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ABSTRACT

In this paper, a low-sampling-rate scheme for ultra-wideband channel estimation is proposed. The

scheme exploits multiple observations generated by transmitting multiple pulses. In the proposed

scheme, P pulses are transmitted to produce channel impulse response estimates at a desired sampling

rate, while the ADC samples P times slower. To avoid loss of fidelity, the number of sampling periods

(based on the desired rate) in the inter-pulse interval is restricted to be co-prime with P . This condition

is affected when clock drift is present and the transmitted pulse locations change. To handle this case

and to achieve an overall good channel estimation performance without using prior information, we

derive an improved estimator based on the bounded data uncertainty (BDU) model. It is shown that this

estimator is related to the Bayesian linear minimum mean squared error (LMMSE) estimator. Channel

estimation performance of the proposed sub-sampling scheme combined with the new estimator is

assessed in simulation. The results show that high reduction in sampling rate can be achieved. The

proposed estimator outperforms the least squares estimator in almost all cases, while in the high SNR

regime it also outperforms the LMMSE estimator.

Key Words—ultra-wideband, UWB, channel estimation, sub-sampling, ADC, equivalent-time sam-

pling, linear minimum mean squared error, LMMSE, bounded data uncertainty, BDU.

I. INTRODUCTION

Channel estimation is an important process for ultra-wideband (UWB) short-range communication and

high precision location and navigation systems [1, 2]. The main challenge in the problem stems from the

large bandwidth of the transmitted pulses, which results in an extravagantly high Nyquist sampling rate

(equivalent to twice the bandwidth), thus leading to formidable analogue-to-digital converter (ADC)



requirements [1, 2, 3]. Due to the same large bandwidth, a large number of multipath echoes are resolv-

able [1]. As a result, an even higher (than Nyquist) rate might be required for resolving these multipath

components. For example, in [4], a sampling rate in the range of 17.9–35.7 GHz was suggested in

the context of UWB channel estimation. Sampling at such a rate is practically limited by the cost and

complexity of the required hardware [1].

Techniques like compressed sensing are commonly applied to reduce the ADC sampling rate re-

quired for signal reconstruction and/or parameter estimation [5]. These techniques capitalize on the

sparsity of the data of interest. Due to the high density of UWB multipath in most practical situa-

tions, these techniques are not of much use in the UWB case. For example, according to the IEEE

802.15.3a standard [6], the CM1 model (based on line-of-sight channel measurements at 0–4 m) has

a cluster arrival rate of 0.0233 ns-1 and ray arrival rate of 2.5 ns-1 within each cluster. Consider-

ing one of these clusters, we have a duration of approximately 43 ns in which we have, approxi-

mately, 107 distinct multipath components. To resolve all these components, we need to sample at

fs ≥ 107/(43 × 10−9) ≈ 2.5 GHz, in which case the sparsity rate is 1 (out of 1). For the channel to

be considered sufficiently sparse (e.g., has a sparsity rate of 0.1 or less) the channel has to be sampled

at a sampling rate fs≥ (107/0.1)/(43 × 10−9) ≈ 25 GHz. This raises a conflict between the sampling

requirement for UWB signals in order to make them sparse on the one hand, and the general interest in

reducing the cost of sampling hardware on the other hand (the latter is already high for UWB). It can be

said, therefore, that the use of compressed sensing will not be efficient with UWB channels (at least as

far as indoor environments are concerned).

Persistent efforts have been made to reduce the sampling resources required for UWB channel es-

timation. For example, in [2], a dictionary of parameterized waveforms (atoms) is designed such that

a sparse representation of the received signal can be assumed. A compressed-sensing technique was

applied to reduce the sampling rate to 1/3 of the Nyquist rate. Although this is a significant reduction

in sampling rate, the required sampling rate is still expensive for commercial devices. Improving this

technique is practically limited by sparsity rates of the UWB channels, as has been alluded to in the

above discussion.

In [7], the channel estimation problem is translated into a harmonic retrieval problem to achieve up

to 1/8 sampling rate reduction. However, as is explained in [1], this method is blind to circular shifts

and therefore cannot estimate timing offsets. Unlike [7], in [8], a separate timing estimator is combined



with the frequency-domain channel estimation method to offer a more robust alternative. Unfortunately,

the high sampling requirements of the latter approach make the approach inefficient.

In [9], a bank of parallel analogue matched filters was used to allow for sampling of UWB signals

at the datasymbol rate (data symbols are transmitted at a much lower rate compared to the Nyquist fre-

quency). It is obvious that the proposed configuration in [9] increases both cost and power consumption.

In this paper, we draw on the idea of equivalent-time sampling [10, 11, 12]. Equivalent-time sam-

pling is a technique that has been used widely in digital oscilloscopes to capture a repetitive signal using

a sampling rate which is lower than the signal’s Nyquist rate. An illustrative example of this scheme is

depicted in Fig. 1. In equivalent-time samplers, the ADC is triggered at progressively increasing time

intervals (in Fig. 1, the time interval is increased by τ each time). Instead of acquiring samples in rapid

succession, the ADC digitizes only one point from several occurrences of the input waveform and uses

the samples to recreate the shape of the signal. As a result, the acquisition is not limited by the conver-

sion rate of the ADC [11]. This equivalent-time sampling scheme obviously adds more complexity to

the functionality of the ADC in addition to the stringent timing required.

Unlike the equivalent-time sampling scheme used in the digital oscilloscope, the scheme proposed

herein does not require progressive sampling. In the proposed scheme, the repetitive signal is sub-

sampled at uniform intervals. To pick the required signal samples from the different repetitions, we rely

on the relationship between the sub-sampling rate and the inter-pulse interval, as will be explained in the

sequel. It will be shown that certain constraints on the number of signal repetitions, the repetition time

window and the sub-sampling rate can be utilized to allow for perfect reconstruction of the repeating

signal in the noise-free case. This enables us to use highly sub-sampled data to produce channel impulse

response (CIR) estimates sampled at the Nyquist rate or higher.

