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Abstract—Estimating the values of unknown parameters from
corrupted measured data faces a lot of challenges in ill-posed
problems. In such problems, many fundamental estimation meth-
ods fail to provide a meaningful stabilized solution. In this
work, we propose a new regularization approach and a new
regularization parameter selection approach for linear least-
squares discrete ill-posed problems. The proposed approach is
based on enhancing the singular-value structure of the ill-posed
model matrix to acquire a better solution. Unlike many other
regularization algorithms that seek to minimize the estimated
data error, the proposed approach is developed to minimize
the mean-squared error of the estimator which is the objective
in many typical estimation scenarios. The performance of the
proposed approach is demonstrated by applying it to a large
set of real-world discrete ill-posed problems. Simulation results
demonstrate that the proposed approach outperforms a set of
benchmark regularization methods in most cases. In addition,
the approach also enjoys the lowest runtime and offers the
highest level of robustness amongst all the tested benchmark
regularization methods.

Index Terms—Linear estimation, ill-posed problems, linear
least squares, regularization.

I. INTRODUCTION

We consider the standard problem of recovering an unknown
signal x0 ∈ Rn from a vector y ∈ Rm of m noisy, linear
observations given by y = Ax0 + z. Here, A ∈ Rm×n
is a known linear measurement matrix, and, z ∈ Rm×1 is
the noise vector; the latter is assumed to be additive white
Gaussian noise (AWGN) vector with unknown variance σ2

z

that is independent of x0. Such problem has been extensively
studied over the years due to its obvious practical importance
as well as its theoretical interest [1]–[3]. It arises in many
fields of science and engineering, e.g., communication, signal
processing, computer vision, control theory, and economics.

Over the past years, several mathematical tools have been
developed for estimating the unknown vector x0. The most
prominent approach is the ordinary least-squares (OLS) [4]
that finds an estimate x̂OLS of x0 by minimizing the Euclidean
norm of the residual error

x̂OLS = arg min
x

||y −Ax||22. (1)

The behavior of the OLS has been extensively studied in the
literature and it is now very well understood. In particular, if
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A is a full column rank, (1) has a unique solution given by

x̂OLS =
(
ATA

)−1
ATy = VΣ−1UTy, (2)

where A = UΣVT =
∑n
i=1 σiuiv

T
i is the singular value

decomposition (SVD) of A, ui and vi are the left and the
right orthogonal singular vectors, while the singular values
σi are assumed to satisfy σ1 ≥ σ1 ≥ · · · ≥ σn. A major
difficulty associated with the OLS approach is in discrete ill-
posed problems. A problem is considered to be well-posed if
its solution always exists, unique, and depends continuously
on the initial data. Ill-posed problems fail to satisfy at least one
of these conditions [5]. In such problems, the matrix A is ill-
conditioned and the computed LS solution in (2) is potentially
very sensitive to perturbations in the data such as the noise z
[6].

Discrete ill-posed problems are of great practical interest in
the field of signal processing and computer vision [7]–[10].
They arise in a variety of applications such as computerized
tomography [11], astronomy [12], image restoration and de-
blurring [13], [14], edge detection [15], seismography [16],
stereo matching [17], and the computation of lightness and
surface reconstruction [18]. Interestingly, in all these applica-
tions and even more, data are gathered by convolution of a
noisy signal with a detector [19], [20]. A linear representation
of such process is normally given by∫ b2

b1

a (s, t) x0 (t) dt = y0 (s) + z (s) = y (s) , (3)

where y0 (s) is the true signal, while the kernal function
a (s, t) represents the response. It is shown in [21] how a
problem with a formulation similar to (3) fails to satisfy
the well-posed conditions introduced above. The discretized
version of (3) can be represented by y = Ax0 + z.

To solve ill-posed problems, regularization methods are
commonly used. These methods are based on introducing an
additional prior information in the problem. All regularization
methods are used to generate a reasonable solution for the ill-
posed problem by replacing the problem with a well-posed one
whose solution is acceptable. This must be done after careful
analysis to the ill-posed problem in terms of its physical
plausibility and its mathematical properties.

Several regularization approaches have been proposed
throughout the years. Among them are the truncated SVD [22],
the maximum entropy principle [23], the hybrid methods [24],
the covariance shaping LS estimator [25], and the weighted
LS [26]. The most common and widely used approach is the
regularized M-estimator that obtains an estimate x̂ of x0 from
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y by solving the convex problem

x̂ := arg min
x

L (y −Ax) + γf (x) , (4)

where the loss function L : Rm → R measures the fit of Ax
to the observation vector y, the penalty function f : Rm →
R establishes the structure of x, and γ provides a balance
between the two functions. Different choices of L and f leads
to different estimators. The most popular among them is the
Tikhonov regularization which is given in its simplified form
by [27]

x̂RLS := arg min
x

||y −Ax||22 + γ ||x||22. (5)

The solution to (5) is given by the regularized least-square
(RLS) estimator

x̂RLS =
(
ATA + γIn

)−1
ATy, (6)

where In is (n×n) identity matrix. In general, γ is unknown
and has to be chosen judiciously.

On the other hand, several regularization parameter selection
methods have been proposed to find the regularization param-
eter in regularization methods. These include the generalized
cross validation (GCV) [28], the L-curve [29], [30], and the
quasi-optimal method [31]. The GCV obtains the regularizer
by minimizing the GCV function which suffers from the
shortcoming that it may have a very flat minimum that makes
it very challenging to be located numerically. The L-curve, on
the other hand, is a graphical tool to obtain the regularization
parameter which has a very high computational complexity.
Finally, the quasi-optimal criterion chooses the regularization
parameter without taking into account the noise level. In
general, the performance of these methods varies significantly
depending on the nature of the problem1.

A. Paper Contributions

1) New regularization approach: We proposed a new ap-
proach for linear discrete ill-posed problems that is based
on adding an artificial perturbation matrix with a bounded
norm to A. The objective of this artificial perturbation
is to improve the challenging singular-value structure of
A. This perturbation affects the fidelity of the model
y = Ax0 + z, and as a result, the equality relation
becomes invalid. We show that using such modification
provides a solution with better numerical stability.

2) New regularization parameter selection method: We de-
velop a new regularization parameter selection approach
that selects the regularizer in a way that minimizes the
mean-squared error (MSE) between x0 and its estimate
x̂, E ||x̂− x0||22. 2

3) Generality: A key feature of the approach is that it does
not impose any prior assumptions on x0. The vector x0

can be deterministic or stochastic, and in the later case
we do not assume any prior statistical knowledge about

1The work presented in this paper is an extended version of [32].
2Less work have been done in the literature to provide estimators that

are based on the MSE as for example in [33] where the authors derived an
estimator for the linear model problem that is based on minimizing the worst-
case MSE (as opposed to the actual MSE) while imposing a constraint on the
unknown vector x0.

it. Moreover, we assume that the noise variance σ2
z is

unknown. Finally, the approach can be applied to a large
number of linear discrete ill-posed problems.

B. Paper Organization

This paper is organized as follows. Section II presents
the formulation of the problem and derive its solution. In
Section III, we derive the artificial perturbation bound that
minimizes the MSE. Further, we derive the proposed approach
characteristic equation for obtaining the regularization param-
eter. Section IV studies the properties of the approach charac-
teristic equation while Section V presents the performance of
the proposed approach using simulations. Finally, we conclude
our work in Section VI.

C. Notations

Matrices are given in boldface upper case letters (e.g., X),
column vectors are represented by boldface lower case letters
(e.g., x), and (.)

