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Abstract— In this work, we propose a transparent approach
to evaluating the CDF of indefinite quadratic forms in Gaussian
random variables and ratios of such forms. This quantity appears
in the analysis of different receivers in communication systems
and in various applications in signal processing. Instead of
attempting to find the pdf of this quantity as is the case in
many papers in literature, we focus on finding the CDF. The
basic trick that we implement is to replace inequalities that
appear in the CDF calculations with the unit step function and
replace the latter with its Fourier transform. This produces a
multi-dimensional integral that can be evaluated using complex
integration. We show how our approach extends to nonzero mean
Gaussian real/complex vectors and to the joint distribution of
indefinite quadratic forms. 1

I. I NTRODUCTION AND PROBLEM DEFINITION

Gaussian random variables play a very important role in
signal processing, communications, and information theory. It
is very important to find the distributions of various quantities
involving Gaussian random variables, most notably sums of
squares of Gaussian random variables and ratios of such
norms. Such quantities appear in many applications including
for example mean-square-error (MSE) analysis of the normal-
ized least-mean-square (NLMS) algorithm, SINR calculations,
and maximum ratio combining (MRC) diversity schemes in
CDMA systems.

A considerable amount of research has been done to find the
distribution of quadratic forms in Gaussian random variables.
However, these approaches are either restricted to special cases
(for example, positive definite case [1], [2], central case [3],
real Gaussian random variables case [4], [5], [6], [7], ... etc.),
or provide highly complex solutions using series expansion or
approximations for indefinite quadratic forms [3], [8], [4], [6],
[9], [10], [11], [12], [13], [2], [14], [15], [16], [17]. Numerical
integration is used in [18], [19] to evaluate the distribution of
an indefinite quadratic forms. Because of these highly complex
solutions and the treatment of special cases, their practical
usefulness is limited. A third disadvantage of these methods
is their focus on obtaining the pdf from the characteristic
function when the CDF is a more useful expression. The
reason is that the CDF (just like the pdf) can be used to
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obtain the moments (through integration by parts). Moreover,
the CDF directly gives an expression for the probability (when
the pdf needs to be integrated to obtain this information).

The aim of this paper is to introduce a new and effective
method for characterizing the statistical behavior of indefinite
quadratic forms in Gaussian r.v.’s (i.e., to obtain an expression
for the cumulative distribution function (CDF) of indefinite
quadratic forms).

In this article, we study the distribution of various quantities
involving weighted norms of a correlated Gaussian vector and
show how to find the distribution of these quantities using
complex integration. Calculating the CDF involves integrating
the M -dimensional Gaussian over a region defined by an
inequality constraint. Our approach simply relies on replacing
this constraint with the unit step function thus transforming the
constrained integral into an unconstrained one. To deal with
the unit step function, we replace it with its Fourier Transform
creating anM + 1 dimensional integral with infinite limits.
The advantage of this approach is that all manipulations can
be done within the integrand itself. Complex integration can
now be used to calculate the integral. Other advantages of our
approach are detailed below.

1) The approach relies on directly finding the CDF as op-
posed to finding the pdf through the usual characteristic
function approach (which requires two integration steps).

2) The approach applies to general indefinite quadratic
forms of correlated Gaussian random vectors (complex
or real).

3) We obtain the CDF of the quadratic form as a finite
sum of expenentials (as opposed to the infinite summa-
tion expression obtained in [17]). The exponent is the
eignevalue of the matrix of the resulting indefinite form.

4) Our approach applies to non-zero mean random vari-
ables although the result can be evaluated as a one-
dimensional integral.

5) The same approach can be used to evaluate the joint
distribution of indefinite quadratic forms.

6) Our approach applies to other variables including for
example indefinite quadratic forms in isotropically dis-
tributed variables.



7) The approach is not limited to indefinite quadratic forms
but can be extended to other (non)quadratic forms of
(non)Gaussian distributions.

II. PROBLEM FORMULATION

Let A be a Hermitian matrix of sizeM and consider the
random quadratic form

Y = ‖H‖2A (1)
∆= H∗AH (2)

whereH ∼ CN (0, R). Without loss of generality, we have
assumed thatH is white. To see this, defineHw = R

1
2 H,

thenHw is white and

‖H‖2A = ‖Hw‖2
R

1
2 AR

∗
2

(3)

When H is non-zero mean we can equivalently consider the
(noncentral) quadratic form

Ync = ‖H −m‖2A (4)

For real quadratic forms, we have

Yr = ‖Hr‖2Ar

∆= H ′
rArHr (5)

where Hr is a white real Gaussian vector andAr is a
symmetric real matrix.

