and complexity. Contrary to standard
convex relaxation techniques, this algorithm makes use of
the a priori statistical information and reduces complexity by
employing a recursive implementation.

V. FINDING DOMINANT SUPPORT USINGSTRUCTURE

None of the methods mentioned above make use of the
structure of the sensing matrixΨ. It turns out that using this
structure is very useful in reducing the complexity involved in
calculating (8). To simplify the exposition, assume thatn

m = ℓ

3This is due to the fact that the carriers belong to a continuous set of
frequencies in the guard band.
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Fig. 1: Energy of the columns (Magnitude square of the inner
product) ofΨ captured by the left and right basis vectors for
n = 1024, m = 256, andℓ = n

m = 4.

is an integer. Assume also that we havem consecutive carriers
which we assume to lie at the edge of the band.4 In this case,
considering the projected observation defined in (4), we write
y′ = Ψe + z′, whereΨ is anm × n submatrix of the DFT
matrix F, corresponding to a block ofm consecutive rows.
Consider the columns ofΨ with indices in the setFm =
{0, ℓ, 2ℓ, ..., (m−1)ℓ}. The collection of such rows ofΨ forms
a scaled version of them×m DFT matrixFm and thus span
the column space ofΨ. In fact, spanning happens in a special
way. Note that it is not difficult to show that the magnitude
correlationψj andψj′ of Ψ is given by

∣∣∣ψH

j ψj′

∣∣∣ =





1, (j = j′)∣∣∣∣
sin(π(j−j′)m/n)
m sin(π(j−j′)/n)

∣∣∣∣ , (j 6= j′)
. (19)

Based on (19) we see that columnsj and j′ of Ψ are nearly
orthogonal for large index distance|j−j′|. As a consequence,
this means that the columns of indicesj ∈ [rℓ, (r + 1)ℓ],
with r = ⌈jℓ⌉, are spanned by the columns of indicesrℓ and
(r+1)ℓ (referred to as the left and right basis vectors) in the
orthonormal basisFm defined above. This can be evidenced
by Fig. 1 which shows that most of the energy of all columns
(exceptFm) is captured by the left and right basis vectors.

This semi-orthogonal structure of Ψ leads to two obser-
vations. First, we can get an initial guess at the impulse
noise location as follows: first, projecty′ on Fm to obtain
y′′ = Fmy′; then, the location of the elements ofy′′

with largest magnitude indicate (with high probability) the
neighborhood of the position of the impulses. We construct
clusters of sizeL around these locations (details are discussed
in Section VI). Thus, after this preliminary estimation phase,
we can identify a set of clusters that contain the support of
the impulse noise, with high probability.

The second observation is that the semi-orthogonal structure
allows us to calculate the MMSE estimate (8) in a divide-
and-conquer manner, assuming that effectively the supportis

4The consecutive selection of carriers is motivated by the structure of the
guard band. The carriers could also be split between the edges of the band
for the carriers are still consecutive (modn).
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contained in the set of clusters identified as described above.
We start by illustrating an example. Suppose that the support
I of e is contained in the union of two disjoint clusters,Ω1

andΩ2, which are known to the estimator. In particular, we
let I1 ∆

= I ∩Ω1 andI2 ∆
= I ∩Ω2, such thatI = I1∪I2. As a

consequence, we haveΨI = [ΨI1
ΨI2

]. Any pair of columns
ψj andψj′ with j ∈ Ω1 and j′ ∈ Ω2 are mutually near-
orthogonal (if two clusters are very close to each other, they
can be lumped into a single cluster). Therefore,ΨH

I1
ΨI2

≈ 0.

In order to calculate the likelihood functionp(y′|I) in (13),
we need to calculate the inverse and determinant ofΣΨ

I

defined in (10). Using the matrix inversion lemma, we can
write Σ−1

ΨI
as shown in (20) at the bottom of the page where,

consistently with (10), we letΣΨIi
= I + I0

N0
ΨIi

ΨH

Ii
, for

i = 1, 2. Using semi-orthogonality, (20) can be approximated
as shown in (21) at the bottom of the page. By utilizing the
matrix inversion lemma and some simplification, (21) leads
to (23) which is valid up to an error term of orderO( 1

m ). It
follows that
1

N0
y′HΣ−1

ΨI
y′≈− 1

N0
‖y′‖2+ 1

N0
y′HΣ−1

ΨI1

y′+
1

N0
y′HΣ−1

ΨI2

y′.