The remainder of this paper is organized as follows. Section II describes the signal model required

for the development of the proposed approach. In Section III, the proposed equivalent-time approach

is derived assuming perfect time synchronization. In Section IV, the effect of synchronization error is

considered and ways for mitigating it are discussed. The actual channel estimation solution is given in

Section V. Simulation results are discussed in Section VII. The paper is concluded in Section VIII.
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Fig. 1: Illustration of equivalent-time sampling.

I.I. Notations

We use upper-case bold-face letters to denote matrices (e.g., Σ) and lower-case bold-face letters to

denote vectors (e.g., λ). A lower-case letter with a subscript denotes an element of a vector (e.g., λi is

the i’th element of the vector λ). The notations (.)H and tr(.) are used to denote the Hermitian transpose

and the trace of a matrix, respectively. The operation denoted by diag(.) returns the vector that contains

the diagonal elements of a matrix argument; for a vector argument diag(.) returns the diagonal matrix

whose diagonal entries are the vector elements.The statistical expectation operation is denoted by E(.)

and the estimated value is denoted by (̂.). The symbol ‘99K’ is used to indicate that the expression to the

right approximately replaces the expression to the left. The real part, imaginary part and magnitude of a

complex number are denoted by, R(.) and I(.) and |.|, respectively, Finally, ||.||2 denotes the Euclidean

norm in the case of a vector, or the 2-induced norm in the case of a matrix.

II. SIGNAL MODELS

A received UWB signal can be approximated as a linear combination of scaled and delayed versions of

the transmitted signal [13, 14]. This leads to the well-known convolution relationship, which, for the

discrete-time case, is given by

y[n] =

+∞
∑

k=−∞

a[n− k]h(k) + v[n], (1)

where a[n] is the n’th sample of the transmitted signal, y[n] is the corresponding received signal sample,

h[n] is the CIR, and v[n] is a sample noise that is assumed to be additive white Gaussian (AWGN) with

zero mean and variance σ2
v . Here it is assumed that the signals are sampled at regular time intervals

according to a sampling rate, fs. Note that the model above ignores effects such as diffraction and



dispersion, which result in frequency dependent distortions of the individual echoes [15].

Customarily, for time-limited signals, the process in (1) is more conveniently expressed in the matrix

form

y = Ah+ v, (2)

where y ∈ R
M×1 is the received signal, h ∈ R

N×1 is the CIR, v ∈ R
M×1 is additive noise, and

A ∈ R
M×N is referred to herein as the transmission matrix, which has the following structure:

A =

























a0 a−1 a−2 · · · a−N+1

a1 a0 a−1 · · · a−N+2

a2 a1 a0 · · · a−N+3

...
...

...
. . .

...

aM−1 aM−2 aM−3 · · · a0

























(3)

In the above model, it is assumed that any two adjacent elements in a row or column are separated by a

sampling interval Ts = 1/fs.

In (2), the columns of the matrix A are shifted versions of the transmitted signal vector a ∈

R
M+N−1×1. The first column contains the signal a as it is. In the second column, the signal is shifted

(down) by one element. In the third column, an additional shift by one element is introduced, and so

on. Thus, the elements of A satisfy the property Ai,j = Ai+1,j+1,∀i ∈ {1, · · · ,M}, j ∈ {1, · · · , N}

making A a Toeplitz matrix.

The transmitted signal a consists of an a priori known training sequence of data symbols that are

transmitted periodically, possibly as part of data frames. Herein, we will simply ignore any transmitted

data, and we will simply refer to a as the transmitted signal in the channel estimation context. For the

channel estimation method proposed in this paper, a training sequence is comprised of P pulses that are

transmitted sequentially at a regular time interval, T seconds. An example of such a pulse train is shown

in Fig. 2. The interval T should be sufficiently large for the receiver to collect all the multipath arrivals

pertaining to a certain transmitted pulse before the next transmission commences.

In this work, the transmission matrix (A) for UWB channel estimation is constructed as follows.

The number of columns of A is equal to N , which is chosen to coincide with the pulse interval T . Each

column spans the duration of P pulse intervals, leading to a row dimension of M = PN for the matrix

A. The concatenation of the first row of A (starting from the last element) and the first column (starting



from the first element) represents the samples of the transmitted signal a missing the first sample (see

Fig 3). Thus, A can be obtained directly from the vector a.

To improve the transmission matrix structure, an auxiliary pulse is transmitted T seconds prior

to the onset of the actual transmission. This extra pulse can be viewed as the past data at the time

point when the transmission of the actual pulse train starts (see Fig. 2). As a result of transmitting

this auxiliary pulse, the elements of the transmitted signal a , a−N+1, ..., a−N+L−1, will become non-

zero, or more specifically, these elements will be equal to the pulse samples s1, ..., sL−1 . This choice

gives A a circulant structure, i.e., the elements of A now satisfy the property Ai,j = Ai+1,j+1,∀i ∈

{1, · · · ,M}, j ∈ {1, · · · , N}; with i+1 and j+1 taken modulo M and N , respectively. Fig. 3 depicts

an example of a transmission matrix with circulant structure. The figure shows that A is comprized of

P identical sub-matrix blocks. The benefit of the auxiliary pulse in making the matrix circulant is clear.