III. T HE DISTRIBUTION OF AN INDEFINITE HERMITIAN

QUADRATIC FORM

Consider the random Hermitian quadratic formY = ‖H‖2A.
The CDF ofY is given by

FY (y) = P {Y ≤ y} (6)

=
∫

A
p(Hi)dHi (7)

whereA is the area inM multidimensionalH plane defined
by the inequality‖H‖2A ≤ y. The integral as it appears above
is difficult to evaluate. An alternative way to do so is to express
the inequality that appears in (6) as

y − ‖H‖2A ≥ 0

So, the CDF takes the form

FY (y) =
1

2πM

∫ ∞

−∞
e−H∗Hu(y − ‖H‖2A)dH

In the integral above,u is the unit step function and the
integration is performed over theentireH plane, transforming
all operations into the integrand. The above integral is still
difficult to evaluate. So, we replace the unit step by its Fourier
transform

u(x) =
1
2π

∫ ∞

−∞

ex(jω+β)

jω + β
dω (8)

which is valid for anyβ > 0 (and is also independent of the
value ofβ)2. This yields the the followingM +1 dimensional
integral

FY (y) =
1

2πM+1

∫
dω

ey(jω+β)

jω + β

∫
dHe−H∗(I+A(jω+β))H

By examining this integral, we note that the inner integral
looks like a Gaussian integral. Intuition suggests that this
integral can be written as (see the Appendix for a formal proof)

1
πM

∫
e−H∗(I+A(jω+β))HdH =

1
det(I + A(jω + β))

(9)

providedβ is chosen small enough to makeI + βA positive
definite. Thus, we can express the CDF ofY as

FY (y) =
1
2π

∫ ∞

−∞

ey(jω+β)

jω + β

M∏

i=1

1
1 + λi(jω + β)

dω (10)

where theλ′is are the eigenvalues ofA. This reduces the
M +1 dimensional integral into a one-dimensional integration
problem in the variablejω + β. To evaluate this integral, we
need to first expand the fraction that appears above in a partial
fraction expansion. Thus, assume thatA has exactlyL distinct
eigenvaluesλ1, . . . , λL whereλl has multiplicityKl. Then the
fraction in (10) can be expanded as (for some constantsαkl

)

1
jω + β

1∏M
i=1(1 + λi(jω + β))

=
1

jω + β
+

L∑

l=1

Kl∑

kl=0

αkl

1 + λi(jω + β)
(11)

Now, using residue value theory, we can show that [20]

1
2π

∫ ∞

−∞

e+jωp

(a + jω)ν
dω =

{
pν−1

Γ(ν) e−apu(p) a > 0

− (−p)ν−1

Γ(ν) e−apu(−p) a < 0

=
signν−1(a)

Γ(ν)
(p)ν−1e−apu(ap)

We can use this to evaluate the1 + L(Kl + 1) integrals of
(10)-(11). Specifically, we have

1
2π

∫ ∞

−∞

ex(jω+β)

jω + β
dω = eβxe−βxu(x) = u(x) (12)

and

1
2π

∫ ∞

−∞

ey(jω+β)

1 + λi(jω + β)
=

eyβ

λkl
i

1
2π

∫ ∞

−∞

eyjω

(β + 1
λi

+ jω)kl

=
1

Γ(kl)|λl|kl
ykl−1e

− y
λl u

(
y

λl

)

(13)

where in arriving at the last integral, we used the fact thatβ
was chosen so that1+βλi > 0, i.e., sign(β+ 1

λi
) = sign(λi).

Note that both integrals in (12) and (13) are independent ofβ

2The value of β is chosen judicially to help evaluate certain multi-
dimensional integrals of the Gaussian pdf.



as they should. This allows us to write the CDFFY (y) in the
following closed form

FY (y) = u(y) +
L∑

l=1

Kl∑

kl=1

αkl

Γ(kl)|λl|kl
ykl−1e

− y
λl u(

y

λl
)

When none of the eigenvalues is repeated, the CDF takes the
form

FY (y) = u(y)−
M∑

i=1

λM
i∏

l 6=i(λi − λl)
1
|λi|e

− y
λi u(

y

λi
)

A. The distribution of a ratio of Gaussian norms

Let’s apply the result developed above to derive the CDF
of the ratio

X =
ε1 + ‖H‖2B1

ε2 + ‖H‖2B2

(14)

where B1 and B2 are Hermitian. Such a quantity appears
in numerous applications in signal processing and commu-
nications (e.g., in the analysis of normalized adaptive filters
[21] and in SINR calculations [22], [23]). Now note that the
probability

P

{
ε1 + ‖H‖2B1

ε2 + ‖H‖2B2

≤ x

}

can be equivalently written as

P {‖H‖B1−xB2 ≤ ε2x− ε1}
which is of the same form described above for

A = B1 − xB2 and y = ε2x− ε1 (15)

and so we can immediately deduce the CDF to be

FY (ε2x− ε1) = u(ε2x− ε1)−
∑M

i=1
λM

i (x)Q
l 6=i(λi(x)−λl(x))

× 1
|λi(x)|e

− ε2x−ε1
λi u( ε2x−ε1

λi
) (16)

Here λi(x) i = 1, . . . , M are the eigenvalues ofB1 − xB2

and hence are functions ofx. The expression (16) is valid
assuming that the eigenvalues ofB1 − xB2 are distinctfor
eachx.

