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Non-Gaussian prior Fast Bayesian Matching Pursuit
Mudassir Masood, and Tareq Y. Al-Naffouri*, Member, IEEE,

Abstract—A fast matching pursuit method (nGpFBMP) is
introduced which performs Bayesian estimates of sparse signals
even when the signal prior is non-Gaussian/unknown. It is
agnostic on signal statistics and utilizes a greedy approach and
order-recursive updates to determine the approximate MMSE
estimate of the sparse signal. Simulation results demonstrate the
power and robustness of the method.

Index Terms—sparse reconstruction, compressed sensing,
Bayesian, matching pursuit, basis selection, greedy algorithm.

I. INTRODUCTION

SPARSITY exists in many natural and man-made signals.
Some examples of sparse signals include those from

speech, images, videos, sensor arrays, seismic activity, and
frequency hopping. Sparsity is an attractive property because
its exploitation may be useful in the development of simple
signal processing systems. Sparsity-aware estimators form the
core of such systems. Some examples include estimators such
as Lasso [1], basis pursuit [2], structure-based estimator [3],
fast Bayesian matching pursuit [4], and those related to the
area of compressed sensing (CS) [5]–[7].

CS algorithms have been shown to recover sparse signals
from underdetermined systems of equations that take the form

y = Φx+ n (1)

where x ∈ CN , and y ∈ CM are the unknown sparse and
observed signal, respectively. Furthermore, Φ ∈ CM×N is the
measurement matrix with N �M and n ∈ CM is the additive
Gaussian noise. CS uses structure-preserving linear projections
of sparse signals for reconstruction using l1-optimization.

x̂ = argmin ‖x‖1 such that Φx = y (2)

l1-optimization is a convex optimization problem that con-
veniently reduces to basis pursuit having computational com-
plexity of O(N3). Since, usually, N is large, such an approach
rapidly becomes unrealistic. Some efficient alternatives such
as orthogonal matching pursuit (OMP) [8] and the algorithm
proposed by Haupt et al. [9] have been proposed. These
algorithms fall into the category of greedy algorithms that
are relatively faster than basis pursuit. However, an inherent
problem in these systems is that the only a priori information
utilized is the sparsity information.

Another category of methods based on the Bayesian ap-
proach considers complete a priori statistical information of
sparse signals. Two popular methods, fast Bayesian matching
pursuit (FBMP) [4] and the other proposed by Larsson and
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Selén [10], adopt such an approach and assume Gaussian prior
on the unknown sparse vector. They find MMSE estimate of
the sparse signal via model selection and averaging, and the
signal is described as a mixture of several components. FBMP
was shown to outperform several sparse recovery algorithms,
including OMP [8], StOMP [11], GPSR-Basic [12], Sparse
Bayes [13], BCS [14] and a variational-Bayes implementation
of BCS [15]. However, there are several drawbacks associated
with both FBMP and [10]. They work successfully only for
Gaussian priors. Gaussian assumption for additive noise is
reasonable; however, for signal it is inadequate. Moreover, in
situations where the assumption of a Gaussian prior is valid,
its parameters need to be estimated, which is challenging,
especially when the signal statistics are not i.i.d. In that
respect, one can appreciate convex relaxation approaches that
are agnostic with regard to signal statistics.

In this paper, we pursue a sparse signal reconstruction
approach that on one hand is Bayesian, acknowledging the
noise statistics and the signal sparsity rate, while on the
other hand is agnostic on the signal amplitude statistics. The
approach can bootstrap itself and estimate the sparsity rate and
noise variance when unknown. The algorithm is implemented
in a greedy manner and pursues an order-recursive approach,
helping it to enjoy low complexity.

The remainder of this paper is organized as follows. In
Section II, we formulate the problem and present the MMSE
setup in the non-Gaussian/unknown statistics case. In Section
III and IV, we describe our greedy algorithm and a recursive
method to make its computations efficient. This is followed
by Section V, which describes our hyperparameter estimation
process. In Section VI, we present our simulation results and
Section VII concludes the paper.

II. PROBLEM FORMULATION AND MMSE SETUP

A. The Signal Model
The analysis in this paper considers obtaining an N × 1

sparse vector, x, from an M×1 observations vector, y. These
observations obey the linear regression model

y = Φx+ n (3)

where Φ is a known M × N regression matrix and n ∼
CN (0,Kn) is the additive Gaussian noise vector. Here, x
has a sparse structure and is modeled as x = xA ◦ xB with
◦ indicating element-by-element multiplication. The vector
xA consists of elements that are drawn from some unknown
distribution1 and the entries of xB are drawn i.i.d. from a
Bernoulli distribution with success probability p.