T stands for the transpose operator. Further,
E (.), In, and 0 denote the expectation operator, the (n× n)
identity matrix, and the zero matrix, respectively. Notation
||.||2 refers to the spectral norm for matrices and Euclidean
norm for vectors. The operator diag (.) returns a vector that
contains the diagonal elements of a matrix, and a diagonal
matrix if it operates on a vector where the diagonal entries of
the matrix are the elements of the vector.

II. PROPOSED REGULARIZATION APPROACH

A. Background

We consider the linear discrete ill-posed problems in the
form y = Ax0 + z and we focus mainly on the case where
m ≥ n without imposing any assumptions on x0. The matrix
A in such problems is ill-conditioned that has a very fast
singular values decay [34]. A comparison between the singular
values decay of the full rank matrices, the rank deficient
matrices, and the ill-posed problems matrices is given in Fig. 1.

From Fig. 1, we observe that the singular values of the full
column rank matrix are decaying constantly while in the rank
definite matrix there is a jump (gap) between the nonzero and
the zero singular values. Finally, the singular values of the ill-
posed problem matrix are decaying very fast, without a gap,
to a significantly small positive number.
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Fig. 1: Different singular values decay for different matrices,
A ∈ R50×50.
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B. Problem Formulation

Let us start by considering the LS solution in (2). In many
ill-posed problems, and due to the singular-value structure of
A and the interaction that it has with the noise, equation (2)
is not capable of producing a sensible estimate of x0. Herein,
we propose adding an artificial perturbation ∆A ∈ Rm×n
to A. We assume that this perturbation, which replaces A by
(A + ∆A), improves the challenging singular-value structure,
and hence is capable of producing a better estimate of x0. In
other words, we assume that using (A + ∆A) in estimating
x0 from y provides a better estimation result than using A.
Finally, to provide a balance between improving the singular-
value structure and maintaining the fidelity of the basic linear
model, we add the constraint ||∆A||2 ≤ δ, δ ∈ R+. Therefore,
the basic linear model is modified to

y ≈ (A + ∆A) x0 + z; ||∆A||2 ≤ δ. (7)

The question now is what is the best ∆A and the bound on
this perturbation. It is clear that these values are important
since they affect the model’s fidelity and dictate the quality of
the estimator. This question is addressed further ahead in this
section. For now, let us start by assuming that δ is known3.

Before proceeding, it worth mentioning that the model in (7)
has been considered for signal estimation in the presence of
data errors but with strict equality (e.g., [33], [35], [36]). These
methods assume that A is not known perfectly due to some
error contamination, and that a prior knowledge on the real
error bound (which corresponds to δ in our case) is available.
However, in our case the matrix A is known perfectly, whereas
δ is unknown.

To obtain an estimate of x0, we consider minimizing the
worst-case residual function of the new perturbed model in
(7) which is given by

min
x

max
||∆A||2≤δ

Q (x,∆A) := ||y − (A + ∆A) x||2. (8)

Theorem 1. The unique minimzer x̂ of the min-max con-
strained problem in (8) for fixed δ > 0 is given by

x̂ =
(
ATA + ρ (δ, x̂) In

)−1
ATy, (9)

where ρ (δ, x̂) is a regularization parameter that is related to
the perturbation bound δ through

ρ (δ, x̂) = δ
||y −Ax̂||2
||x̂||2

. (10)

Proof: By using Minkowski inequality [37], we find an
upper bound for the cost function Q (x,∆A) in (8) as

||y − (A + ∆A) x||2 ≤ ||y −Ax||2 + ||∆A x||2
≤ ||y −Ax||2 + ||∆A||2||x||2
≤ ||y −Ax||2 + δ ||x||2. (11)

However, upon setting ∆A to be the following rank one matrix

∆A =
(Ax− y)

||y −Ax||2
xT

||x||2
δ, (12)

3We will use this assumption to obtain the proposed estimator solution
as a function of δ, then, we will address the problem of obtaining the value
of δ.

we can show that the bound in (11) is achievable by

||y − (A + ∆A) x||2 = || (y −Ax) +
(y −Ax)

||y −Ax||2
xT

||x||2
xδ||2

= || (y −Ax) +
(y −Ax)

||y −Ax||2
||x||2δ||2.

(13)

Since the two added vectors (y −Ax) and (y−Ax)
||y−Ax||2 ||x||2δ

in (13) are positively linearly dependent (i.e., pointing in the
same direction), we conclude that

|| (y −Ax) +
(y −Ax)

||y −Ax||2
||x||2 δ||2 = ||y −Ax||2 + δ||x||2︸ ︷︷ ︸

W (x)

(14)

As a result, (8) can be expressed equivalently by

min
x

max
||∆A||2≤δ

Q (x,∆A) ≡ min
x

W (x) . (15)

Therefore, the solution of (8) depends only on δ and is agnostic
to the structure of ∆A4. It is easy to check that the solution
space for W (x) is convex in x, and hence, any local minimum
is also a global minimum. But at any local minimum, it either
holds that the gradient of W (x) is zero, or W (x) is not
differentiable. More precisely, W (x) is not differentiable only
at x = 0 and when y−Ax = 0. However, the former case is
a trivial case that is not being considered in this paper, while
the latter case is not possible by definition. The gradient of
W (x) can be obtained as

∇xW (x) =
1

||y −Ax||2
AT (Ax− y) +

δ x

||x||2

=
1

||y −Ax||2

(
ATAx +

δ ||y −Ax||2 x

||x||2
−ATy

)
.

(16)

Solving for ∇xW (x̂) = 0 upon defining ρ (δ, x̂) as in (10),
we obtain (9).

Remark 1. The regularization parameter ρ in (10) is a
function of the unknown estimate x̂, as well as the upper
perturbation bound δ (we have dropped the dependence of ρ
on δ and x̂ to simplify notation). In addition, it is clear from
(14) that δ controls the weight given to the minimization of
the side constraint relative to the minimization of the residual
norm. We have assumed that δ is known to obtain the min-max
optimization solution. However, this assumption is not valid
in reality. Thus, is it impossible to obtain ρ directly from (10)
given that both δ and x̂ are unknowns.

Now, it is obvious with (9) and (10) in hand, we can
eliminate the dependency of ρ on x̂. By substituting (9) in
(10) we obtain after some algebraic manipulations

δ2
[
yTy − 2yTA

(
ATA + ρIn

)−1
ATy

+ ||A
(
ATA + ρIn

)−1
ATy||2

]
= ρ2yTA

(
ATA + ρIn

)−2
ATy. (17)

4Interestingly, setting the norm of the penalty term in W (x) to be of
l1 norm (i.e., ||x||1) leads to the square-root LASSO [38] which is used in
sparse signal estimation.
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In this following subsection, we will utilize and simplify (17)
using some manipulations to obtain δ that corresponds to an
optimal choice of ρ in ill-posed problems.
C. Finding the Optimal Perturbation Bound

Let us denote the optimal choices of ρ and δ by ρo and δo,
respectively. To simplify (17), we substitute the SVD of A,
then we solve for δ2, and finally we take the trace Tr (.) of
the two sides considering the evaluation point to be (δo, ρo)
to get

δ2
o Tr

((
Σ2 + ρoIn

)−2
UT

(
yyT

)
U
)

︸ ︷︷ ︸
D(ρo)

= Tr
(
Σ2
(
Σ2 + ρoIn

)−2
UT

(
yyT

)
U
)

︸ ︷︷ ︸
N(ρo)

. (18)

In order to obtain a useful expression, let us think of δo as a
single universal value that is computed over many realizations
of the observation vector y. Based on this perception, yyT can
be replaced by its expected value E(yyT ). In other words, we
are looking for an optimal choice of δ, say δo, that is optimal
for all realizations of y. At this point, we assume that such
value exists. Then this parameter δo is clearly deterministic. If
we sum (18) for all realizations of y, and a fixed δo, we end
replacing yyT with E(yyT ) which can be expressed using
our basic linear model as

E
(
yyT

)
= ARx0

AT + σ2
zIm

= UΣVTRx0
VΣUT + σ2

zIm, (19)

where Rx0
, E

(
x0x

T
0

)
is the covariance matrix of x0.