(24)
Similarly, the determinant ofΣΨI

is given by

det
(

ΣΨI

)

= det

(
I+

I0
N0

ΨI1
ΨH

I1
+

I0
N0

ΨI2
ΨH

I2

)

= det
(

I +
I0

N0

ΨI1
ΨH

I1

)

det
(

I +
I0

N0

Σ
−

1

2

ΨI1

ΨI2
ΨH

I2
Σ

−
1

2

ΨI1

)

= det

(
I+

I0
N0

ΨI1
ΨH

I1

)
det

(
I+

I0
N0

ΨH

I2
Σ−1

ΨI1

ΨI2

)

≈ det

(
I+

I0
N0

ΨI1
ΨH

I1

)
det

(
I+

I0
N0

ΨI2
ΨH

I2

)
(25)

= det
(

ΣΨI1

)

det
(

ΣΨI2

)

, (26)

where to obtain (25) we again used the fact thatΨI1
andΨI2

are close to orthogonal. Denoting byLI
∆
= p(y′|I)p(I) the

unnormalized a posteriori support distribution and using (24)

and (26) into (12), we obtain

LI ≈pJ (1− p)n−J exp

(
1

N0
‖y′‖2

)
.

exp

(

− 1

N0
y′HΣ−1

ΨI1

y′

)

det(ΣΨ
I1

)

exp

(

− 1

N0
y′HΣ−1

ΨI2

y′

)

det(ΣΨ
I2

)

=pJ (1− p)n−J exp

(
1

N0
‖y′‖2

)
p(y′|I1)p(y′|I2),

where, consistently with (13), we define the support Likeli-
hood Function

p(y′|Ii) =
exp

(
− 1

N0
y′HΣ−1

ΨIi
y′
)

det
(
ΣΨIi

) . (27)

Generalizing this derivation in the case ofc disjoint clus-
tersΩ1, . . . ,Ωc, whose union contains the supportI, letting
Ii = I ∩ Ωi, Ji = |Ii|, andΨIi

denote the submatrix ofΨ
obtained by taking the columnsψj , with j ∈ Ii, we obtain
an approximation of the unnormalized a posteriori support
distribution in the form

LI ≈ (1−p)n exp

(
c− 1

N0
‖y′‖2

) c∏

i=1

(
p

1− p

)Ji

p(y′|Ii). (28)

Summing over all possible supportsI included in the union of
the clustersΩi, we find the posterior probability normalizing
term as shown in (29) at the top of the next page, where we
wrote the sum of products as a product of sums. Eventually,
using (12), the (normalized) posterior support distribution
under the assumption thatI ⊆ ⋃c

i=1 Ωi is obtained in the
form

p(I|y′) =
c∏

i=1

(
p

1−p

)Ji

p(y′|Ii)
∑

I′

i

(
p

1−p

)J′

i

p(y′|I ′
i)

. (30)

Notice that the denominator in the above expression involves
the sum over all the possible supportsI ′

i ⊆ Ωi, i.e., the subsets
of the support included in the clusterΩi. This sum contains2L

terms and calculating all of them can also be computationally
expensive. Fortunately, for practical applications of impulse

noise, p ≪ 1, and thus the weighting coefficient
(

p
1−p

)J′

i

becomes negligible for large values ofJ ′
i . For example, in the

Σ−1

ΨI

=

(
I+

I0
N0

ΨIΨ
H

I

)−1

=

(
I+

I0
N0

ΨI1
ΨH

I1
+

I0
N0

ΨI2
ΨH

I2

)−1

= Σ−1

ΨI1

− I0

N0

Σ−1

ΨI1

ΨI2

(

I +
I0

N0

ΨH

I2
Σ−1

ΨI1

ΨI2

)

−1

ΨH

I2
Σ−1

ΨI1

(20)

Σ−1

ΨI

≈ I− I0
N0

ΨI1

(
I+

I0
N0

ΨH

I1
ΨI1

)−1

ΨH

I1
− I0

N0
ΨI2

(
I+

I0
N0

ΨH

I2
ΨI2

)−1

ΨH

I2
(21)

= −I+

(
I− I0

N0
ΨI1

(
I+

I0
N0

ΨH

I1
ΨI1

)−1

ΨH

I1

)
+

(
I− I0

N0
ΨI2

(
I+

I0
N0

ΨH

I2
ΨI2

)−1

ΨH

I2

)
(22)

= −I+

(
I+

I0
N0

ΨI1
ΨH

I1

)−1

+

(
I+

I0
N0

ΨI2
ΨH

I2

)−1

(23)
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p(y′) =
∑

I
LI = (1− p)n exp

(
c− 1

N0
‖y′‖2

)∑

I

c∏

i=1

(
p

1− p

)Ji

p(y′|Ii)

= (1− p)n exp

(
c− 1

N0
‖y′‖2

)∑

I1

· · ·
∑

Ic

c∏

i=1

(
p

1− p

)Ji

p(y′|Ii)

= (1− p)n exp

(
c− 1

N0
‖y′‖2

) c∏

i=1

(
∑

Ii

(
p

1− p

)Ji

p(y′|Ii)
)

(29)

case whenp = 10−4, the value of the term is of the order
10−12 for J ′

i = 3. Thus, we can truncate the sum to include
supports of limited size such that the sum in the denominator
contains a polynomial number of terms in the cluster sizeL
(further details are discussed in Section VI).