Note that if the contribution of the auxiliary pulse is removed, the A becomes a non-circulant toeplitz

matrix with one non-circulant sub-matrix at the top followed by P − 1 circulant sub-matrices. As a

result of the structure of the matrix A, Equation. (2) can be written as
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, (4)

where Ab ∈ R
N×N ; yk,vk ∈ R

N×1,∀k ∈ {0, · · · , P−1}; and z = Abh. As explained above, Ab is a

circulant matrix and it represents the transmission matrix when only one pulse is tranmsitted (in addition

to the auxiliary pulse). Now, it can easily be seen that the model in (2) and (4) is a concatenation of P

circulant systems of the form

yk = z + vk = Abh+ vk, k = 0, · · · , P − 1. (5)

Since the noise vectors vk have identical statistics, yk are statistically equivalent.

Finally, note that the circulant property of the matrix A and it sub-matrices is exploited in this work

in two ways:

(a) By making A circulant, all the sub-matrices of A are identical, which is essential for the proposed
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Fig. 2: The transmitted pulse train.

equivalent-time sampling method that will be presented in Section III.

(b) The circulant property of the sub-matrix Ab is exploited for reducing the computational complexity

of the channel estimation solution and its robust version in the presence of clock drift (see Section V

further ahead).

II.I. Down-Sampled Signal Model

The model in Equation. (2) and Equation (4) represents a square sampling case, where the sampling

periods for the received signal and the CIR are identical. In the UWB case, as well as in some other

practical situations, it is desirable to utilize a cheaper ADC to sample the received signal at a lower rate

than the one required for h. Assuming a sampling period of Td = DTs, the received signal becomes

yd = Adh+ vd, (6)

where the subscript ‘d’ indicates the down-sampling operation of the columns. Throughout this paper,

we assume integer decimation ratio, i.e., D ∈ N. Each column in (6) is obtained by re-sampling the

corresponding column in (2) according to the new sampling rate fs/D . Note that each column of A is

composed of a repetitive pattern of P cycles that are exactly identical. The sampling operation might

pick some or all of the elements of the repetitive pattern depending of the values of D and N .

The system in (6) has the same column dimension as the system in (2) and (4), and a row dimension

equal to N/D (or the nearest integer less than N/D if N is not divisible by D).
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Fig. 3: Illustration of the structure of the transmission matrix A. Each block corresponds to a sub-matrix

Ab.

III. UWB CHANNEL ESTIMATION USING EQUIVALENT-TIME SAMPLING

When the received signal yd is sampled below the Nyquist rate, the individual pulses received from

different paths will be under-represented according to the Nyquist sampling criterion. This leads to a

loss of fidelity, that is, yd no longer contains sufficient information to accurately estimate the CIR. In

fact, for an extremely sub-sampled signal yd, some multipath components may completely be missed

by the sampling process. For example, if the sampling interval Ts = 1/fs is larger than the pulse

width, some multipath components will not be sampled even at a single time point, and hence cannot

be recovered in a straightforward manner. To handel such challenging situations, an equivalent-time

sampling approach is developed in this section.

To describe the proposed method for low-sampling rate channel estimation, consider the under-

sampled system in (6) and the square-sampled system in (4). Without loss of generality, let us focus on

the case where the higher sampling rate (the sampling rate required for the output CIR) is the Nyquist

rate. Assume that the received signal is sub-sampled by a factor D .

Theorem 1: Given a number of blocks D = P , for the two systems in (5) and (6) to be equivalent, a



sufficient condition is that the two numbers D and N be co-prime.

Proof: Consider any column (vector) of the system in (4). Denote that column by c. By down-sampling

c by a factor D, we obtain the corresponding column in (6). Denote the latter column by cd. We want

to prove that for co-prime D and N , the elements of cd are exactly the same as the elements of the

corresponding column in (5), call it cb, taken in different order (or permutation).

The indices of the elements of the c that are picked by the sampling process to form cd are

αn = nD,n = 0, 1, . . . , (N − 1)D. (7)

The actual value at each index, αn, is equal to the value of cb at an index that is given by the mapping

βn = mod(αn, N), n = 0, 1, . . . , (N − 1)D, (8)

where mod(., N) denotes the modulo-N operation.

Now, let us focus on two elements that correspond to αi = iD and αj = jD , 0 ≤ i < j ≤ N − 1,

whose mappings are βi = mod (iD,N) and βj = mod (jD,N)}, respectively. For these mappings

the following relationships hold

αi = qiN + βi (9)

αj = qjN + βj , (10)

where {qi, qj} ⊂ {0, 1, 2, . . . ,D − 1} are the corresponding quotients. Now, consider k
def
= (i − j) ∈

{1, 2 . . . , N − 2}. By subtracting (10) from (9), we obtain

αk = kD = qkN + βk, (11)

where qk
def
= (qi− qj) ∈ {0, 1, 2, . . . ,D−1} and βk

def
= βi−βj . It can easily be seen that αk is another

sampling index, the mapping of which is βk.

Now, let us write N = NbZ and D = DbZ , where {Nb,Db, Z} ⊂ N with Nb and Db being

co-prime. Applying this factorization to Equation (11) yields

Z [kDb − qkNb] = βk. (12)



From (12), it can be seen that βk = 0 if and only if k = Nb and qk = Db. Now, consider the case in

which D and N are co-prime, i.e., Z = 1, Nb = N and Db = D. In this case, since k ∈ {1, 2 . . . , N−2}

and qk ∈ {0, 1, 2, . . . ,D − 1}, then it is guaranteed that k 6= Nb and qk 6= Db. Consequently,

βk 6= 0 =⇒ qi − qj 6= 0 =⇒ qi 6= qj. (13)

From (13), it follows that for co-prime D and N , the operation in (8) is a one-to-one mapping.

Therefore, we can write

cd = perm(cb), (14)

where perm(.) is the permeation operation of the vector elements. From (14), we conclude that the

system in (6) is identical to that in (5); the only difference is a row-wise permutation 1, which is the end

of the proof of Theorem 1.

The implication of Theorem 1 is that we can utilize repetitions of the same data block for sig-

nal/paramter estimation while relaxing the sampling requirements. Specifically, the deficiency in sam-

pling can be perfectly compensated for by exploiting extra blocks under the constraints suggested above.