1Typically, in Bayesian estimation, the signal entries are assumed to be
drawn from a Gaussian distribution but here the distribution may be unknown
or known with unknown parameters or even Gaussian. Our developments are
agnostic with regard to signal statistics.
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B. MMSE Estimation of x

To determine x, we compute the MMSE estimate of x given
observation y. This estimate is formally defined by

x̂mmse , E[x|y] =
∑
S
p(S|y)E[x|y,S] (4)

where the sum is executed over all possible 2N support sets of
x. In the following, we explain how the expectation E[x|y,S],
the posterior p(S|y) and the sum in (4) can be evaluated.

Given the support S, (3) becomes

y = ΦSxS + n (5)

where ΦS is a matrix formed by selecting columns of Φ
indexed by support S. Similar explanation follows for xS .
Since the distribution of x is unknown, the best we can do is
to use the BLUE as an estimate, i.e.,

E[x|y,S] =
(
ΦH
SΦS

)−1
ΦH
Sy (6)

The posterior in (4) can be written using the Bayes rule as

p(S|y) =
p(y|S)p(S)

p(y)
(7)

The factor, p(y), is common to all posterior probabilities
and could be ignored. Since the elements of x are activated
according to the Bernoulli distribution B(1, p), we have

p(S) = p|S|(1− p)N−|S| (8)

Determining p(y|S) is in general very difficult when xS is
non-Gaussian/unknown. To go around this, we eliminate the
non-Gaussian component of y by projecting it onto the orthog-
onal complement space of ΦS . To do so we multiply y by the
projection matrix P⊥S = I − ΦS(ΦH

SΦS)−1ΦH
S . This leaves

us with P⊥S y = P⊥Sn, which follows N (0,P⊥SKnP
⊥
S
H

),
where Kn is the noise covariance matrix. Thus, we have,

p(y|S) ' exp(− 1

σ2
n

‖P⊥S y‖2) (9)

Substituting (8) and (9) into (7) yields an expression for the
posterior probability providing us all the ingredients for (4).
Computing (4) becomes intractable for large N ; therefore, we
compute it over a few significant support sets Sd

x̂ammse =
∑
Sd

p(Sd|y)E[x|y,Sd] (10)

In the next section, we propose a greedy algorithm to find Sd.
For convenience, we represent the posteriors in the log domain
and define a dominant support selection metric, ν(S), to be
used by the greedy algorithm as follows:

ν(S) , ln p(y|S)p(S) =
1

σ2
n

∥∥∥ΦS(ΦH
SΦS)−1ΦH

Sy
∥∥∥2

− 1

σ2
n

‖y‖2 + |S| ln p+ (N − |S|) ln(1− p) (11)

III. A GREEDY ALGORITHM

We now present a greedy algorithm to determine the set
of dominant supports, Sd, required to evaluate (10). We first

TABLE I: The Greedy Algorithm

1) Initialize L = {1, 2, . . . , N}, Smax = {}, Sd = {},
i = 1, Li = L.

2) If i > P , then stop.
3) Generate Ω = {Smax ∪ {α1},Smax ∪
{α2}, · · · ,Smax ∪ {α|Li|} | αk ∈ Li}

4) Compute {ν(Sk) | Sk ∈ Ω}.
5) Find S? ∈ Ω, such that ν(S?) ≥ maxj ν(Sj).
6) Update, Sd = {Sd,S?}, Smax = S?, Li+1 =

L \ S?.
7) Set i← i+ 1 and repeat steps 2 - 7.

start by finding the best support of size 1, which involves
evaluating ν(S) for S = {1}, . . . , {N}, i.e., a total of

(
N
1

)
search points. Let S1 = {i?1} be the optimal support. Now,
we look for the optimal support of size 2, which involves a
search of size

(
N
2

)
. To reduce the search space, we pursue

a greedy approach and look for the point i?2 6= i?1 such that
S2 = {i?1, i?2} maximizes ν(S2). This involves

(
N−1
1

)
search

points (as opposed to the optimal search over
(
N
2

)
points).

We continue in this manner by forming S3 = {i?1, i?2, i?3} and
searching for i?3 in the remaining N −2 points and so on until
we reach SP = {i?1, . . . , i?P }. The value of P is selected to be
slightly larger than the expected number of nonzero elements
in the constructed signal such that Pr(|S| > P ) is sufficiently
small2. Table I presents a formal algorithmic description.