Using again quasi-orthogonality, we can easily show that

êI =
I0
N0

ΨH

IΣ
−1
ΨI

y′ ≈ I0
N0




ΨH

I1
Σ−1

ΨI1

ΨH

I2
Σ−1

ΨI2

...
ΨH

Ic
Σ−1

ΨIc



y′. (31)

Letting SI = [SI1
,SI2

, . . . ,SIc
], where the selection matri-

cesSIi
are the vertical slices of columns ofSI corresponding

to the support positions inIi, and using (31) into (11), we can
write

E[e|y′, I] = I0
N0

c∑

i=1

SIi
ΨH

Ii
Σ−1

ΨIi
y′. (32)

Finally, combining (30) and (32), we obtain

ê =
∑

I
p(I|y′)E[e|y′, I]

≈ I0

N0

c
∑

i=1

∑

Ii

(

p

1−p

)Ji
p(y′|Ii) SIi

ΨH

Ii
Σ−1

ΨIi

y′

∑

Ii

(

p

1−p

)Ji
p(y′|Ii)

. (33)

The argument of truncating the sum to include supports of
limited size for the practical small values ofp is valid here as
well.

To summarize, we have obtained an approximated expres-
sion for the MMSE estimate of the impulse noise vector that
can be calculated in a divide-and-conquer manner, by treating
each cluster separately. This is possible provided that we can
identify the set of clustersΩi that contains the supportI.
The above discussion motivates the development of orthogonal
clustering algorithm for impulse noise estimation which is
described in the following.

VI. A LGORITHM

A. Initial Guess

First of all, an initial guess of the impulse noise locations
is obtained. It consists of the following steps.

(i) Projecty′ on Fm to obtainy′′ = Fmy′.
(ii) The elements ofy′′ with large magnitude determine

(with high probability) the neighborhood of the position
of the impulses.

B. Cluster Formation

The clusters are constructed using the indices obtained from
y′′ in the above step.

(i) Let β denote the index of the largest value ofy′′.
As it is very likely that an impulse is located in the
neighborhood of the column ofΨ indexed byβℓ, a
clusterΩ is formed around withΩ = {βℓ, βℓ± 1, βℓ±
2, . . . , βℓ ± (L−1

2 )}, whereL = 2ℓ − 1 is the length
of the cluster. The effect of choosing different lengths
of the cluster on the performance of the algorithm are
discussed in Section IX.

(ii) If two constructed clusters are overlapping or close to
each other (i.e., the difference between the last index
and the first index of two clusters is less thanL−1

2 ),
they are joined into one big cluster. Thus, this results in
formation of clusters with variable lengths.

(iii) The above two steps are repeated tillc clusters are
formed. Notice thatJ follows a binomial distribution. In
practical applications, the meanpn is very small. Hence,
we can use the Poisson approximation of the binomial
probability mass function, i.e.,P (J = c) ≈ (pn)c

c! e−pn.
For example, forn = 1000 andp = 10−4 we havepn =
0.1, yielding P (J > 1) = 0.0952, P (J > 2) = 0.0045,
P (J > 3) = 1.5 × 10−4, P (J > 4) = 3.8 × 10−6,
We select the value ofc for which P (J = c) > 10−6.
Hence, in this case,c can be safely limited to supports
of cardinality up t o 4.

C. Evaluating the impulse noise estimate for each cluster

For clusteri with indicesΩi and of lengthLi ≥ L (As the
clusters are semi-orthogonal, these calculations can be done in
parallel),

(i) Calculate the support likelihood functionp(y′|I) for
support of cardinalityJi = 0, 1, ..., Jmax

i using (27).
As Ji also follows binomial distribution,Jmax

i is ob-
tained using the Poisson approximation, i.e.,P (Ji =

Jmax
i ) ≈ (pLi)

Jmax

i

Jmax

i
! e−pn. Similar to c, Jmax

i is also
selected for whichP (Ji = Jmax

i ) > 10−6. Note
that this calculation will be performed for a total of
Ni =

(
Li

0

)
+
(
Li

1

)
+ · · ·+

(
Li

Jmax

i

)
combinations.

(ii) Evaluate the estimate of the impulse noise using the
following expression (similar to (33))

êi =

∑

Ii

(

p

1−p

)Ji
p(y′|Ii) SIi

ΨH

Ii
Σ−1

ΨIi

y′

∑

Ii

(

p

1−p

)Ji
p(y′|Ii)

,
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where êi consists of0s at all positions except forΩi

and the summation is performed overNi terms.