For a deterministic x0, Rx0
= x0x

T
0 is used for notational

simplicity. Substituting (19) in both terms of (18) results

N (ρo) = Tr
(
Σ2
(
Σ2 + ρoIn

)−2
Σ2VTRx0V

)
+ σ2

zTr
(
Σ2
(
Σ2 + ρoIn

)−2
)
, (20)

and

D (ρo) = δ2
o

[
Tr
((

Σ2 + ρoIn
)−2

Σ2VTRx0
V
)

+ σ2
zTr
((

Σ2 + ρoIn
)−2
) ]
. (21)

Considering the singular-value structure for the ill-posed prob-
lems, we can divide the singular values into two groups
of significant, or relatively large, and trivial, or nearly zero
singular value5. As an example, we can see from Fig. 1 that the
singular values of the ill-posed problem matrix are decaying
very fast, making it possible to identify the two groups.
Based on this, the matrix Σ can be divided into two diagonal
sub-matrices, Σn1, which contains the first (significant) n1

diagonal entries, and Σn2, which contains the last (trivial)
n2 = n− n1 diagonal entries6. As a result, Σ can be written
as

Σ =

[
Σn1 0
0 Σn2

]
. (22)

5This includes the special case when all the singular values are significant
and so all are considered.

6The splitting threshold is obtained as the mean of the eigenvalues
multiplied by a certain constant c, where c ∈ (0, 1).

Similarly, we can partition V as V = [Vn1 Vn2] where
Vn1 ∈ Rn×n1 , and Vn2 ∈ Rn×n2 . Now, we can write N (ρo)
in (20) in terms of the partitioned Σ and V as

N (ρo) = Tr
(
Σ2
n1

(
Σ2
n1 + ρoIn1

)−2
Σ2
n1V

T
n1Rx0

Vn1

)
+ Tr

(
Σ2
n2

(
Σ2
n2 + ρoIn2

)−2
Σ2
n2V

T
n2Rx0Vn2

)
+ σ2

zTr
(
Σ2
n1

(
Σ2
n1 + ρoIn1

)−2
)

+ σ2
zTr
(
Σ2
n2

(
Σ2
n2 + ρoIn2

)−2
)
. (23)

Given how n1 and n2 are selected, we have ‖Σn2‖ ≈ 0, and
so we can approximate N (ρo) as

N (ρo) ≈ Tr
(
Σ2
n1

(
Σ2
n1 + ρoIn1

)−2
Σ2
n1V

T
n1Rx0Vn1

)
+ σ2

zTr
(
Σ2
n1

(
Σ2
n1 + ρoIn1

)−2
)
. (24)

Similarly, D (ρo) in (21) can be approximated equivalently as

D (ρo) ≈ σ2
z Tr

((
Σ2
n1 + ρoIn1

)−2
)

+
n2σ

2
z

ρ2
o

+ Tr
((

Σ2
n1 + ρoIn1

)−2
Σ2
n1V

T
n1Rx0

Vn1

)
. (25)

Substituting (24) and (25) in (18) and manipulating, we obtain

δ2
o ≈

[
σ2
zTr
(
Σ2
n1

(
Σ2
n1 + ρoIn1

)−2
)

+ Tr
(
Σ2
n1

(
Σ2
n1 + ρoIn1

)−2
Σ2
n1V

T
n1Rx0Vn1

) ]/
[
σ2
zTr
((

Σ2
n1 + ρoIn1

)−2
)

+
n2σ

2
z

ρ2
o

+ Tr
((

Σ2
n1 + ρoIn1

)−2
Σ2
n1V

T
n1Rx0

Vn1

) ]
. (26)

The bound δo in (26) is a function of the unknowns ρo, σ2
z ,

and Rx0
. In fact, estimating σ2

z and Rx0
without any prior

knowledge is a very tedious process. The problem becomes
worse when x0 is deterministic. In such case, the exact value
of x0 is required to obtain Rx0

= x0x
T
0 . In the following

section, we will use the MSE as a criterion to eliminate the
dependence of δo on these unknowns and a result to set the
value of the perturbation bound.

III. MINIMIZING THE MSE FOR THE SOLUTION OF THE
PROPOSED PERTURBATION APPROACH

The MSE for an estimate x̂ of x0 is given by

MSE = E
[
||x̂−x0||2

]
= Tr

(
E
(
(x̂− x0)(x̂− x0)T

))
. (27)

Since the solution of the proposed approach problem in (8)
is given by (9), we can substitute for x̂ from (9) in (27) and
then use the SVD of A to obtain

MSE (ρ) = σ2
zTr
(
Σ2
(
Σ2 + ρIn

)−2
)

+ ρ2Tr
((

Σ2 + ρIn
)−2

VTRx0V
)
. (28)

Theorem 2. For σ2
z > 0, the approximate value for the

optimal regularizer ρo of (28) that approximately minimizes
the MSE is given by

ρo ≈
σ2
z

Tr (Rx0
) /n

. (29)
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Proof: We can easily prove that the function in (28) is
convex in ρ, and hence its global minimizer (i.e., ρo) can be
obtained by differentiating (28) with respect to ρ and setting
the result to zero, i.e.,

∇ρ MSE (ρ) = −2σ2
zTr
(
Σ2
(
Σ2 + ρIn

)−3
)

+ 2ρTr
(
Σ2
(
Σ2 + ρIn

)−3
VTRx0V

)
︸ ︷︷ ︸

S

= 0. (30)

Equation (30) dictates the relationship between the optimal
regularization parameter and the problem parameters. By solv-
ing (30), we can obtain the optimal regularizer ρo. However,
in the general case, and with lack of knowledge about Rx0 ,
we cannot obtain a closed-form expression for ρo. As a result,
we will seek to obtain a suboptimal regularizer in the MSE
sense that minimizes (28) approximately. In what follows, we
show how through some bounds and approximations, we can
obtain this suboptimal regularizer.

By using the trace inequalities in [ [39], eq.(5)], we can
bound the second term in (30) by

λmin (Rx0) Tr
(
Σ2
(
Σ2 + ρIn

)−3
)

≤ S = Tr
(
Σ2
(
Σ2 + ρIn

)−3
VTRx0

V
)

≤ λmax (Rx0
) Tr

(
Σ2
(
Σ2 + ρIn

)−3
)
, (31)

where λi is the i’th eigenvalue of Rx0
. Our main goal in this

paper is to find a solution that is approximately feasible for all
discrete ill-posed problems and also suboptimal in some sense.
In other words, we would like to find a ρo, for all (or almost
all) possible A, that minimizes the MSE approximately. To
achieve this, we consider an average value of S based on the
inequalities in (31) as our evaluation point, i.e.,

S ≈ Tr
(
Σ2
(
Σ2 + ρIn

)−3
) Tr (Rx0)

n
. (32)

Substituting (32) in (30) yields7

∇ρ MSE (ρ) ≈ −2σ2
zTr
(
Σ2
(
Σ2 + ρIn

)−3
)

+ 2ρ
Tr (Rx0

)

n
Tr
(
Σ2
(
Σ2 + ρIn

)−3
)

= 0. (33)

Note that the same approximation can be applied from the
beginning to the second term in (28) and the same result
in (33) will be obtained after taking the derivative of the
new approximated MSE function. In Appendix A, we provide
the error analysis for this approximation and show that it is
bounded in very small feasible region.
Equation (33) can now be solved to obtain ρo as in (29).8

Remark 2. The solution in (29) shows that there always exists
a positive ρo, for σ2

z 6= 0, which approximately minimizes the
MSE in (28). The conclusion that the regularization parameter

7Another way to look at (32) is that we can replace VTRx0V inside
the trace in (30) by a diagonal matrix F = diag

(
diag

(
VTRx0V

))
without

affecting the result. Then, we replace this positive definite matrix F by an
identity matrix multiplied by scalar which is given by the average value of
the diagonal entries of F.