To get an intuition of when this is true, consider the special
case when bothB1 andB2 are diagonal. In this case

λi(x) = b1i − b2ix

andλi(x) = λj(x) provided that

b1i − b1j = (b2i − b2j )y

If b2i 6= b2j , this happens atx =
b1i
−b1j

b2i
−b2j

, an event that occurs

with zero probability. Alternatively, ifb1i = b1j andb2i = b2j ,
thenλi(x) = λj(x) for all x. For general matricesB1 andB2,
the conditionλi(x) = λj(x) is satisfied for allx provided that
bothB1 andB2 have repeated eigenvalues and share the same
corresponding eigenvector (see [24] for a proof).

Figure 1 shows the empirical and analytical CDFX defined
in (14) whereH is white Gaussian of size10 × 1 and B1

andB2 are randomly chosen fixed matrices of size 10. In the
simulations, we setε1 = ε2 = 0.01. The figure shows excellent
match between the analytical expression and the simulated
CDF.
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Fig. 1. Empirical CDF vs Calculated PDF ofX

B. The Nonzero-Mean Case

In the above, we assumed the Gaussian variables to be
of zero mean. Let’s consider Hermitian quadratic forms in
nonzero mean Gaussian vectors. Equivalently, we would like
to consider the non-central quadratic form

Y = ‖H − a‖2A
whereH ∼ N (0, I). Let’s find the probabilityPr {Y ≤ y} .
Along the lines pursued above, we can write this probability
as theM + 1 dimensional integral

Pr {Y ≤ y} =
1

πM

∫ ∞

−∞
e−‖H‖

2u(y−‖H−a‖2A)dH

=
1

2πM+1

∫ ∞

−∞
dω

ey(jω+β)

jω + β
×

∫
dHe−(‖H‖2+‖H‖2(jω+β)A)dH (17)

By completing the squares, we can write the sum of (weighted)
norms that appears above as a single (noncentral) quadratic
form

‖H‖2 + ‖H − a‖2(jω+β)A = ‖H − b‖2B + c

where

b = (I +
1

jω + β
A−1)−1a

B = I + (jω + β)A

c = a∗(I +
1

jω + β
A−1)−1a

which allows us to reduce (17) into a 1-dimensional integral

Pr {Y ≤ y} =
1
2π

∫ ∞

−∞

ey(jω+β)

jω + β
e−c 1

det(I + (jω + β)A)
dω



Now, let A = Q∗ΛQ denote the eigenvalue decomposition of
A. Assuming that non of the eigenvalues ofA are repeated,
we can rewrite the integral above as a sum of simpler integrals
by relying on the partial fraction expansion

Pr {Y ≤ y} =
1
2π

∫ ∞

−∞

ey(jω+β)

jω + β
e−cdω +

M∑

i=1

1
2π

∏
l 6=i(1− λl

λi
)

∫ ∞

−∞

ey(jω+β)

1 + λi(jω + β)
e−cdω

As, we can see, we need to evaluateM + 1 integrals of the
form

Ii =
1
2π

∫ ∞

−∞

ey(jω+β)

1 + λi(jω + β)
e−cdω

=
1
2π

∫ ∞

−∞

ey(jω+β)

1 + λi(jω + β)
e−
PM

m=1
|ã(m)|2(jω+β)λm

1+(jω+β)λm dω

where ã = Qa. It is not possible to evaluate this integral in
closed form (except when all the eigenvalues are equal), but
we can evaluate it numerically.

C. The Real Quadratic Form Case

Let’s now consider the case when the quadratic form is
in real Gaussian variable. In this case, we arrive at the
same expressions in Section II except that conjugate transpose
is replaced with transpose and the matrixA is now real
symmetric

FY (y) =
1

2πM+1

∫
dω

ey(jω+β)

jω + β

∫
dHe−HT (I+A(jω+β))HdH

The inner integral now integrates to 1√
(I+A(jω+β))

and this

leads to the 1-dimensional integral

Pr {Y ≤ y} =
1
2π

∫ ∞

−∞

ey(jω+β)

jω + β

1√
det(I + A(jω + β))

dω

This integral can not be evaluated in closed form in general
and can instead be evaluated numerically.