D. Evaluating the complete MMSE estimate ê

Obtain ê by adding thêeis calculated in the above step as
follows (33)

ê =
I0
N0

c∑

i=1

êi.

In the following section, we discuss how the complexity of the
proposed algorithm can be reduced using the inherent structure
of the partial DFT sensing matrixΨ.

VII. R EDUCING COMPUTATIONAL COMPLEXITY

We have seen before that, in order to compute the MMSE
estimatêe knowing that the supportI is contained in the union
of disjoint clustersΩi, is it sufficient to compute the terms
p(y′|Ii) for support subsetsIi ∈ Ωi. This, in turn, requires
calculating the inverse and determinant ofΣΨIi

. In this section
we will show that it is enough to calculate these quantities for
one cluster (say, fori = 0) and the corresponding quantities
for the other clusters can be easily obtained with little extra
computation. To this end, letψi, ψi+1, · · · , ψi+L−1

and ψj , ψj+1, · · · , ψj+L−1 denote the columns ofΨ
corresponding to thei-th andj-th clusters, respectively. Then,
it is immediate to see that

ψj+k = ψi+k ⊙ψ∆ji
, k = 0, 1, ..., L− 1, (34)

where⊙ denotes element-wise product andψ∆ji
is a vector

that depends only on the difference between the indicesj and
i, i.e.,∆ji

∆
= |(j − i)modn|. In particular, for the case where

Ψ is formed bym adjacent subcarriers placed at the edge of
the transmission band, we have

ψ∆ji
=
[
exp
(
− 2π

n (n−m−1)∆ji

)
· · · exp

(
− 2π

n (n−1)∆ji

)]T
.

Now, assume that we calculate the inverseΣ−1

ΨIi

and determi-
nant det(ΣΨIi

) for a set of columnsIi ⊆ Ωi, and letIj ⊆ Ωj

denote the same set of columns (i.e., with the same relative
positions in the set) chosen in thej-th clusterΩj . Then, In
Appendix A we show that

y′HΣ−1
ΨIj

y′ = y′H
∆ji

Σ−1
ΨIi

y′
∆ji

, (35)

wherey′
∆ji

= y′ ⊙ψ∗
∆ji

, and

det(ΣΨIj
) = det(ΣΨIi

). (36)

In other words, to calculate the terms appearing at the numer-
ator and denominator of thei-th term in the sum with respect
to i in (33), it is sufficient to pre-calculate the determinant
values det(ΣΨI0

) and the inverse matricesΣ−1

ΨI0

for a set of

supportsI0 of limited size5 contained in a suitable defined
reference clusterΩ0, and then use (35) and (36) to obtain the
terms for arbitrary clustersΩi.

5See discussion on the fact that the sums can be truncated to supports of
small size, for practical values ofp ≪ 1.

VIII. P ERFORMANCEANALYSIS

In this section we compare the performance of the proposed
scheme with respect to other competing schemes for impulse
noise estimation/cancellation, as well as with a “naive” re-
ceiver that does not try to actively cancel the impulse noise.
Recall that the received frequency domain OFDM symbol after
estimation/compensation is given by

y̌ = DSxď+ F(e− ê) + z︸ ︷︷ ︸
v

. (37)

For simplicity, we assume that the signal is restricted to span
the same set of subcarriersi ∈ Sx, corresponding to the
positions of the 1s in the columns of the selection matrixSx,
for all systems under consideration. As discussed in Section
I-B, such subcarriers may be determined by other system
constraints.6 The relevant channel output for a naive receiver
that does not explicitly compensate for the impulse noise is
obtained from (37) by settinĝe = 0.

Using known results on the achievable rate with Gaussian
random coding ensembles and minimum distance decoding
[47], the achievable rate (expressed in bit per symbol, or
bit/s/Hz) is given by

R =
1

n

∑

i∈Sx

log

(
1 +

|ȟi|2Ei
σ2
i

)
, (38)

where Ei is the energy per symbol allocated to thei-th
used subcarrier, andσ2

i = E[|vi|2] is the variance of thei-
th frequency domain noise component. We assume that the
transmitter has knowledge of the channel frequency response
coefficients{|ȟi|2} and of the noise variance at each subcarrier
σ2
i . Hence, it can maximizesR in (38) with respect to the

power allocation{Ei}. This yields the classical waterfilling
solution

R =
1

n

∑

i∈Sx

[
log

(
µ|ȟi|2
σ2
i

)]

+

, (39)

where the Lagrange multiplier (water level)µ is the solution
of

1

n

∑

i∈Sx

[
µ− σ2

i

|ȟi|2
]

+

= Ex,

where [·]+ denotes the positive part andEx is the average
symbol energy. Our numerical results will be given in terms
of value of SNR= Ex/N0 in dB.

