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Abstract—In this work, we propose a transparent approach
to evaluating the CDF of indefinite quadratic forms in Gaussian
random variables and ratios of such forms. This quantity appears
in the analysis of different receivers in communication systems
and in various applications in signal processing. Instead of
attempting to find the pdf of this quantity as is the case in
many papers in literature, we focus on finding the CDF. The
basic trick that we implement is to replace inequalities that
appear in the CDF calculations with the unit step function and
replace the latter with its Fourier transform. This produces a
multi-dimensional integral that can be evaluated using complex
integration. We show how our approach extends to nonzero mean
Gaussian real/complex vectors and to the joint distribution of
indefinite quadratic forms. *
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obtain the moments (through integration by parts). Moreover,
the CDF directly gives an expression for the probability (when
the pdf needs to be integrated to obtain this information).

The aim of this paper is to introduce a new and effective
method for characterizing the statistical behavior of indefinite
guadratic forms in Gaussian r.v.’s (i.e., to obtain an expression
for the cumulative distribution function (CDF) of indefinite
guadratic forms).

In this article, we study the distribution of various quantities
involving weighted norms of a correlated Gaussian vector and
show how to find the distribution of these quantities using
complex integration. Calculating the CDF involves integrating
the M-dimensional Gaussian over a region defined by an
inequality constraint. Our approach simply relies on replacing

Gaussian random variables play a very important role {gjs constraint with the unit step function thus transforming the
signal processing, communications, and information theory.dbnstrained integral into an unconstrained one. To deal with
is very important to find the distributions of various quantitieghe unit step function, we replace it with its Fourier Transform
involving Gaussian random variables, most notably sums @feating an)M + 1 dimensional integral with infinite limits.
squares of Gaussian random variables and ratios of sugfe advantage of this approach is that all manipulations can
norms. Such quantities appear in many applications includigg done within the integrand itself. Complex integration can

for example mean-square-error (MSE) analysis of the normaly be used to calculate the integral. Other advantages of our
ized least-mean-square (NLMS) algorithm, SINR calculationgpproach are detailed below.

and maximum ratio combining (MRC) diversity schemes in 1)
CDMA systems.

A considerable amount of research has been done to find the
distribution of quadratic forms in Gaussian random variables.2
However, these approaches are either restricted to special case
(for example, positive definite case [1], [2], central case [3],
real Gaussian random variables case [4], [5], [6], [7], -.- etc.),3
or provide highly complex solutions using series expansion or
approximations for indefinite quadratic forms [3], [8], [4], [6],
[9], [10], [11], [22], [23], [2], [14], [15], [16], [17]. Numerical
integration is used in [18], [19] to evaluate the distribution of
an indefinite quadratic forms. Because of these highly complex
solutions and the treatment of special cases, their practical
usefulness is limited. A third disadvantage of these methodss)
is their focus on obtaining the pdf from the characteristic
function when the CDF is a more useful expression. The )
reason is that the CDF (just like the pdf) can be used to

1The work of T. Y. Al-Naffouri was supported by the Fulbright Scholar
Program and by a research grant from King Fahd University of Petroleum
and Minerals, Dhahran, Saudi Arabia.

The approach relies on directly finding the CDF as op-
posed to finding the pdf through the usual characteristic
function approach (which requires two integration steps).
The approach applies to general indefinite quadratic
forms of correlated Gaussian random vectors (complex
or real).

) We obtain the CDF of the quadratic form as a finite

sum of expenentials (as opposed to the infinite summa-
tion expression obtained in [17]). The exponent is the
eignevalue of the matrix of the resulting indefinite form.
Our approach applies to non-zero mean random vari-
ables although the result can be evaluated as a one-
dimensional integral.

The same approach can be used to evaluate the joint
distribution of indefinite quadratic forms.

Our approach applies to other variables including for
example indefinite quadratic forms in isotropically dis-
tributed variables.



7) The approach is not limited to indefinite quadratic form#hich is valid for any5 > 0 (and is also independent of the
but can be extended to other (non)quadratic forms wélue of 3)2. This yields the the following\/ + 1 dimensional
(non)Gaussian distributions. integral
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By examining this integral, we note that the inner integral
looks like a Gaussian integral. Intuition suggests that this

Let A be a Hermitian matrix of sizé/ and consider the
random quadratic form

Y = |H|} 1) integral can be written as (see the Appendix for a formal proof)
A . 1 - , 1
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where H ~ CN(0, R). Without loss of generality, we have
assumed thafl is white. To see this, definél,, = R H,
then H,, is white and
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provided 3 is chosen small enough to makKet 3A positive
definite. Thus, we can express the CDFYofas

When H is non-zero mean we can equivalently consider ﬂWhere the \!