IV. PRACTICAL CONSIDERATIONS

In this section, practical effects are taken into account when applying the equivalent-time sampling

method described in the previous section to the UWB channel estimation problem. Based on the con-

clusion of the Section III, we can transmit a pulse train of D + 1 pulses to obtain D identical blocks of

received signal that can be sampled at a rate of fN/D without loss of fidelity. Note that the extra pulse

is required to make the system circulant.

Implicit in the above development are two assumptions for equivalent-time sampling to work:

(a) The channel remains static throughout the measurement period (see Equation (4)); and

(b) there are no errors in transmission times.

For the first condition to be satisfied, the pulse train duration should be sufficiently small such that

the channel variation from pulse interval to another is negligible. Throughout this paper, it will be

assumed that the pulse trains used herein comply with this requirement. This condition can be satisfied

1Row-wise permutations, applied to a linear system, do not affect the solution of the system.



easily in practice since object movement speeds (a few meters per second at most) are sufficiently low,

in indoor environments, to consider the environment static during the whole transmission intervals (a

few microseconds at most for the maximum number of pulses used in the simulations in Section VII).

In other word, the maximum achievable reduction in sampling rate for the proposed method is limited

by how fast the environment change.

The second condition is related to time synchronization; namely, the effect of any time shifts in

the transmitted pulse locations. The effect of mis-synchronized transmitted pulses is that the received

blocks are not identical.

One of the main causes of mis-synchronization is clock drift. Clock drift is the phenomenon where

the clock does not run at exactly the designated frequency. Normally, the effect is parameterized by the

so-called clock drift rate that is given in parts per million (PPM) [16, 17]. For a drift rate r, the amount

of drift at time t seconds is given by

δt = rt, (15)

where δt is in microseconds if r is in PPM.

Considering the models in Equation (4) and Equation (6), the direct result of clock drift is to create

a mis-match between the received signal vector and the transmission matrix for each model. This is

due to the fact that the received signal is generated from a different transmission matrix. This matrix is

constructed from a transmission sequence where the pulse locations are shifted according to a certain

drift rate. If the drift is reasonably small compared to the pulse width and the sampling rate, we can

assume that the matrix that has actually produced the received signal is equal to the ideal transmission

matrix Ad plus an error matrix ∆A. Hence, the model in (6) is replaced by

yd = (Ad +∆A)h+ vd, (16)

where ∆Ah represents the contribution of the clock drift in the error of yd.

Note that the ADC clock drift at the receiver can cause a similar effect to that caused by the trans-

mitter clock drift. For simplicity, we will ignore the effect of clock drif/jitter at the receiver. That effect

can be modeled in a similar way to the transmitter clock drift effect and it can be absorbed in the error

matrix ∆A.

In addition to the above two assumptions, it will also be assumed that the transmitter and receiver are



Fig. 4: An example of a transmit pulse train with clock drift (black). The original sequence without drift

is depicted in grey colour.

perfectly synchronized at the time instant of the transmission of the first pulse in the pulse train. Clock

drift effect starts from this point onward. Based on this assumption, the first pulse of the transmitted

pulse train (the auxiliary pulse) will not suffer any time drift. The next pulse will be shifted forward

or backward depending on whether the drift is positive or negative. Fig. 4 depicts an example for a

transmitted pulse train with clock drift. The error matrix ∆A can be conceived as the difference between

the two transmission matrices constructed from two different pulse trains under a certain sampling rate.

For a moderate drift rate, the support of ∆A will concentrate around the support locations of the known

matrix Ad.

The conclusion of this section is that, (16) is the practical model that will be considered in the sequel.

V. CHANNEL ESTIMATION

Using the signal models (6) and (16), let us see how we can perform channel CIR estimation. For the

model in Equation (6), i.e., when ∆A = 0, the least squares (LS) estimator for the CIR is given by [18]

ĥLS =
(

AH
d Ad

)−1
AH

d yd, (17)

For ∆A 6= 0, (17) is expected to diverge depending on the drift rate. Note that for the AWGN case, (17)

is also the best linear unbiased estimator (BLUE) [18].

Estimators that exploit the underlying model of the data are well-known to be more robust to differ-

ent types of data contaminations. These estimators include Bayesian estimators such the linear minimum

mean squared error (LMMSE) estimator, which, for zero-mean CIR and AWGN, is given by [18]

ĥLMMSE =
(

AH
d Ad + σ2

vC
−1

hh

)−1
AH

d yd. (18)



Note that the LMMSE approach assumes a stochastic CIR model contrary to the LS method that assumes

a deterministic one. CIR models found in reality are stochastic, which gives a clear advantage to the

LMMSE over the LS estimator. However, in practice, the channel model cannot be precisely known,

and consequently the required statistics (.ie., Chh and σ2
v) are not available in most practical cases2.

A less strict version of the estimator in (19) can be obtained by assuming the CIR to be white (i.e.,

Chh 99K σ2
hI), which results in the white LMMSE (WLMMSE) estimator:

ĥWMMSE =

(

AH
d Ad +

σ2
v

σ2
h

I

)

−1

AH
d yd. (19)

To deal with the model uncertainties (also known as error-in-variables) in Equation (16), when no

statistical information is available, a number of formalisms have been suggested. These include total

least squares based methods [19, 20], H∞ methods [21], and bounded data uncertainty(BDU) methods

[22]. In this work, the BDU approach will be pursued to handle model uncertainties. The formalism is

found to be well suited and can be applied in a computationally efficient manner, as will be demonstrated

in this section.