For the naive receiver, we have

cov(v) = FE[eeH]FH +N0I = (pI0 +N0)I, (40)

such thatσ2
i = pI0 + N0 for all subcarriers. Similarly, for

any receiver that estimates the impulse noise and subtracts its
estimate from the received signal, we need to calculate

cov(v) = FE[(e− ê)(e− ê)H]FH +N0I. (41)

Here, the challenge is to calculate the error covariance matrix
E[(e − ê)(e − ê)H], since ê is, in general, the result of a

6If the set of unused subcarriers can be set freely, then it makes sense to
optimize such set for each specific impulse noise estimationscheme. However,
this goes beyond the scope of this paper and it is left for future investigation.
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complicated sparse signal estimation scheme. In general, this
can be obtained by Monte Carlo simulation. More details on
the error covariance matrix for the scheme proposed in this
paper are given in Section VIII-A.

It has been observed that the naive receiver performance can
be improved by estimating the level of impulse noise power
present in any given OFDM symbol by using the power on
the unused subcarrier, i.e., from the observation ofy′ = STy̌,
and by incorporating this information in the decoder.

Notice also that this “informed receiver” that makes use
of the knowledge of the impulse noise level in each OFDM
block is akin a soft version of the receiver that erases the noisy
OFDM blocks [20], [21] (in this case, the receiver is told only
“Good” or “Bad”, and the bad symbols are treated as erasures).
Here, for simplicity, we assume that the receiver is given the
exact knowledge of the number of impulsesJ = |I| present in
the OFDM symbol. The resulting conditional noise covariance
matrix is given by

cov(v||I| = J) =
1(
n
J

)
∑

I:|I|=J

(
∑

ℓ∈I
fℓf

H

ℓ

)
I0 +N0I, (42)

with diagonal elementsσ2
i = JI0/n+N0, independent ofi.

SinceJ is a binomial random variable, the achievable rate in
this case is given by

Rgenie
naive =

1

n

∑

i∈Sx

n∑

s=0

(
n

s

)
ps(1−p)n−s log

(
1+

|ȟi|2Ei
sI0/n+N0

)
.

(43)
The above rate cannot be maximized by straightforward water-
filling, since the number of impulses occurring in any OFDM
symbol, i.e., the random variableJ , is unknown a priori to
the transmitter. On the contrary, the transmitter can optimize
the input power allocation by solving the convex optimization
problem:

max Rgenie
naive, s.t.

1

n

∑

i∈Sx

Ei ≤ Ex, Ei ≥ 0 ∀ i. (44)

This can be solved by the standard method of Lagrangian
multipliers and KKT conditions [48]. Details are omitted for
the sake of space limitation. Furthermore, for the practically
relevant case of largen and smallp, the already mentioned
Poisson approximation of the binomial distribution allowsto
easily calculateP (J = s) =

(
n
s

)
ps(1 − p)n−s ≈ (pn)s

s! e−pn,
and truncate the sum with respect tos to the first dominant
terms.

As mentioned, several current proposals to deal with im-
pulse noise in OFDM (e.g., for DSL, and Powerline Com-
munications), consist of interleaving long codewords over
many OFDM blocks and introducing erasure of the symbols
corresponding to OFDM blocks corrupted by the impulse
noise. Such methods yield rates not larger than (43). In fact,
the erasure technique can yield at most the rate

Rerasure
naive =

(1− p)n

n

∑

i∈Sx

log

(
1 +

|ȟi|2Ei
N0

)
, (45)

which is strictly less thanRgenie
naive in (43).

For a smart receiver that explicitly estimates and subtracts
the impulse noise (as the proposed scheme), we introduce also
a “genie-aided” upper bound, beyond the rate in (39) that
requires no information on the residual interference levelat
any given OFDM symbol at the decoder input. This bound
assumes perfect knowledge of the number of impulsesJ
affecting each OFDM block. Hence, we have

Rgenie
smart =

1

n

∑

i∈Sx

n∑

s=0

(
n

s

)
ps(1−p)n−s log

(
1+

|ȟi|2Ei
σ2
i (s)

)
, (46)

whereσ2
i (J) is the i-th diagonal element of the conditional

covariance matrixcov(v||I| = J). The rateRgenie
smart can be

optimized with respect to the power allocation by solving
convex optimization a problem formally identical to (44),
once the coefficientsσ2

i (J) are known. Next, we focus on
the calculation of the residual noise variancesσ2

i andσ2
i (J)

for the system at hand.