8In fact, one can prove that when x0 is i.i.d., (33) and (30) are exactly
equivalent to each other (see Appendix A).

is generally dependent on the noise variance has been shown
before in different contexts (see for example [40], [41]). For
the special case where the entries of x0 are independent
and identically distributed (i.i.d.) with zero mean, we have
Rx0

= σ2
x0

In. Since the linear minimum mean-squared error
(LMMSE) estimator of x0 in y = Ax0 + z is defined as [4]

x̂LMMSE =
(
ATA + σ2

zR
−1
x0

In
)−1

ATy, (34)

substituting Rx0
= σ2

x0
I makes the LMMSE regularizer in

(34) equivalent to ρo in (29) since ρo =
σ2
z

Tr(Rx0)/n
=

σ2
z

σ2
x0

. This
shows that (29) is exact when the input is white, while for a
general input x0, the optimum matrix regularizer is given in
(34). In other words, the result in (29) provides an approximate
optimum scalar regularizer for a general colored input. Note
that since σ2

z and Rx0
are unknowns, ρo cannot be obtained

directly from (29).

We are now ready in the following subsection to use the
result in (29) along with the perturbation bound expression in
(26) and some reasonable manipulations and approximations
to eliminate the dependency of δo in (26) on the unknowns
σ2
z , and Rx0 . Then, we will select a pair of δo and ρo from

the space of all possible values of δ and ρ that minimizes the
MSE of the proposed estimator solution.

A. Setting the Optimal Perturbation Bound that Minimizes the
MSE

We start by applying the same reasoning leading to (32)
for both the numerator and the denominator of (26) and
manipulate to obtain

Tr
(

Σ2
n1

(
Σ2
n1 + ρoIn1

)−2
(

Σ2
n1 +

n1σ
2
z

Tr (Rx0
)
In1

))
≈ δ2

o

[
Tr
((

Σ2
n1 + ρoIn1

)−2
(

Σ2
n1 +

n1σ
2
z

Tr (Rx0
)
In1

))

+
n2n1σ

2
z

ρ2
oTr (Rx0

)

]
. (35)

In Section V, we verify this approximation using simulations.
Now, we will use the relationship of σ2

z and Tr (Rx0
) in

(29) to the suboptimal regularizer n1

n ρo ≈ n1σ
2
z

Tr(Rx0 ) to impose
a constrain on (35) that makes the selected perturbation bound
minimizes the MSE and as a result to make (35) an implicit
equation in δo and ρo only. By doing this, we obtain after some
algebraic manipulations

δ2
o ≈

Tr
(
Σ2
n1

(
Σ2
n1 + ρoIn1

)−2
(
n
n1

Σ2
n1 + ρoIn1

))
Tr
((

Σ2
n1 + ρoIn1

)−2
(
n
n1

Σ2
n1 + ρoIn1

))
+ n2

ρo

. (36)

The expression in (36) reveals that any δo satisfying (36) min-
imizes the MSE approximately. Now, we have two equations
(17) (evaluated at δ0 and ρ0) and (36) in two unknowns δ0 and
ρ0. Solving these equations and then applying the SVD of A
to the result equation, result in the characteristic equation for
the proposed constrained perturbation regularization approach
(COPRA) in (37), where β = n

n1
.

The COPRA characteristic equation in (37) is a function of
the problem matrix A, the received signal y, and regularization
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G (ρo) = Tr
(
Σ2
(
Σ2 + ρoIn

)−2
UTyyTU

)
Tr
((

Σ2
n1 + ρoIn1

)−2 (
βΣ2

n1 + ρoIn1

))
+
n2

ρo
Tr
(
Σ2
(
Σ2 + ρoIn

)−2
UTyyTU

)
︸ ︷︷ ︸

G1(ρo)

− Tr
((

Σ2 + ρoIn
)−2

UTyyTU
)

Tr
(
Σ2
n1

(
Σ2
n1 + ρoIn1

)−2 (
βΣ2

n1 + ρoIn1

))
︸ ︷︷ ︸

G2(ρo)

= 0. (37)

parameter ρo which is the only unknown in (37. Solving for
G (ρo) = 0 should lead to the regularization parameter ρo
that approximately minimizes the MSE of the estimator. Our
main interest then is to find a positive root ρ∗o > 0 for (37).
In the following section, we study the main properties of
this equation and examine the existence and uniqueness of its
positive root. Before that, it worth mentioning the following
remark

Remark 3. A special case of the proposed COPRA approach
is when all the singular values are significant and so no
truncation is required (full column rank matrix, see Fig. 1).
This is the case where n1 = n, n2 = 0, and Σn1 = Σ.
Substituting these values in (37) we obtain

Ḡ (ρo) =

Tr
(
Σ2
(
Σ2 + ρoIn

)−2
UTyyTU

)
Tr
((

Σ2 + ρoIn
)−1
)

− Tr
((

Σ2 + ρoIn
)−2

UTyyTU
)

Tr
(
Σ2
(
Σ2 + ρoIn

)−1
)

= 0. (38)

IV. ANALYSIS OF THE FUNCTION G (ρO)

In this section, we provide a detailed analysis for the
COPRA function G (ρo) in (37). We start by examining some
main properties of G (ρo) that are straightforward to proof.

Property 1. G (ρo) is continuous over the interval (0,+∞).

Property 2. G (ρo) has n different discontinuities at ρo =
−σ2

i ,∀i ∈ [1, n]. However, these discontinuities are of no
interest as far as COPRA is considered.

Property 3. limρo→0+ G (ρo) = +∞.

Property 4. limρo→0− G (ρo) = −∞.

Property 5. limρo→+∞G (ρo) = 0.

Property 3 and 4 show clearly that G (ρo) has a discontinuity
at ρo = 0.

Property 6. Each of the functions G1 (ρo) and G2 (ρo) in (37)
is completely monotonic in the interval (0,+∞).

Proof: According to [42], [43], a function F (ρo) is
completely monotonic if it satisfies

(−1)
n
F (n) (ρo) ≥ 0, 0 < ρo <∞,∀n ∈ N, (39)

where F (n) (ρo) is the n’th derivative of F (ρo).
By continuously differentiating G1 (ρo) and G2 (ρo), we can
easily show that both functions satisfy the monotonic condition
in (39).

Theorem 3. The COPRA function G (ρo) in (37) has at most
two roots in the interval (0,+∞) .