One point to note here is that in our greedy move from
Sj to Sj+1, we need to evaluate ν(Sj ∪ {ij+1}) around N
times, which can be done in an order-recursive manner starting
from that of ν(Sj). Specifically, we note that every expansion,
Sj ∪{ij+1}, from Sj requires a calculation of ν(Sj ∪{ij+1})
from (11). This translates to appending a column, φj+1, to
ΦSj in the calculations of (11), which can be done in an order-
recursive manner. We summarize these calculations in Section
IV. This order-recursive approach reduces the calculation in
each search step to an order of O(MN) operations down from
O(MN2) in the direct approach. Therefore, the complexity we
incur is of the order O(PMN) in our greedy search for the
best P support.

A. A Repeated Greedy Search

The accuracy of the reconstructed signal is dependent on
the number of support vectors in Sd and may be increased
by repeating the greedy algorithm a number of times (e.g.,
D). This would result in Sd with a total of PD supports. The
selection of supports in subsequent repetitions of the algorithm
is performed by making sure not to select an element at a
particular sparsity level that has been selected at the same
sparsity level in any of the previous repetitions. We note
that a repeated greedy search in this manner would incur a
complexity of order O(DPMN). For a detailed description
of the steps followed by the method, code is provided on the
author’s website3.

2|S| follows the binomial distribution B(N, p), which can be approximated
by the Gaussian distribution N (Np,Np(1 − p)) if Np > 5. For this case,
Pr(|S| > P ) = 1

2
erfc P−Np√

2Np(1−p)
.

3http://faculty.kfupm.edu.sa/ee/naffouri/publications.html
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IV. EFFICIENT COMPUTATION OF THE DOMINANT
SUPPORT SELECTION METRIC

The computational complexity of the proposed algorithm
is dependent upon the way ν(S) is computed. The efficient
computation of ν(S) depends mainly on the term ξS =
‖(ΦS(ΦH

SΦS)−1ΦH
Sy)‖2 = ‖ΦSE[x|y,S]‖2. Our focus is

therefore on computing E[x|y,S] efficiently.
Consider the general support S = {s1, s2, s3, . . . , sk}

with s1 < s2 < · · · < sk and let S and S de-
note the following subset and superset, respectively, S =
{s1, s2, s3, . . . , sk−1}, S = {s1, s2, s3, . . . , sk+1}, where
sk < sk+1. In the following, we demonstrate how to update
ey,k−1(S) , E[xS |y] to obtain4 ey,k(S) = E[xS |y]. We
note that

ey,k(S) =
(
ΦH
SΦS

)−1
ΦH
Sy

=

ΦH
S

φH
sk

 [ΦSφsk

]−1 ΦH
Sy

φH
sk
y

 (12)

By using the block inversion formula to express the inverse of
the above and simplifying, we get

ey,k(S) =

 Γeφ,k(S) + ey,k−1(S)

−Γ

 (13)

where Γ = 1
fS

(qHφ,k(S)ey,k−1(S)− ey,1(sk)). This recursion
is initialized by ey,1(i) = (φH

sφs)
−1φH

s y. The recursion also
depends on qφ,k(S) , ΦH

Sφsk
, eφ,k(S) , (ΦH

SΦS)−1ΦH
Sφsk

and fS , 1 − qHφ,k(S)eφ,k(S). The recursions for qφ,k(S),
and eφ,k(S) may be determined as follows5

eφ,k+1(S) =

 Λeφ,k(S) + eφ,k(S; sk+1)

−Λ

 (14)

where Λ = 1
fS

(qHφ,k(S)eφ,k(S; sk+1)− eφ,2(sk; sk+1)),

qφ,k+1(S) =

[
ΦH
S

φH
sk

]
φsk+1

=

[
qφ,k(S; sk+1)
qφ,2(sk; sk+1)

]
(15)

The two recursions (14) and (15) start at k = 2 and are
thus initialized by eφ,2(s1; s2) and qφ,2(s1; s2) for s1, s2 =
1, 2, . . . , N . This completes the recursion of ey,k(S) which
we utilize for recursive evaluation of ν(S).

V. ESTIMATION OF THE HYPERPARAMETERS p AND σ2
n

One of the advantages of the proposed nGpFBMP is that it
is agnostic with regard to signal statistics; the only parameters
required are the noise variance, σ2

n, and the sparsity rate, p.
Note from (11) that the selection of dominant supports at
each sparsity level is independent of these quantities. This
allows accurate and rapid estimation of these parameters. To
determine these estimates, a computationally efficient method
is described next.

4We explicitly indicate the size k of S in this notation as it elucidates the
recursive nature of the developed algorithms.

5Notation such as eφ,k(S; sk+1) is a short hand for eφ,k(S ∪ {sk+1}).