A. Approximate Residual Noise Covariance using the Orthog-
onality of Clusters

We compute (approximately) the quantitiesσ2
i and σ2

i (J)
using the orthogonality of clusters for the case when the
impulse noise supportI is known. Recall thate = SIeI (see
definitions in Section III). We start by calculating the error
covariance matrix resulting from the MMSE estimate ofeI
givenI andy′. After some simple algebra, we obtain

cov(eI − êI |I) =
(

1

I0
I+

1

N0
ΨH

IΨI

)−1

. (47)

As before, assume thatI is included in the union ofc disjoint
clustersΩ1, . . . ,Ωc, and let againIi = I ∩Ωi. Then, we can
write ΨI = [ΨI1

, . . . ,ΨIc
]. Replacing this expression into

(47), we obtain

cov(eI − êI |I) = E




A11 A12 · · · A1c

A21 A22 · · · A2c

...
. . .

...
Ac1 Ac2 · · · Acc




−1

, (48)

where

Aij =

{
1
I0
I+ 1

N0
ΨH

Ii
ΨI1

i = j
1
N0

ΨH

Ii
ΨIj

i 6= j
.

Since the clusters that are disjoint and therefore semi-
orthogonal, we approximate

ΨH

Ii
ΨIj

≈ 0 for (j − i) mod n > Q, (49)

for some suitable integerQ, which is a parameter that
governs the accuracy of the approximation and allows us
to significantly reduce the computation complexity. In order
to evaluate the covariances of interest, namely,cov(e − ê)
and cov(e − ê||I| = J), it is sufficient to perform the
corresponding expectation with respect to the supportI. We
have

cov(e− ê) =
∑

I
pJ(1− p)n−JSIcov(eI − êI |I)SH

I , (50)
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where, as usual,J = |I|. This expression is generally hard
to compute, although the sum can be truncated to include
only supports of small cardinality, for sufficiently smallp.
Letting Q = 1, i.e., including only the diagonal blocks of
cov(eI − êI |I), and lettingSI = [SI1

, . . . ,SIc
], we obtain

the simplified approximated expression

cov(e− ê)≈
∑

I
pJ(1− p)n−JSIdiag

(
A−1

11 , . . . ,A
−1
cc

)
SH

I

=
c∑

i=1

∑

Ii

pJi(1 − p)L−JiSIi
A−1

ii SH

Ii
. (51)

whereL denotes the cluster size. Finally, the sought residual
noise covariance is given by

cov(v) = Fcov(e− ê)FH +N0I, (52)

and σ2
i is the i-th diagonal element. For the conditional

residual noise covariance given|I| = J , we have just to limit
our summation to the supports of given cardinalityJ , i.e.,

cov(e−ê||I| = J) =
1(
n
J

)
∑

I:|J |=J

SIcov(eI−êI |I)SH

I . (53)

Again lettingQ = 1, we obtain the simplified approximated
expression

cov(e− ê||I| = J) ≈ 1(
n
J

)
∑

I:|I|=J

c∑

i=1

SIi
A−1

ii SH

Ii
. (54)

Unfortunately, this expression cannot be simplified further
since when we constrain|I| = J , then the cardinalities
of the partial supports|Ii| = Ji are constrained to satisfy∑c

i=1 Ji = J with 0 ≤ Ji ≤ L. Hence, we cannot sum
independently over the partial supportsIi, unlike in (51).
Finally, the sought conditional residual noise covarianceis
given by

cov(v||I| = J) = Fcov(e− ê||I| = J)FH +N0I, (55)

andσ2
i (J) is the i-th diagonal element.

IX. SIMULATIONS

We consider a system withn = 1024 subcarriers per OFDM
symbol andm = n

4 = 256 null carriers at the edge of the
transmission band. The channel SNR is equal to 20 dB. The
Bernoulli-Gaussian impulse noise has probabilityp ranging
from 1×10−5 to 1×10−3 (i.e., approximately one impulse per
100 DMT symbols to one impulse in every DMT symbol). We
assume that the average power of the impulse noise process,
given by pI0, is constant, i.e.,I0 is inversely proportional to
p. This reflects a scenario where more catastrophic events are
rare, and less catastrophic events are more frequent, whichmay
be meaningful in practical settings. We setpI0 = 10 for which
INR changes from60 dB to40 dB for p ranging from1×10−5

to 1×10−3, respectively. A frequency-flat channel response is
assumed, i.e.,|ȟi|2 = 1 for all i (subcarriers). In this way, the
results are independent of the specific channel response and
focus on the impact of impulse noise and gains achieved by
smart receivers with estimation/cancellation. Thanks to this
assumption, the waterfilling power allocation (39) and also
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Fig. 2: Comparison of the achievable rate of the uninformed
receivers as a function of the probability of impulsep.
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Fig. 3: Comparison of the mean runtime of the uninformed
receivers as a function of the probability of impulsep.

the solution of the convex optimization in the case ofJ
known (43) depends only on the coefficientsσ2

i and σ2
i (J)

respectively and not on the channel frequency response.
In the following, we first present a comparison of different

algorithms with respect to achievable rates and mean runtime
for the uninformed and the informed cases (derived in Section
VIII), followed by the effect of different parameters on the
performance of the proposed algorithm.