Proof: The proof of Theorem 3 will be conducted in
two steps. Firstly, it has been proved in [44], [45] that any
completely monotonic function can be approximated as a sum
of exponential functions. That is, if F (ρo) is a completely
monotonic, it can be approximated as

F (ρo) ≈
l∑
i=1

lie
−kiρo , (40)

where l is the number of the terms in the sum and li and
ki are two constants. It is shown that there always exists a
best uniform approximation to F (ρo) where the error in this
approximation gets smaller as we increase the number of the
terms l. However, our main concern here is the relation given
by (40) more than finding the best number of the terms or the
unknown parameters li and ki. To conclude, both functions
G1 (ρo) and G2 (ρo) in (37) can be approximated by a sum of
exponential functions.

Secondly, it is shown in [46] that the sum of exponential
functions has at most two intersections with the abscissa.
Consequently, and since the relation in (37) can be expressed
as a sum of exponential functions, the function G (ρo) has at
most two roots in the interval (0,+∞).

Theorem 4. There exists a sufficiently small positive value ε,
such that ε→ 0+ and ε� σ2

i , ∀i ∈ [1, n] where the value of
the COPRA function G (ρo) in (37) is zero (i.e., ε is a positive
root for (37)). However, we are not interested in this root in
the proposed COPRA.

Proof: The proof of Theorem 4 is in Appendix B.

Theorem 5. A sufficient condition for the function G (ρo) to
approach zero at ρo = +∞ from a positive direction is given
by

nTr
(
Σ2bbT

)
> Tr

(
Σ2
n1

)
Tr
(
bbT

)
(41)

where b = UTy.

Proof: Let b = UTy as in (37). Given that Σ2 is a
diagonal matrix, Σ2 = diag

(
σ2

1 , σ
2
2 ,· · · , σ2

n

)
, and from the

trace function property, we can replace bbT = UTyyTU in
(37) by a diagonal matrix bbTd that contains bbT diagonal
entries without affecting the result. By defining bbTd =
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diag
(
b21, b

2
2,· · · , b2n

)
, we can write (37) as

G (ρo) =
β

ρ4
o

n∑
j=1

σ2
j b

2
j(

σ2
j

ρo
+ 1
)2

n1∑
i=1

σ2
i(

σ2
i

ρo
+ 1
)2

+
1

ρ3
o

n∑
j=1

σ2
j b

2
j(

σ2
j

ρo
+ 1
)2

n1∑
i=1

1(
σ2
i

ρo
+ 1
)2

− β

ρ4
o

n∑
j=1

b2j(
σ2
j

ρo
+ 1
)2

n1∑
i=1

σ4
i(

σ2
i

ρo
+ 1
)2

− 1

ρ3
o

n∑
j=1

b2j(
σ2
j

ρo
+ 1
)2

n1∑
i=1

σ2
i(

σ2
i

ρo
+ 1
)2

+
n2

ρ3
o

n∑
j=1

σ2
j b

2
j(

σ2
j

ρo
+ 1
)2 . (42)

Then, we use some algebraic manipulations to obtain

G (ρo) =
1

ρ3
o

n∑
j=1

σ2
j b

2
j(

σ2
j

ρo
+ 1
)2

[
β

ρo

n1∑
i=1

σ2
i(

σ2
i

ρo
+ 1
)2

+

n1∑
i=1

1(
σ2
i

ρo
+ 1
)2 + n2

]
− 1

ρ3
o

n∑
j=1

b2j(
σ2
j

ρo
+ 1
)2×

[
β

ρo

n1∑
i=1

σ4
i(

σ2
i

ρo
+ 1
)2 +

n1∑
i=1

σ2
i(

σ2
i

ρo
+ 1
)2

]
. (43)

Now, evaluating the limit of (43) as ρo → +∞ we obtain

lim
ρo→+∞

G (ρo) =

(
lim

ρo→+∞

1

ρ3
o

)
×

[
n∑
j=1

σ2
j b

2
j

(
τβ

n1∑
i=1

σ2
i +

n1∑
i=1

1 + n2

)
−

n∑
j=1

b2j

(
τβ

n1∑
i=1

σ4
i +

n1∑
i=1

σ2
i

)]
, (44)

where τ = limρo→+∞
1
ρo

. The relation in (44) can be simpli-
fied to

lim
ρo→+∞

G (ρo) =

(
lim

ρo→+∞

1

ρ3
o

)
×

[
n∑
j=1

σ2
j b

2
j

(
τβ

n1∑
i=1

σ2
i + n

)
−

n∑
j=1

b2j

(
τβ

n1∑
i=1

σ4
i +

n1∑
i=1

σ2
i

)]
(45)

It is obvious that the limit in (45) is zero. However, the
direction where the limit approaches zero depends on the
sign of the term between the square brackets. For G (ρo)
to approach zero from the positive direction, knowing that
the terms that are independent of τ are the dominants, the
following condition must hold:

n

 n∑
j=1

σ2
j b

2
j

 >

(
n1∑
i=1

σ2
i

) n∑
j=1

b2j

 . (46)

Which is the same as (41).

Theorem 6. If (41) is satisfied, then G (ρo) has a unique
positive root in the interval (ε,+∞).

Proof: According to Theorem 3, the function G (ρo) can
have no root, one, or two roots. We have already proved in
Theorem 4 that there exists a significantly small positive root
for the COPRA function at ρo,1 = ε but we are not interested
in this root. In other words, we would like to see if there exists
a second root for G (ρo) in the interval (ε,+∞).

From Property 3 and Theorem 4, we can conclude that
the COPRA function has a positive value before ε, then it
switches to the negative region after that. The condition in
(41) guarantees that G (ρo) approaches zero from a positive
direction as ρo approaches +∞. This means that G (ρo) has
an extremum in the interval (ε,+∞), and this extremum is
actually a minimum point. If the point of the extremum is
considered to be ρo,m, then the function starts increasing for
ρo > ρo,m until it approaches the second zero crossing at ρo,2.
Since Theorem 3 states clearly that we cannot have more than
two roots, we conclude that when (41) holds, we have only
one unique positive root over the interval (ε,+∞).

A. Finding the Root of G (ρo)

To find the positive root of the COPRA function G (ρo) in
(37), Newton’s method [47] can be used. The function G (ρo)
is differentiable in the interval (ε,+∞) and the expression of
the first derivative G

′
(ρo) can be easily obtained. Newton’s

method can then be applied in a straightforward manner to
find this root. Starting from an initial value ρn=0

o > ε that is
sufficiency small, the following iterations are performed:

ρn+1
o = ρno −

G (ρno )

G′ (ρno )
. (47)

The iterations stop when |G
(
ρn+1

o

)
| < ξ̄, where ξ̄ is a

sufficiently small positive quantity.

B. Convergence

When condition (41) is satisfied, the convergence of New-
ton’s method can be easily proved. As a result from Theo-
rem 5, the function G (ρo) has always a negative value in the
interval (ε, ρo,2). It is also clear that G (ρo) is an increasing
function in the interval [ρn=0

o , ρo,2]. Thus, starting from ρn=0
o ,

(47) will produce a consecutively increasing estimate for ρo.
Convergence occurs when G (ρno ) → 0 and ρn+1

o → ρno .
When the condition in (41) is not satisfied, the regularization
parameter should be set to ε.

C. COPRA Summary

The proposed COPRA discussed in the previous sections is
summarized in Algorithm 1.

V. NUMERICAL RESULTS

In this section, we perform a comprehensive set of simu-
lations to examine the performance of the proposed COPRA
and compare it with benchmark regularization methods.