Based on [22], the estimation problem of (16) can be formulated as a min-max problem. Namely,

the solution is obtained by solving

min
h

max ||(Ad +∆A)h− (y − vd)||2

subject to: ||∆A||2 ≤ η, ||v||2 ≤ ηv, (20)

where η is the upper bound on the 2-induced norm of ∆A and is assumed to be known, and ηv is the

upper bound on the Euclidian norm of vd and will turn out to be irrelevant to the solution of (20). It can

be proved that the min-max problem in (20) is equivalent to the minimization problem [22]

min
h

||Adh− y||2 + η||h||2 + ηv. (21)

whose solution takes the form [22]

ĥBDU = (AH
d Ad + γI)−1AH

d yd. (22)

2CIR is usually changing in situations when UWB is used. Tracking these changes can be used for tracking the objects that

cause them, which is an important UWB application.



Here I is the identity matrix of appropriate dimension, and γ0 is a regularization parameter that is

obtained by solving the secular equation [22]

yH
d U(Σ2 − η2I)(Σ2 + γI)−2UHyd = 0, (23)

where Σ = diag(λ), with λ being the vector of the singular values of Ad; and U ∈ R
N×N is the matrix

of eigenvectors of AdA
H
d .

It is shown in [22] that for (22) to be the unique solution to the minimization problem in (21), η has

to satisfy the inequality

ηl < η < ηu,

where ηl =
||Σ−1yd||2
||Σ−2yd||2

, and ηu =
||AH

d yd||2
||yd||2

. (24)

Note that for γ = 0 , the solution in (22) becomes the LS solution of (17).

In order to find the CIR estimator given in (22), a number of computations need to be performed. The

following subsections will discuss how to carry out each of these computation in an efficient manner.

V.I. Computing The Singular Values λ

In a practical UWB system the matrix Ad is large and the calculation of its singular values can be

computationally demanding. To deal with this issue, we exploit the equivalence of the matrices Ad and

Ab, and the circulant property of the latter matrix. Namely, we have

AH
d Ad = AH

b Ab = B. (25)

The matrix B is a circulant matrix and hence its eigenvalues can be computed using the fast Fourier

transform (FFT) of its first row, b1 [23]. By exploiting the relationship between the singular values of

the matrix Ad and the eigenvalues of the matrix B = AH
d Ad , we have

λ =
√

fft(bH
1
). (26)

Note that the eigenvalue above can be pre-computed using any suitable method and stored to be used

for computing the solution (22).



V.II. Finding γ

To find γ, (23) is iteratively solved. Since the right-hand-side of (23) is differentiable, the Newton’s

method [24] is one good option to carry out the task. Based on the Newton’s method, the iterations for

finding γ, starting from an initial guess, γ[0], are given by

γ[n + 1] = γ[n] +
yH
d U(Σ2 − η2I)(Σ2 + γ[n]I)−2UHyd

2yH
d U(Σ2 − η2I)(Σ2 + γ[n]I)−3UHyd

. (27)

The iterations (27) reach convergence when |γ[n+ 1]− γ[n]| < ǫ, where ǫ is a sufficiently small value.

For (27) to converge to the only positive root, a judicious choice of the initial value γ[0] is needed.

Throughout this work, the initial value γ[0] = 0 is used. When tested in simulation, this initialization

led to convergence after few iterations in more that 99% of the cases. Due to the involvement of mostly

diagonal matrices, (27) can be evaluated with moderate computational cost.

V.III. Computing The Inverse (AH
d Ad + γI)−1

We can calculate the inverse (AH
d Ad+γI)−1 that appears in the BDU solution (22) by again exploiting

the circulant property of AH
d Ad, which allows us to diagonalize it using using the FFT matrix F as

AH
d Ad = FΣ

2FH , (28)

where Σ
2 = diag(λ2). Hence, we can write

(AH
d Ad + γI)−1 = F (Σ2 + γI)−1FH . (29)

This equation shows that the process of CIR estimation under the BDU model can be achieved without

incurring much computation. Note that while the matrix inverses needed for evaluating the LS, LMMSE

and WLMMSE solutions can all be pre-computed, the BDU solution requires updating the matrix in-

verse (AH
d Ad + γI)−1 according to the current received signal (γ is data dependent). To reduce the

computational complexity involved, we capitalize on the circulant property of the data model. The solu-

tion of a circulant system can be implemented with a complexity of O(N log2 N) compared to O(N2)

for a Toeplitz system [23], which is a significant difference in computational complexity for a large N .

The method for CIR estimation with BDU can be summarized as follows:



1. Compute λ, and then Σ based on (26).

2. Find γ using the iterations (27).

3. Compute ĥBDU based on (22) and (29) using the following steps:

3.1 Multiply y by the matrix Ad.

3.2 Apply the FFT on the results.

3.3 Divide (element-wise) by λ2 + γ.

3.4 Finally, obtain ĥBDU by applying the inverse FFT.

VI. ANALYTICAL PERFORMANCE

In the preceding section, we derived the BDU estimator of the CIR. This estimator minimizes the cost

function in (21) (for a certain value of the η), which corresponds to solving the mini-max problem (20).