A. Comparison for the uninformed receiver case

In this subsection, we compare the performance and runtime
of the following receivers.

• Naive receiver (no impulse noise estimation),
• Genie-aided receiver (this is the upper bound (bench-

mark), i.e., the case whenI is perfectly known and
MMSE is used for estimation of impulse amplitudes),

• Receiver that calculates the approximate residual noise
covariance analytically using the orthogonality of clusters
(given in (55)) for the case whenI is known,
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Fig. 4: Comparison of the achievable rate of the informed
receivers as a function of the probability of impulsep.

• Proposed smart receiver (impulse noise estima-
tion/compensation with our orthogonal clustering
algorithm),

• Other smart receivers (different impulse noise estimation
methods, including,(i) CR [28] that uses CS based on

convex relaxation (withǫ =
√
N0(n+

√
2n)) to find

the impulse support,(ii) CR-REF [29] that is similar
to [28] but introduces a support refinement stage (based
on a priori statistical information) followed by impulse
amplitudes refinement using MMSE,(iii) OMP [37], and
(iv) FBMP [39]. FBMP is implemented with number of
greedy searches (D) set to10).

The waterfilling power allocation (function of the coeffi-
cientsσ2

i ) is computed for the uninformed receivers (that do
not know the number of impulses in each OFDM symbol)
using (39). The achievable rate for all the receivers is plotted
versusp in Fig. 2. The performance of the receiver that calcu-
lates the residual noise covariance analytically is quite close
to the genie-aided receiver. This shows that the residual noise
covariance derived in Section VIII-A using the orthogonality
of clusters is a good approximation of the actual noise. The
performance of the proposed algorithm is quite close to FBMP
while it outperforms CR and OMP easily. It can be observed
from Fig. 3 that the proposed algorithm is faster than OMP
and FBMP by more than an order of magnitude while the
long mean runtime of CR indicates its high complexity. It is
interesting to point out that for fixedpI0, the naive uninformed
receiver has constant performance (shown as inset in Fig. 2
due to very low achievable rate as compared to other receivers)
since its rate depends on the average impulse noise power
(pI0) as shown in (40). This indicates that it is not able to
take advantage of the localization (sparsity) of the impulse
noise.

B. Comparison for the informed receiver case

The achievable rate for all the informed receivers (that
are provided with the information of number of impulses
in each OFDM symbol) is computed by solving the convex

0 1 2 3 4 5 6 7 8 9

x 10
−4

5.468

5.47

5.472

5.474

5.476

5.478

5.48

5.482

5.484

Probability of impulse, p

R
at

e 
(b

it/
s/

H
z)

 

 

Genie−aided
L = 3
L = 5
L = 7
L = 9

Fig. 5: Effect of the cluster length on the performance of the
proposed algorithm.
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optimization problem (44) forRgenie
smart given in (46). For each

value of p, the binomial probability is calculated based on
the Poisson approximation withJ = 0, 1, · · · , Jmax where
the value of Jmax is computed based on the inequality
P (J = Jmax) > 10−6. Fig. 4 presents the achievable rate
of these informed receivers as a function ofp. Comparing
with the uninformed case in Fig. 2, the performance of the
naive informed receiver meliorates significantly as expected.
This improved performance however is still worse than the
smart uninformed receivers. The performance of the informed
smart receivers is marginally improved as compared to the
uninformed case.

C. Effect of the length of cluster L

As mentioned in Section VI, the cluster length is fixed at
L = 2ℓ− 1 = 7 for the current setting. In this subsection, we
explore the effect of choosing different initial cluster lengths
L ∈ 3, 5, 7, 9. Fig. 5 plots the achievable rate of the proposed
algorithm in this case. It can be seen that the rate of the
algorithm increases with increase inL though there is not



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. X, NO. X, JANUARY2014 12

50 100 150 200 250 300 350 400 450

5.34

5.36

5.38

5.4

5.42

5.44

5.46

5.48

Number of sensing carriers, m

R
at

e 
(b

it/
s/

H
z)

 

 

Genie−aided
CR−Ref
Proposed
FBMP
OMP
CR

Fig. 7: Comparison of the achievable rate of the algorithms
for different number of sensing carriers.

50 100 150 200 250 300 350 400 450
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Number of sensing carriers, m

R
un

tim
e 

(s
)

 

 
CR−Ref
CR
FBMP
Proposed
OMP
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much difference between the rates for cluster lengthsL > 3.
This gain in performance is obviously achieved at the expense
of higher complexity as presented in Fig. 6.