Three different scenarios of simulation experiments are
performed. Firstly, the proposed COPRA is applied to a set of
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Algorithm 1 COPRA summary

if (41) is not satisfied then
ρo = ε.

else
Define ξ̃ as the iterations stopping criterion.
Set ρn=0

o to a sufficiently small positive quantity.
Find G

(
ρn=0

o

)
using (37), and compute its derivative

G
′ (
ρn=0

o

)
.

while |G (ρno ) | > ξ̃ do
Solve (47) to get ρn+1

o .
ρno = ρn+1

o .
end while

end if
Find x̂ using (9).

nine real-world discrete ill-posed problems that are commonly
used in testing the performance of regularization methods
in discrete ill-posed problems. Secondly, COPRA is used to
estimate the signal when A is a random rank deficient matrix
generated as

A =
1

n
BBT , (48)

where B (m× n,m > n) is a random matrix with i.i.d.
zero mean unit variance Gaussian random entries. This is
a theoretical test example which is meant to illustrate the
robustness of COPRA and to make sure that the obtained
results are applicable for broad class of matrices. Finally, an
image restoration in image tomography ill-posed problem is
considered9.

A. Real-World Discrete Ill-posed Problems

The Matlab regularization toolbox [48] is used to generate
pairs of a matrix A ∈ R50×50 and a signal x0. The toolbox
provides many real-world discrete ill-posed problems that can
be used to test the performance of regularization methods. The
problems are derived from discretization of Fredholm integral
equation as in (3) and they arise in many signal processing
applications10.

Experiment setup: The performance of COPRA is com-
pared with three benchmark regularization methods, the quasi-
optimal, the GCV, the L-curve in addition to the LS. The per-
formance is evaluated in terms of normalized MSE (NMSE);
that is the MSE normalized by ‖x0‖22. Noise is added to
the vector Ax0 according to a certain signal-to-noise-ratio
(SNR) defined as SNR , ‖Ax0‖22/nσ2

z to generate y. The
performance is presented as the NMSE (in dB) (NMSE in
dB = 10 log10 (NMSE)) versus SNR (in dB) and is evaluated
over 105 different noise realizations at each SNR value. Since
some regularization methods provide a high unreliable NMSE
results that hinder the good visualization of the NMSE, we set
different upper thresholds for the vertical axis in the results
sub-figures.

Fig. 2 shows the results for all the selected 9 problems. Each
sub-figure quote the condition number (CN) of the problem’s

9The MATLAB code of the COPRA is provided at
http://faculty.kfupm.edu.sa/ee/naffouri/publications.html.

10For more details about the test problems consult [48].

matrix. The NMSE curve for some methods disappears in
certain cases. This indicates extremely poor performance for
these methods such that they are out of scale. For example, LS
does not show up in all the tested scenarios, while the other
benchmark methods disappear in quite a few cases.

Generally speaking, It can be said that an estimator offering
NMSE above 0 dB is not robust and is worthless. From Fig. 2,
it is clear that COPRA offers the highest level of robustness
among all the methods as it is the only approach whose
NMSE performance remains below 0 dB in almost all cases.
Comparing the NMSE over the range of the SNR values in
each problem, we find on average that COPRA exhibits the
lowest NMSE amongst all the methods in 8 problems (the
first 8 sub-figures). Considering all the problems, the closest
contender to COPRA is the quasi method. However, this
method and the remaining methods show lack of robustness
in certain situations as evident by the extremely high NMSE.

In Fig. 3, we provide the NMSE for the approximation of
the perturbation bound expression in (26) by (35) for a selected
ill-posed problem matrices. The two expressions are evaluated
at each SNR using the suboptimal regularizer in (29). The sub-
figures show that the NMSE of the approximation is extremely
small (below -20 dB in most cases) and that the error increases
as the SNR increases. The increase of the approximation error
with the SNR is discussed in Appendix A.

B. Rank Deficient Matrices

In this scenario, a rank deficient random matrix A is
considered. This is the case where ‖Σn2‖ = 0 in (22). This
theoretical test is meant to illustrate the robustness of COPRA.

Experiment setup: The matrix A is generated as a random
matrix that satisfies A = 1

50BBT , where B ∈ R50×45, Bij ∼
N (0, 1). The elements of x0 are chosen to be Gaussian
i.i.d. with zero mean unit variance, and i.i.d. with uniform
distribution in the interval (0, 1). Results are obtained as an
average over 105 different realizations of A, x0, and z.

From Fig. 4(a), we observe that when the elements of x0

are Gaussian i.i.d. COPRA outperforms all the benchmark
regularization methods. In fact, COPRA is the only approach
that provides a NMSE below 0 dB overall the SNR range
while other algorithms are providing a very high NMSE.
The same behavior can be observed when the elements of
x0 are uniformly distributed as Fig. 4(b) shows. Finally, the
performance of the LS is above 250 dB for both cases.

C. Image Restoration

The tomo example in Section V-A and Fig. 2(a) discusses
the NMSE of the tomography inverses problem solution. In
this subsection, we present visual results for the restored
images.

Experiment setup: The elements of Ax0 are a representative
of a line integrals along direct rays that penetrate a rectangular
field. This field is discretized into n2 cells, and each cell with
its own intensity is stored as an element in the image matrix
M. Then, the columns of M are stacked into x0. On the other
hand, the entries of A are generated as

aij =

{
lij , pixelj ∈ rayi
0 else,
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(a) Tomo (CN = 3.2 ×1016).
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(b) Wing (CN = 1.6 ×1018).
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(c) Heat (CN = 2.4 ×1026).
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(d) Spikes (CN = 4.6 ×1018).
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(e) Baart (CN = 4 ×1017).
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(f) Foxgood (CN = 2.4 ×1018).
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(g) I-Laplace (CN = 3.4 ×1033).
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(h) Deriv2 (CN = 3 ×103).
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(i) Shaw (CN = 2 ×1018).

Fig. 2: Normalized mean-squared error (NMSE) [dB] vs SNR [dB] (CN ≡ condition number).

where lij is the length of the i’th ray in pixel j. Finally, the
rays are placed randomly. A noise with SNR equal to 30 dB
is added to the image of size 16× 16 and the performance is
evaluated as an average over 106 noise and A realizations.

In Fig. 5, we present the original image, the received image,
and the performance of the methods. Fig. 5 demonstrates that
COPRA outperforms all methods through providing a clear
image that is very close to the original image. This also appear
when we compare the peak signal-to-noise ratio (PSNR) of
the algorithms as in Table. I with COPRA having the largest
PSNR among them. Moreover, algorithm such GCV provides
an unreliable result, while L-curve and quasi fail to restore the
internal parts clearly, especially those who have colors close
to the image background color.

TABLE I: Algorithms PSNR at SNR=30
Method COPRA L-curve GCV Quasi
PSNR 29.8331 13.6469 10.5410 15.9080

D. Average Runtime

In Fig. 6, we plot the average runtime for each method
against the SNR as calculated in the simulation. The figure is
a good representation for the runtime of all the problems (no
significant runtime variation between problems has been seen).
The figure shows that COPRA is the fastest algorithm as it has
the lowest runtime in compare to all benchmark methods.

VI. CONCLUSION

In this work, we developed a new approach to find the regu-
larization parameter for linear discrete ill-posed problems. Due
to the challenging singular-value structure for such problems,
many regularization approaches fail to provide a good stabilize
solution. In the proposed approach, the singular-value structure
of the model matrix is modified by allowing an artificial
perturbation into it. To maintain the fidelity of the model,
an upper bound constraint on the perturbation is allowed.
The proposed approach minimizes the worst-case residual
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Fig. 3: NMSE [dB] vs SNR [dB] between (26) and (35) for a
various A. (a) Wing problem. (b) Heat problem. (c) Foxgood
problem. (d) Deriv2 problem.
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(a) x0 ∼ N (0, I) with i.i.d. elements.
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(b) The elements of x0 are i.i.d. with uniform
distribution in the interval (0, 1).