We use the MAP estimate of support S i.e. Ŝmap to get the
MAP estimate of x, i.e., x̂map = E[x|y, Ŝmap]. This x̂map is
in turn used to estimate p, iteratively, as p̂(i+1) =

∥∥∥x̂(i)
map

∥∥∥
0
/N

at (i + 1)th iteration. The estimate is computed iteratively
where in the first iteration of nGpFBMP, p̂(1) is initialized by
pinit, to compute x̂(1)

map. This is used to find the new estimate,
p̂(2), which is then used by nGpFBMP to compute x̂(2)

map. This
process is repeated until the estimate of p changes by less than
2% or until a predetermined maximum number of iterations
has been performed. At this stage, the estimate of the noise
variance can be computed as σ̂2

n = var(y −Φx̂map).

VI. RESULTS

To demonstrate the performance of nGpFBMP, we compare
it with FBMP [4] and the convex relaxation-based (l1) ap-
proach. FBMP was selected as it was shown to outperform
a number of contemporary algorithms. The following signal
configurations were used for the experiments:

1) Gaussian i.i.d., µx = 10, σ2
x = 2

2) Uniform non-i.i.d., 5 ≤ µx ≤ 10, 1 ≤ σ2
x ≤ 2

where µx and σ2
x refer to the mean and variance respectively.

Entries of M ×N sensing matrix Φ were i.i.d., with zero
means and complex Gaussian distribution where the columns
were normalized to the unit norm. The size of Φ selected
for the experiments was M = 256, N = 1024. The noise
had a zero mean and was white and Gaussian, CN (0, σ2

nIM ),
with σ2

n determined according to the desired signal-to-noise
ratio (SNR). Initial estimates of the hyperparameters used for
the simulations were µx est = 0, σ2

x est = 1
10 × σ

2
x, σ2

n est =
10×σ2

n, and pest = 0.003, where estimates of the signal mean
and variance were needed for FBMP.

In all of the experiments, parameter refinement was per-
formed for both algorithms for a maximum of 10 iterations.
For fairness, support and amplitude refinement [16] procedures
were performed on the results of the CS algorithm6. Finally,
the normalized mean-squared error (NMSE) between the orig-
inal signal, x, and its MMSE estimate, x̂ammse, was used as
the performance measure.

Experiment 1 (Performance comparison for varying SNR)
NMSEs were measured for values of SNR between 0

dB and 30 dB and plotted to compare the performance of
nGpFBMP with FBMP and the CS algorithm (Fig. 1). Sparsity
rate selected was p = 0.005. Experiments showed that the
proposed method has better NMSE performance than both
FBMP and CS for all considered signals.

Experiment 2 (Performance comparison for varying p)
In a similar set of experiments, NMSE and mean runtime

were measured for different values of sparsity parameter p with
SNR set to 20 dB. Figs. 2 and 3 demonstrate the superiority
of nGpFBMP over FBMP and CS. We also observe that
performance of nGpFBMP is relatively insensitive to changes
in p as the corresponding changes in NMSE are very small,
thus demonstrating the strength of the proposed algorithm.

6Actual parameter values were provided to the CS algorithm instead of
estimates; furthermore, support and amplitude refinement was also performed
to demonstrate that, despite these measures, its performance was inferior to
that of nGpFBMP.
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Fig. 1: NMSE vs SNR for Gaussian i.i.d. input

Fig. 2: NMSE vs p for uniform non-i.i.d. input

Experiment 3 (Performance comparison when the initial statis-
tics of signal and noise are very close to the actual values)

Table II compares the average NMSEs of FBMP and
nGpFBMP for different types of signals when the initial
estimates (µx, σ2

x, and σ2
n) were chosen to be very near to

their actual values. Since nGpFBMP is independent of these
initial estimates its performance did not change. On the other
hand, performance of FBMP improved, although it did not
outperform nGpFBMP.

Fig. 3: Runtime vs p for Gaussian i.i.d. input

TABLE II: Average NMSE (dB) comparison between FBMP
and nGpFBMP when the initial estimates of the hyperparam-
eters are close to the actual values

Signal type FBMP nGpFBMP
Gaussian −20.55 −31.103

Uniform (i.i.d.) −24.2 −30.98

Uniform (non-i.i.d.) −23.87 −30

VII. CONCLUSION

In this paper, we presented a robust Bayesian matching
pursuit algorithm based on a fast recursive method. Compared
with other robust algorithms, our algorithm does not require
signals to be derived from some known distribution. This is
useful when we can not estimate the parameters of the signal
distributions. Application of the method on several different
signal types demonstrated its superiority and robustness.
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