D. Effect of the number of sensing carriers m

Fig. 7 compares the performance of the proposed algorithm
with FBMP and OMP in terms of achievable rate when the
number of sensing carriers (m) is varied from64 to 448 with
increments of64. It can be seen that the performance of all
the algorithms improves with the increase in the number of
sensing carriers with the proposed algorithm almost aligning
with the perfect case afterm ≥ 256. Fig. 8 demonstrates the
superior speed of the proposed algorithm. It is an order of
magnitude faster than FBMP.

X. CONCLUSION

In this paper, we propose a smart receiver that estimates
and removes impulse noise in OFDM-based communications
schemes (like DSL and PLC). Such intelligent receivers have
significant advantage with respect to spectral efficiency, speed,

and simplicity, when compared to the conventional retrans-
mission techniques proposed in many standards. The impulse
noise is assumed to be sparse and thus any sparse reconstruc-
tion algorithm can be utilized at the receiver. Unlike convex
relaxation methods or matching pursuit algorithms for sparse
reconstruction, the proposed approach makes a collective use
of the structure of the sensing matrix (partial DFT matrix)
in OFDM systems and a priori information of the impulse
noise distribution, resulting in a fast and efficient algorithm.
Simulation results demonstrate the superior performance of the
proposed algorithm.

APPENDIX A
PROOF OFEQUATIONS (35) AND (36)

The covarianceΣΨIj

for a set of columnsIj ⊆ Ωj can be
written as

ΣΨIj

= I+
I0
N0

ΨIj
ΨH

Ij

= I+
I0
N0

(B∆ji
⊙ΨIi

)(B∆ji
⊙ΨIi

)H, (56)

where B∆ji
is a matrix consisting ofL identical columns

ψ∆ji
, i.e.B∆ji

=
[
ψ∆ji

ψ∆ji
· · · ψ∆ji

]
. Its inverse can be

evaluated by using the matrix inversion lemma,

Σ−1

ΨIj

= I− I0
N0

(B∆ji
⊙ΨIi

)(B∆ji
⊙ΨIi

)H

I+ I0
N0

(B∆ji
⊙ΨIi

)H(B∆ji
⊙ΨIi

)

= I− I0
N0

(B∆ji
⊙ΨIi

)(ΨH

Ii
⊙BH

∆ji
)

I+ I0
N0

(ΨH

Ii
⊙BH

∆ji
)(B∆ji

⊙ΨIi
)

= I− I0
N0

(B∆ji
⊙ΨIi

)(ΨH

Ii
⊙BH

∆ji
)

I+ I0
N0

(ΨH

Ii
ΨIi

)
,

where in the last lineBH

∆ji
and B∆ji

cancel each other
out. As we are actually interested in the quantityy′HΣ−1

ΨIj

y′,

substituting value ofΣ−1

ΨIj

in it

y
′HΣ−1

ΨIj

y
′

= y′Hy′ − I0
N0

y′H(B∆ji
⊙ΨIi

)(ΨH

Ii
⊙BH

∆ji
)y′

I+ I0
N0

(ΨH

Ii
ΨIi

)

= y′Hy′ − I0
N0

(y′H ⊙ψT

∆ji
)(ΨIi

ΨH

Ii
)(ψ∗

∆ji
⊙ y′)

I+ I0
N0

(ΨH

Ii
ΨIi

)

= (y′ ⊙ψ∗
∆ji

)H(y′ ⊙ψ∗
∆ji

)

− I0
N0

(y′ ⊙ψ∗
∆ji

)H(ΨIi
ΨH

Ii
)(y′ ⊙ψ∗

∆ji
)

I+ I0
N0

(ΨH

Ii
ΨIi

)

= (y′ ⊙ψ∗
∆ji

)H

[
I− I0

N0

ΨIi
ΨH

Ii

I+ I0
N0

(ΨH

Ii
ΨIi

)

]
(y′ ⊙ψ∗

∆ji
)

= y
′H

∆ji
Σ−1

ΨIi

y
′

∆ji
,

whereΣ−1
ΨIi

= I− I0
N0

ΨIi
ΨH

Ii

I+
I0
N0

(ΨH

Ii
ΨIi

)
(from matrix inversion

lemma).
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As for (36), starting from (56), we have

det(ΣΨIj

) = det

(
I+

I0
N0

(B∆ji
⊙ΨIi

)(ΨH

Ii
⊙BH

∆ji
)

)

= det

(
I+

I0
N0

(ΨH

Ii
⊙BH

∆ji
)(B∆ji

⊙ΨIi
)

)

= det

(
I+

I0
N0

(ΨH

Ii
ΨIi

)

)

= det
(

I +
I0

N0

(ΨIi
ΨH

Ii
)

)

= det(ΣΨIi

).
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