Fig. 4: Performance comparison when A = 1
50BBT , where

B ∈ R50×45, Bij ∼ N (0, 1).

error of the estimator and selects the perturbation bound in
a way that approximately minimizes the MSE. As a result,
the approach combines the simplicity of the least-squares
criterion with the robustness of the MSE based estimation. The
regularization parameter is obtained as a solution of a non-
linear equation in one unknown variable. Simulation results
demonstrate that the proposed approach outperforms a set of
benchmark regularization methods.

(a) Original image. (b) Recieved image. (c) COPRA image.

(d) L-curve image. (e) GCV image. (f) Quasi image.

Fig. 5: Image tomography restoration.
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Fig. 6: Average runtime.

APPENDIX A
ERROR ANALYSIS

In this appendix, we analyze the error of the approximation
that is made to obtain (29). To simpify the analysis, we will
consider the case when the approximation is applied directly
to the MSE function in (28). Let us start by defining H ,
Σ2k

(
Σ2 + ρIn

)−p
, whose diagonal entries can be written as

hii =
σ2k
i

(σ2
i + ρ)

p ; i = 1, 2, · · · , n. (A.1)

Note that in our case k = 0 and p = 2 for the diagonal matrix
inside the trace function of the second term in (28). However,
we will use these two variables to obtain the error expression
for the general case, then we will substitute for k and p. By
using the inequalities in [ [39], eq.(5)], we obtain

λmin(Rx0)Tr (H) ≤ Tr
(
HVTRx0V

)
≤ λmax(Rx0)Tr (H) .

(A.2)
Similarly, we can write

λmin (H) Tr (Rx0
) ≤ Tr

(
HVTRx0

V
)
≤ λmax (H) Tr (Rx0

) .
(A.3)

Since H is diagonal, λmin (H) = min (diag(H)) and
λmax (H) = max (diag(H)). Now, let us define the normalized
error of the approximation as

ε =
Tr
(
HVTRx0

V
)
− 1

nTr (H) Tr (Rx0
)

1
nTr (H) Tr (Rx0

)
. (A.4)
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Note that this is not the standard way of defining the nor-
malized error. Typically, the error ε is normalized by the
true quantity, i.e., Tr

(
HVTRx0V

)
. However, this way of

defining the error is found to be more useful in carrying out the
following error analysis. Based on (A.4), we see that |ε| ≥ 1
indicates an inaccurate approximation. Although at the end it
depends totally on the application, we will adopt |ε| < 1 as
the reference for evaluating the accuracy of the approximation.
In fact, we can observe from (A.4) that |ε| = 1 indicates that
1
nTr (H) Tr (Rx0

) = 0.5 Tr
(
HVTRx0

V
)
. To this end, we

will derive two bounds based on (A.2) and (A.3). Then, we
will combine them to obtain the final error bound.

Absolute Error Bound Based on (A.2): Subtracting
1
nTr (H) Tr (Rx0

) from (A.2) and dividing by the same quan-
tity, we obtain

λmin(Rx0
)

λavg(Rx0)
− 1 ≤ ε ≤ λmax(Rx0

)

λavg(Rx0)
− 1, (A.5)

where λavg(Rx0) , 1
nTr (Rx0

). Thus, |ε| can be bounded by
a positive quantity according to

|εx| ≤ µx = max

[
1− λmin(Rx0)

λavg(Rx0
)
,
λmax(Rx0)

λavg(Rx0
)
− 1

]
. (A.6)

Absolute Error Bound Based on (A.3): Starting from (A.3),
and by applying the same approach used to obtain (A.6), we
derive the second bound as

|εa| ≤ µa = max

[
1− λmin(H)

λavg(H)
,
λmax(H)

λavg(H)
− 1

]
. (A.7)

By using (A.1) we can transform (A.7) to

|εa| ≤ µa = max

1− min
i

[
σ2k
i

(σ2
i +ρ)p

]
1
n

∑n
i=1

σ2k
i

(σ2
i +ρ)p

,
max
i

[
σ2k
i

(σ2
i +ρ)p

]
1
n

∑n
i=1

σ2k
i

(σ2
i +ρ)p

− 1


i = 1, 2, · · · , n. (A.8)

Note that the bound µx depends only on Rx0
, while µa

depends both the singular values of A and the unknown
regularizaer ρ. As in our case, k = 0 and p = 2, and therefore,
(A.8) can be simplified to

|εa| ≤ µa = max

1− 1
(σ2

1+ρ)2

1
n

∑n
i=1

1
(σ2

i +ρ)2

,

1
(σ2

n+ρ)2

1
n

∑n
i=1

1
(σ2

i +ρ)2

− 1


(A.9)

Combined Bound: By combining (A.6) and (A.9), we obtain
the final bound on the absolute error as

|ε| ≤ µ = min (µx, µa) . (A.10)

From (A.6), (A.9), and (A.10), we notice that the bound
is a minimum of two independent bounds. We will analyze
each bound separately and then we will derive a conclusion
concerning the overall error bound.

A. Analysis of µx
When x0 is deterministic, λmin(Rx0

) = 0, λmax(Rx0
) =

||x0||22 and λavg(Rx0
) = 1

n ||x0||22. By substituting in (A.6),
we obtain

µx = max [1, n− 1] = n− 1. (A.11)

On the other hand, when x0 is stochastic with i.i.d. elements,
λmin(Rx0) = λavg(Rx0) = λmin(Rx0) = σ2

x0
, and as a result

µx = max [0, 0] = 0, (A.12)

which means based on (A.10) that the approximation is exact
regardless of the contribution of the error from µa. When x0

deviate from being i.i.d., it will be very difficult to obtain
a value for µx. Therefore, and since no previous knowledge
about x0 is assumed in this paper, it seems that this bound
is very loose for a general x0 and we should rather rely on
µa to tighten and evaluate the bound of the error as we will
discuss. Thus, the modified bound, which can be larger than
the actual bound, is given by

|ε| ≤ µ = µa. (A.13)
B. Analysis of µa

By taking the derivative of each of the two terms inside
(A.9) w.r.t. ρ, we can easily prove that the two functions are
decreasing in ρ. This means that we can obtain the two extreme
error bounds (the largest and the smallest possible value of the
absolute error) by analyzing the two extreme SNR scenarios,
i.e., the high SNR regime and the low SNR regime.

1) Analysis for the low SNR regime: In the extreme low
SNR regime, we have ρ → ∞, and therefore, we can obtain
the minimum bound on the absolute error. Based on (A.1) we
can write

hii =
1

(σ2
i + ρ)2

→ 1

ρ2
; i = 1, 2, · · · , n. (A.14)

Consequently, (A.9) will boil down after some manipulations
to

|εla| ≤ µla = max

[
1−

1
ρ2

1
n

∑n
i=1

1
ρ2

,

1
ρ2

1
n

∑n
i=1

1
ρ2

− 1

]

= max

[
1− n∑n

i=1 1
,

n∑n
i=1 1

− 1

]
= 0. (A.15)

The result in (A.15) indicates that as the SNR decreases, the
approximation becomes more accurate. In the extreme low
SNR regime (i.e., ρ→∞), the absolute error is zero and the
approximated term is exactly equal to the original one.

2) Analysis for the high SNR regime: At the extremely
high SNR, ρ is sufficiently small and thus doing such analysis
allows us to obtain the upper worst case possible value for ε.