IV. JOINT DISTRIBUTIONS OFINDEFINITE HERMITIAN

QUADRATIC FORMS

We can use the same method considered above to find the
joint distribution of several quadratic forms. We shall demon-
strate this here for the two quadratic forms case, although our
insights can be easily extended to more than two quadratic
forms. Thus, consider the CDF

FXa,Xb
(xa, xb) = Pr

{‖H‖2A ≤ xa, ‖H‖2B ≤ xb

}

By representing the inequalitiesxa − ‖H‖2A ≥ 0 and xb −
‖H‖2B ≥ 0 as step functions and further replacing the step
functions using the integral representation (8), we can write
the CDF above as theM + 2 dimensional integral

FXa,Xb
(xa, xb) =

1
22πM+2

∫
dω1

exa(jω1+β1)

jω1 + β1∫
dω2

exb(jω2+β2)

jω2 + β2

∫
dH

e−‖H‖
2−‖H‖2(jω1+β1)A−‖H‖2(jω2+β2)B

The H-dependent part of the integral can be represented as

IH =
1

πM

∫
dHe−‖H‖

2
I+(jω1+β1)A+(jω2+β2)B (18)

Now, just as we argued in Appendix A,β1 and β2 can be
chosen to make the real part of the weight above positive
definite and so (18) reduces to

IH =
1

det(I + (jω1 + β1)A + (jω2 + β2)B)

so that

FXa,Xb
(xa, xb) =

1
22π2

∫
dω1

exa(jω1+β1)

jω1 + β1∫
dω2

exb(jω2+β2)

jω2 + β2

1
det(I + (jω1 + β1)A + (jω2 + β2)B)

(19)

In general, we can not evaluate this integral in closed form
unlessA andB are jointly diagonalizable by an orthonormal
transformation or equivalently thatA and B are diagonal.
Under this assupmtion, the determinant in (19) can be easily
expanded and the joint CDF takes the form

FXa,Xb
=

1
22π2

∫
dω1

exa(jω1+β1)

jω1 + β1

∫
dω2

exb(jω2+β2)

jω2 + β2

1∏M
i=1(I + (jω1 + β1)ai + (jω2 + β2)bi)

(20)

Now it is tedious but straightforward to evaluate this double
integral in closed form. We consider the fraction that appears
in (20) as a function injω2 + β2 and expand it in a partial
fraction expansion. This results inM +1 terms (assuming that
that non of the terms are repeated). Each of these terms can
be integrated with respect toω2 to produceM + 1 terms that
are in turn partial fractions injω1 + β1. The same process
can now be repeated for theω1 variable, arriving finally at a
closed form expression for the CDF.

V. CONCLUSION

In this paper, we derived the distribution of indefinite
quadratic forms in Gaussian random variables. As opposed to
the many studies in literature that considered this problem,
we avoided the traditional “characteristic function to pdf”
approach and instead focused on finding the CDF directly.
The CDF is a more useful expression than the pdf since it
gives the probability value directly and since it can be used
to obtain the moments using integration (by parts) just as is
the case for the pdf. Our approach relies on representing the
inequalities that naturally appear in CDF calculations using the
unit step function and representing the latter using its Fourier
transform. Our approach is unified in that it equally applies to
the real and complex cases and to the zero and nonzero mean
cases. It can be naturally extended to joint CDF calculations.
While, we have not shown that in this paper, our approach can
be used to obtain bounds on the CDF and also to find the CDF



of (non) quadratic forms in (non) Gaussian random variables
[24].

VI. A PPENDIX

In this appendix, we prove our in claim in (9) that

1
πM

∫
e−H∗(I+A(jω+β))HdH =

1
det(I + A(jω + β))

(21)

To see this, letUΛU∗ denote the eigenvalue decomposition of
the Hermitian matrixA. Now introduce the change of variables

H̃ = U∗H,

then sinceU is unitary

dH̃ = | detU∗|2dH = dH

and the integral in (9) can be decomposed as
∫

dH̃e−H̃∗(I+Λ(jω+β))H̃ =

M∏

i=1

∫ ∞

−∞
e−(1+βλi+λijω)|H̃(i)|2dH̃(i)

For eachx, we can chooseβ such that1+βλi > 0. With this
choice ofβ, it is easy to see that [20]

1
π

∫ ∞

−∞
e−(1+βλi+λijω)|H̃(i)|2dH̃(i) =

1
1 + λi(jω + β)

We finally arrive at the result

1
πM

∫
dHe−H∗(I+A(jω+β))H =

M∏

i=1

1
1 + λi(y)(jω + β)

An alternative way to express the result above is

1
πM

∫
dHe−H∗(I+A(jω+β))H =

1
det(I + A(jω + β))

which is the expression we arrived at in (9) intuitively by
considering the left hand side as a formal Gaussian integral
with correlation(I + A(jω + β))−1.
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