In most estimation problems, we are interested in minimizing the mean squared error (MSE), which is

a different process that may not coincide with minimizing the maximum error as in (20). To get some

insight into the MSE performance of the BDU solution, we conduct the following analysis. Starting

from Equation (22), the MSE is defined as

MSE = tr
{

E
[

(ĥ − h)(ĥ− h)H
]}

= tr
[

E(ĥĥH)
]

− tr
[

E(ĥhH)
]

− tr
[

E(hĥH)
]

+ tr
[

E(hhH)
]

, (30)

where h is the true CIR and ĥ is used instead of ĥBDU for simplification. If we substitute for ĥ from

(22) and manipulate we get the expression of the MSE in terms of the various system parameters. This

derivation is detailed in Appendix A. The exact expression for the MSE can be simplified further by

assuming that the CIR is white. This leads to the following expression of the MSE:

MSEwhite = σ2
v tr

[

(

AH
d Ad + γ̄I

)−1
AH

d A
(

AH
d Ad + γ̄I

)−1
]

+ σ2
htr

[

(

AH
d Ad + γ̄I

)−1

(

AH
∆∆

HA− γ̄AH
∆− γ̄∆HA+ γ̄2I

) (

AH
d Ad + γ̄I

)−1
]

. (31)



To obtain an even simpler expression, we introduce several approximation (see Appendix A) to obtain

the approximate MSE as

MSEapprox ≈ σ2
v

N−1
∑

i=0

(

λi

λ2
i + γ̄

)2

+ σ2
h

N−1
∑

i=0

{

[

R(ωi)− γ̄

λ2
i + γ̄

]2

+

[

I(ωi)

λ2
i + γ̄

]2
}

, (32)

where ω is a vector that contains the eigenvalues of AH
d ∆A, which is approximated as:

ω ≈ diag[FH(AH
∆A)F ]; (33)

and γ̄ is obtained from (27) by averaging over yd and performing the iterations in a similar manner to

(27). After manipulations, we obtain the following iterations:

γ̄[n+ 1] = γ̄[n] +
tr
[

U(Σ2 − η2I)(Σ2 + γ̄[n]I)−2UHE(ydy
H
d )

]

2tr
[

U(Σ2 − η2I)(Σ2 + γ̄[n]I)−3UHE(ydy
H
d )

] , (34)

where

E
(

ydy
H
d

)

99K σ2
vI + σ2

h

(

AdA
H
d +Ad∆

H +∆AA
H
d +∆A∆

H
A

)

. (35)

The complete derivation of (31)–(34) is detailed in Appendix A. Now, contemplating the MSE in (32),

we observe the following:

(a) The MSE is composed of two main terms; the first term is the contribution of noise; and the second

term is a function of the channel variance and drift.

(b) Contrary to the first term, the second term is a bias term, that it does not asymptotically go to zero

as the noise variance goes to zero.

(c) In the special case where γ̄ = 0 (i.e., in the LS case) and ω = 0 (i.e., no clock drif), MSEapprox

equals Nσ2
v , which is the performance of the LS estimator [18].

(d) The benefit of the regularization parameter γ in reducing the noise effect is clear. It also reduces

the contribution from the imaginary parameter of the drift. However, the way the regularization

parameter is involved with the real parameter of the drift suggests that the regularization parameter

may have a counter effect.



VI.I. Selecting η

First, recall that η represents the upper limit on the transmitted data uncertainty as prescribed in (20).

Being an upper limit means that there are infinitely many candidate values of η that can be used. As

the interest is customarily in the MSE performance, we can choose a value of η that minimizes the

MSE of the BDU estimator. This value can be obtained by differentiating the MSE expression, equating

to zero and solving for γ̄. The optimal value of η can then be obtained directly from (23). This is a

straightforward procedure but unfortunately, the first derivative of the MSE expression (given in (31)

or (32)) leads to an intractable order-N nonlinear equation in γ̄. To obtain a sub-optimal value of η,

we optimize the MSE performance under zero clock-drift conditions. By substituting ∆A = 0 in (32),

differentiating and setting the derivative equal to zero, we obtain

γ̄opt ≈ ρ =
σ2
v

σ2
h

, (36)

By substituting (36) in (23) solving for η, we obtain

ηopt ≈

√

√

√

√

N
∑N−1

i=0
1

λ2

i
+ρ

− ρ. (37)

From (36) and (37), it can clearly be seen that in the case where η = ηopt, the BDU estimator coincides

with the WLMMSE estimator. In other words, by choosing η according to (37), the BDU method

performs exactly like a WLMMSE estimator. This result underscores the importance of exploiting

the underlying model in providing robustness against uncertainties. However, this requires a priori

knowledge that may not be available in practical situations. For example, in indoor environments, the

statistical parameters of h can be time variant due to the movement of objects. Therefore, the value of

the parameter ρ is very difficult to estimate accurately in most realistic scenarios. To circumvent this

hurdle, we resort to approximate ηopt with its value at infinite SNR, i.e., when ρ = 0. This gives the

final η that we propose to used in this paper:

η0 ≈

√

√

√

√

N
∑N−1

i=0
1

λ2

i

. (38)

Note that η0 is determined only by the transmission matrix and can, therefore, be a priori calculated.

The rationale behind (38) is as follows:



1. Since we do not know the drift rate and the SNR, it is a good idea to optimize for the zero-noise

case.

2. It can be shown that η0 increases with increase in both noise and drift. However, the increase

in η0 is insignificant since the MSE becomes flatter as noise or drift increases, as will be shown

in the following section. Therefore, calculating η0 under zero-noise zero-drift conditions can be

considered as a sub-optimal choice.

VII. SIMULATIONS

In order to test the proposed equivalent-time sampling scheme under different conditions, simulations

were performed. The UWB channel models described in the IEEE 802.15.3a standard [6] were used. In

all cases, the duration of the UWB pulse was 1 nanosecond. The target sampling rate was 4 GHz, which

approximately coincides with the 10-dB Nyquist rate for the pulses that were used [25]. The inter-pulse

interval was chosen to be the closest to 100 nanoseconds while satisfying the co-prime condition. For

the 4-GHz sampling rate the inter-pulse interval is equivalent to 400 sampling periods. This is reduced

to N = 399 to make it co-prime for all the values of the sub-sampling rate, D = 5, 10, 20 and 50, used

in the simulations. All simulation results were averaged over 104 simulation trials; each trial involved a

different noise realization and a different CIR realization.