Since the main objective of this paper is to provide an
estimator that minimizes the MSE, and based on the result
proven in [49], there always exists a positive regularizer ρ > 0,
such that the regularized estimator offers lower MSE than the
OLS estimator. This implies also for well-conditioned prob-
lems. However, if the condition number is too small, both the
regularization parameter and the corresponding improvement
in the MSE performance comparing to that of the OLS are
too small. Therefore, we conclude that for the extreme high
SNR, ρ converges to a minimum value ρmin. In what follow,
we find a lower bound expression for ρmin and then examine
the absolute error in this value.

Starting from the definition of the SNR, we can write

SNR =
||Ax0||22
||z||22

. (A.16)
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Applying the SVD of A to (A.16) then doing some algebraic
manipulations, we obtain

SNR =
Tr
(
VΣ2VTRx0

)
nσ2

z

, (A.17)

where Rx0 = x0x
T
0 . Now, using (A.17) with the suboptimal

regularizer ρo expression in (29), we can write

ρo =
1

SNR
Tr
(
VΣ2VTRx0

)
Tr (Rx0

)
. (A.18)

From (A.18) we deduce that for a given A and x0, the
minimum achievable suboptimal regularizer ρmin dependents
on the maximum SNR (i.e., SNRmax). That is

ρmin =
1

SNRmax

Tr
(
VΣ2VTRx0

)
Tr (Rx0

)
. (A.19)

Give the nature of the ill-posed problems and there singular
values behavior as Fig 1 shows, we will partition Σ and V
into to two sub-matrices (same as in Section II-C) and then
approximate (A.19) as

ρmin ≈
1

SNRmax

Tr
(
Vn1Σ

2
n1V

T
n1Rx0

)
Tr (Rx0)

, (A.20)

where Σ2
n1 = diag

(
σ2

1 , . . . , σ
2
n1

)
. The value of ρmin in (A.20)

can be bounded by

σ2
n1

SNRmax

Tr
(
VT
n1Rx0Vn1

)
Tr (Rx0)

≤ ρmin ≤
σ2

1

SNRmax

Tr
(
VT
n1Rx0Vn1

)
Tr (Rx0)

(A.21)
Since we are considering the worst case upper bound for the
absolute error, and given that this absolute error increases as
ρ decreases, we will consider the lower bound of ρmin as in
(A.21). Moreover, and based on the unitary matrix property
and the partitioning of V, we can obtain a lower bound for
the lower bound in (A.21) as

ρmin ≥
σ2
n1

SNRmax

Tr
(
VT
n1Rx0

Vn1

)
Tr (Rx0

)
≥ σ2

n1

SNRmax

Tr (Rx0)

Tr (Rx0
)
.

(A.22)
Thus, a lower bound for ρmin (i.e., ρlmin) can be written as

ρlmin =
σ2
n1

SNRmax
. (A.23)

Now, we are ready to study the behavior of the error in the
high SNR regime. When ρ→ ρlmin, (A.9) can be written as

|εha | ≤ max

1− 1

(σ2
1+ρ

l
min)

2

1
n

∑n−1
i=0

1

(σ2
i +ρ

l
min)

2

,

1

(σ2
n+ρlmin)

2

1
n

∑n−1
i=0

1

(σ2
i +ρ

l
min)

2

− 1


(A.24)

To evaluate (A.24), we will relay on numerical results. Firstly,
let us consider SNRmax = 40 dB which is a realistic
upper value in many signal processing and communication
applications. Substituting this value in (A.23) we find that
ρlmin = 0.018σ2

n1. Now, substituting the result in (A.24),
then evaluating the expression for the 9 ill-posed problems
in Section V, we find that |εha | ≤ µha ≈ 1. As this represents
the worst case upper value for the absolute error, we conclude
that

|εha | ≤ %; % < 1. (A.25)

Finally, based on (A.10) and (A.13), and by combining (A.15)
and (A.25), we conclude that

|ε| ∈ [0, %]; % < 1. (A.26)

The conclusion in (A.26) indicates that 1
nTr (H) Tr (Rx0

) =
q Tr

(
HVTRx0V

)
where q ∈ (0.5, 1].

APPENDIX B
PROOF OF THEOREM 4

We are interested in studying the behavior of
limρo→εG (ρo), assuming that ε is sufficiently small positive
number (i.e., ε→ 0+), and ε� σ2

i , ∀i ∈ [1, n]. Starting from
COPRA function in (37), and by defining b = UTy, we can
write

G (ρo) =

n∑
i=1

σ2
i b

2
i

(σ2
i + ρo)

2

n1∑
j=1

(
βσ2

j + ρo
)(

σ2
j + ρo

)2
−

n∑
i=1

b2i

(σ2
i + ρo)

2

n1∑
j=1

σ2
j

(
βσ2

j + ρo
)(

σ2
j + ρo

)2 +
n2

ρo

n∑
i=1

σ2
i b

2
i

(σ2
i + ρo)

2 .

(B.1)

Given how we choose ε, Eq. (B.1) can be approximated as

G (ε) ≈ β
n∑
i=1

σ−2
i b2i

n1∑
j=1

σ−2
j − βn1

n∑
i=1

σ−4
i b2i +

n2

ε

n∑
i=1

σ−2
i b2i .

(B.2)

Solving G (ε) = 0 from (B.2) leads to the following root

ε =
n2

∑n
i=1 σ

−2
i b2i

βn1

∑n
i=1 σ

−4
i b2i − β

∑n
i=1 σ

−2
i b2i

∑n1

j=1 σ
−2
j

. (B.3)

Now, we would like to know if the root define by (B.3) is
positive. For (B.3) to be positive, the following relation should
hold

n1

n∑
i=1

σ−4
i b2i ≥

n∑
i=1

σ−2
i b2i

n1∑
j=1

σ−2
j . (B.4)

Starting from the right hand side of (B.4), and given that σ1 ≥
σ2 ≥· · · ≥ σn, we can bound this term as
n∑
i=1

σ−2
i b2i

n1∑
j=1

σ−2
j ≤ σ−2

n1

n∑
i=1

σ−2
i b2i

n1∑
j=1

1 = n1σ
−2
n1

n∑
i=1

σ−2
i b2i .

(B.5)
On the other hand, given how we choose n1 and n2, we have

n∑
i=n1+1

σ−2
i ≥

n1∑
i=1

σ−2
i , (B.6)

which can help us to bound the left hand side of (B.4) as

n1

n∑
i=1

σ−4
i b2i ≥ n1σ

−2
n1

n∑
i=1

σ−2
i b2i . (B.7)

Now, from (B.5) and (B.7) we find that a lower bound for the
left hand side of (B.4) is equal to the upper bound for its right
hand side. Then we can conclude from these two relations that

n1

n∑
i=1

σ−4
i b2i ≥

n∑
i=1

σ−2
i b2i

n1∑
j=1

σ−2
j . (B.8)

Thus, ε is a positive root for the COPRA function in (37).



13

Now, we would like to know if ε can be considered as a
value for our regularization parameter ρo. A direct way to
prove that can be noted from the fact that having ε � σ2

i

∀i ∈ [1, n] will not provide any source of regularization to the
problem. Hence, the RLS in (6) converges to the LS in (2).

As a remark, we can assume that the approximation in (B.2)
is uniform such that it does not affect the position of the roots.
Thus, we can claim that this root is not coming from the
negative region of the axis. In fact, we can easily prove that
(B.1) does not have a negative root that is close to zero. Thus,
this root is not coming from the negative region as a result of
the function approximation (i.e., perturbed root).
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