Fig. 5 (a) and (b) shows the variation of the MSE with η when a Gaussian pulse is used. Fig. 5 (a)

is obtained from simulation, while Fig. 5 (b) is the approximate MSE (Equation (32). It can be seen

that the analytical formulae provide a good approximation for the MSE. In spite of deviation in some

case, the analytical formulae preserve the location of the optimal η with sufficient accuracy. The same

phenomenon is seen in Fig. 5 (c) and (d), which are the counterparts of Fig. 5 (a) and (b) for a second

derivative of a Gaussian pulse. The analytical formulae are giving a more accurate approximation of

performance in the latter case. The effect of the SNR as a determining factor of performance is also

more visible in the latter case than in the Gaussian pulse case. Note that the analytical performance

appears to be somewhat optimistic in the case of low drift and low noise (e.g., for SNR=50 dB and

r = 1 PPM). In each individual figure, the vertical dotted line marks the location of η0 calculated using

Equation (38). It can be seen that η0 gives performance that is sufficiently close to the optimal one. As

drift or noise increases, the minimum of the MSE shifts to the right (away from η0), but at the same

time, the MSE curves become flatter. This makes η = η0 a good choice for the BDU solution since it



remains close to the optimal value in most of the cases. It is evident from Fig. 5 that η0 is different for

different pulse shapes, which stresses the importance of (38) in choosing η. All the following results

were obtained using η = η0 for the second derivative Gaussian pulse shape. The results are also based

only on the CM1 model since no significant difference in performance was seen for the different (CM1,

CM2, CM3 and CM4 [6]) models.
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Fig. 5: MSE versus η: a) Gaussion pulse (simulation) b) Gaussian pulse (analytical) c) second derivative

of Gaussian pulse (simulation) d) second derivative of Gaussian pulse (analytical)

Fig. 6 depicts the MSE versus the SNR for zero drift and sub-sampling factor D = 1, 5, 10, 20

and 50. The performance of the BDU, LS, WLMMSE and LMMSE estimators is shown. The D = 1

case represents the Nyquist sampling case where no sub-sampling is applied. It can be seen that for

each individual estimator, the performance for each sub-sampling factor is exactly equivalent to that

obtained at the Nyquist rate. The individual curves for the different D values are actually indistinguish-

able. This emphasizes the ability of the proposed scheme to perfectly reconstruct the CIR from multiple

sub-sampled observations. It can also be seen that the LS, WLMMSE and LMMSE estimators greatly



outperform the BDU in the zero-drift case. This can be attributed to the model mismatch the BDU ap-

proach suffers in this case, that it assumes an error matrix ∆A 6= 0, which is not correct. Subsequently,

it will be shown that when clock drift is present, the BDU estimator can outperform the other three

estimators.
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Fig. 6: MSE versus SNR for the BDU approach compared with the LS, WLMMSE and LMMSE ap-

proaches for zero clock drift and sub-sampling factor D = 1, 5, 10, 20 and 50 PPM.

Fig. 7 depicts the MSE versus the SNR for different sub-sampling factors, D = 5, 10, 20 and 50.

The figure is plotted for a rather high drift rate of r = 50 PPM (see [16, 17] for practical range of drift

rates). To analyze the performance of the various estimators, we distinguish between to regimes: the

low SNR and the high SNR regimes. From the figure, it is clear that the BDU estimator significantly

outperforms the LS estimator in the low SNR regime. Bothe the BDU and the LS estimators do not

use any statistical prior information. On the other hand, the WLMMSE estimator exhibits better perfor-

mance than that of the BDU in the low SNR regime. However, The gap between the WLMMSE and the

BDU estimators reduces as the SNR increases. The LMMSE achieves the best permeance at low SNRs,

which is attributed to the use of more prior information. As we move towards the high SNR regime, the

performance of all the four estimators converges. For the D = 20 and D = 50 cases, it can be seen that

the BDU performs better than all the other estimators. This can be explained by that for these (higher)

sub-sampling rates, the total duration of the signal increases as we are using more pulses. Consequently,

the drift (the drift rate multiplied by the total duration, see Equation (15)) increases. This affect the other

estimators more that the BDU, which is more equipped to cope with such situations of data uncertainty.

In Fig. 8, D is fixed to a value of 20, while r is varied to take the values 5, 10, 50 and 80 PPM.
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Fig. 7: MSE versus SNR for the BDU approach (simulation and analytical) compared with the LS,

WLMMSE and LMMSE approaches for a drift rate r = 50 PPM and sub-sampling factor D equal to a)

5, b) 10, c) 20 and d) 50.

The low SNR performance of the four estimators, relative to one another, is similar to that in Fig. 7;

performance is greatly determined by the SNR in this regime. Again, the BDU estimator performs

better than the other estimators at high SNRs and low drift, as in the case of 50-PPM and 80-PPM drift

rates.

From both Fig. 7 and Fig. 8, it can be concluded that in the low SNR regime, the performance of each

of the four estimators is determined largely be the SNR. The effect of clock drift becomes more visible

in the high SNR regime. In the presence of clock drift, the performance of each of the four estimators

shows some sort of bias phenomenon, that performance tends to saturate towards high SNR. The BDU



estimator shows some superiority at high SNRs and it outperforms the other three estimators when

significant clock drift is present. This is further investigated in Fig 9, which depicts performance against

drift rate for D = 20 and the (high) SNR of 50 dB. It is evident from the figure that the gap between the

BDU estimator and the other three estimators increases as the drift is increased by increasing the drift

rate or by applying a higher sub-sampling rate.
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Fig. 8: MSE versus SNR for the BDU approach (simulation and analytical) compared with the LS,

WLMMSE and LMMSE approaches for a sub-sampling factor D = 20 and the drift rate r equal to a)

5, b) 10, c) 50 and d) 80 PPM.

VIII. CONCLUSIONS

The problem of UWB channel estimation using sub-sampled observations was considered. A sub-

sampling scheme using multiple observations was proposed. The proposed scheme requires identical
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Fig. 9: MSE versus drift rate r for the BDU approach compared with the LS, WLMMSE and LMMSE

approaches for SNR = 50 dB and sub-sampling factor D = 5, 10 and 20.

observations, and that the length of observation window (in units of sampling periods) and the sub-

sampling factor be co-prime. The effect of timing uncertainty due to clock drift was analyzed. An

estimator based on the bounded data uncertainty (BDU) model was proposed to provide good chan-

nel estimation performance under different noise and clock drift conditions, without using statistical

prior knowledge. When clock drift is present, the proposed estimator sufficiently outperforms the least

squares (LS), the linear minimum mean squared error (LMMSE) and the white linear minimum mean

squared error (WLMMSE) estimators in the high SNR case. At low SNRs, the proposed estimator

performs remarkably better than the LS estimator that uses the same amount of information.

Appendices

A. DERIVATION OF THE MSE

Starting from Equation (30), we have four terms inside the trace. First let us look at the first term. Based

on (22), this term can be written as

tr
[

E
(

ĥĥH
)]

= tr
[

(

AH
d Ad + γ̄I

)−1
AH

d E
(

ydy
H
d

)

Ad

(

AH
d Ad + γ̄I

)−1
]

. (A.1)



Using (16), the expectation can be expanded to

E
(

ydy
H
d

)

= E
(

Adhh
HAH

d +Adhh
H
∆

H +∆Ahh
HAH

d +∆Ahh
H
∆

H
A + vdv

H
d

)

= σ2
vI +AdChhA

H
d +AdChh∆

H +∆AChhA
H
d +∆AChh∆

H
A , (A.2)

where

Chh = E
(

hhH
)

(A.3)

is the CIR covariance matrix.

The second term of the MSE is

tr
[

E
(

ĥhH
)]

= tr
[

(

AH
d Ad + γ̄I

)−1
AH

d E
(

ydh
H
)

]

= tr
[

(

AH
d Ad + γ̄I

)−1
AH

d E
(

Adhh
H +∆Ahh

H + vdh
H
)

]

= tr
[

(

AH
d Ad + γ̄I

)−1 (

AH
d AdChh +AH

d ∆AChh

)

]

, (A.4)

where it is assumed that E(vdh
H) = 0. Similarly,

tr
[

E
(

hĥH
)]

= tr
[

E
(

hyH
d

)

Ad

(

AH
d Ad + γ̄I

)−1
]

= tr
[

E
(

hhHAH
d + hhH

∆
H
A + hvH

d

)

Ad

(

AH
d Ad + γ̄I

)−1
]

= tr
[

(

ChhA
H
d Ad +Chh∆

H
AAd

) (

AH
d Ad + γ̄I

)−1
]

. (A.5)

Now, substituting (A.1)–(A.5) in (30), we obtain the expression for the exact MSE as

MSEexact = σ2
v tr

[

(

AH
d Ad + γ̄I

)−1
AH

d A
(

AH
d Ad + γ̄I

)−1
]

+ tr
[

(

AH
d Ad + γ̄I

)−1

(

AH
∆Chh∆

HA− γ̄AH
∆Chh − γ̄Chh∆

HA+ γ̄2Chh

)

(

AH
d Ad + γ̄I

)−1
]

. (A.6)

To obtain a simpler expression, we replace the CIR covariance by its white equivalent

Chh = σ2
hI. (A.7)



This, after manipulation, results in the white MSE

MSEwhite = σ2
v tr

[

(

AH
d Ad + γ̄I

)−1
AH

d A
(

AH
d Ad + γ̄I

)−1
]

+ σ2
htr

[

(

AH
d Ad + γ̄I

)−1

(

AH
∆∆

HA− γ̄AH
∆− γ̄∆HA+ γ̄2I

) (

AH
d Ad + γ̄I

)−1
]

. (A.8)

Further to the previous whiteness approximation, now, we introduce the following replacements:

Now, let us introduce the following approximations:

AH
d ∆A 99K FΩFH

∆
H
AAd 99K FΩ

HFH , (A.9)

where Ω is obtained from

Ω = diag
[

diag
(

FHAH
d ∆AF

)]

. (A.10)

Note that (A.10) implies that AH
d ∆A is approximated by a circulant matrix. The error matrix ∆A

is the difference of the true transmission matrix Ãd and the matrix Ad. The matrix Ãd is obtained by

decimating a matrix Ã, which has a structure that is approximately similar to that of A (this is especially

valid for small to moderate drift rate). As a result, the structure of AH
d ∆A = AH

d Ãd − AH
d Ad is

approximately similar to that of AH
d Ad, including the circulant property, which justifies (A.9) and

(A.10).

Now, substituting (A.9) together with (28) in (A.8) and manipulating based on trace and FFT matrix

properties results in the approximate MSE

MSEapprox = σ2
v tr

[

Σ
2
(

Σ
2 + γ̄I

)

−2
]

+ σ2
htr

{

(

Σ
2 + γ̄I

)

−2
[

γ̄2I − 2γ̄R(Ω) + |Ω|2
]

}

. (A.11)

Manipulating further yields (32).

Now, we revert to (34), which is derived from (27) by taking the expectation and the trace, i.e.,

γ̄[n+ 1] = γ̄[n] +
tr
[

U(Σ2 − η2I)(Σ2 + γ̄[n]I)−2UHE(ydy
H
d )

]

2tr
[

U(Σ2 − η2I)(Σ2 + γ̄[n]I)−3UHE(ydy
H
d )

] , (A.12)



where E(ydy
H
d ) is substituted from (A.2) for the exact MSE. For the white MSE, we have

E(ydy
H
d ) = σ2

vI + σ2
h

(

AdA
H
d +Ad∆

H +∆AA
H
d +∆A∆

H
A

)

. (A.13)
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