(noncentral) quadratic form s are the eigenvalues ol. This reduces the

M+1 dlmenS|onaI integral into a one-dimensional integration

Yoo = | H — m|2 (4) problem in the variablgw + 5. To evaluate this integral, we
e 4 need to first expand the fraction that appears above in a partial
For real quadratic forms, we have fraction expansion. Thus, assume thahas exactlyl distinct
eigenvalues\y, ..., Ay where); has multiplicity K;. Then the
= |H, |4 2 H!A.H, (5) fraction in (10) can be expanded as (for some constapts
where H, is a white real Gaussian vector amd, is a 1 1 = - 1 +
symmetric real matrix. Jo+ BT (L+N(jw+8))  Jw+B
L K
[1l. THE DISTRIBUTION OF AN INDEFINITE HERMITIAN Z Z (11)
1+ )\ jw 1+ X(Gw+08)
QUADRATIC FORM I=1 k=0
Consider the random Hermitian quadratic fovm= || H||%. NOW: Using residue value theory, we can show that [20]
The CDF ofY is given by 1 % etiwp ; { F"(;; =Py (p) a>0
- ——dw = D
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where A is the area inM multidimensionald plane defined \we can use this to evaluate the+ L(K; + 1) integrals of

by the inequalityi| H||% < y. The integral as it appears abovq10)-(11). Specifically, we have
is difficult to evaluate. An alternative way to do so is to express

) : . 1 [ er(iw+B)

the inequality that appears in (6) as 27/ 6‘ dw = PP u(z) = u(z) (12)
) TJ) oo jw+p

y—[H|% >0 and
So, the CDF takes the form 1 /00 ey(jwtB) Y8 1 /00 eYiw
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In the integral abovey is the unit step function and the
integration is performed over thentire H plane, transforming
all operations into the integrand. The above integral is stillhere in arriving at the last integral, we used the fact that
difficult to evaluate. So, we replace the unit step by its Fourigfas chosen so that+ 8\; > 0, i.e. 51gn(ﬁ+ ) = sign(\;).

(13)

transform Note that both integrals in (12) and (13) are independerit of
1 [ ez(jwtB) ) o ) )
u(x) - dw (8) 2The value of 3 is chosen judicially to help evaluate certain multi-

21 J_ o Jw+ I) dimensional integrals of the Gaussian pdf.



as they should. This allows us to write the CIBF(y) in the and B, are randomly chosen fixed matrices of size 10. In the

following closed form simulations, we sat; = ¢; = 0.01. The figure shows excellent
L K match between the analytical expression and the simulated
kg ki—1,—%, Y CDF.
Fy(y) = uly) + oy e Nu(+—
(y) = u(y) ;,;F(kz)lkﬂ’”y (%)
—1 k=
Empirical CDF
When none of the eigenvalues is repeated, the CDF takes the ' Cmpiial COF ‘
form
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A. The distribution of a ratio of Gaussian norms
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Let's apply the result developed above to derive the CDF

of the ratio 03l
2 0.2
X = €1 + ||H||B1 (14) ol
e+ [|H|E, L ‘
0
where B; and B, are Hermitian. Such a quantity appears R ° I ' " ’
in numerous applications in signal processing and commu-
nications (e.g., in the analysis of normalized adaptive filters Fig. 1. Empirical CDF vs Calculated PDF of
[21] and in SINR calculations [22], [23]). Now note that the
probability
e+ |H||B, B. The Nonzero-Mean Case
{62 +1H%, ~ } In the above, we assumed the Gaussian variables to be

of zero mean. Let’'s consider Hermitian quadratic forms in

can be equivalently written as ) . .
nonzero mean Gaussian vectors. Equivalently, we would like

P{||H||By—zB, < €2z — €1} to consider the non-central quadratic form
which is of the same form described above for Y = ||H —al%
A=DB;—zBy and y=ex —¢€ (15) where H ~ N(0,1). Let's find the probabilityPr {Y < y}.

Along the lines pursued above, we can write this probability

and so we can immediately deduce the CDF to be . ) :
as theM + 1 dimensional integral
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Here \;(xz) i = 1,..., M are the eigenvalues dB; — =B, = W/ dwm X
and hence are functions af. The expression (16) is valid -
assuming that the eigenvalues Bf — 2B, are distinctfor /dHe_(HH”2+HHH(QJW+B)A)dH(17)
eachz.
To get an intuition of when this is true, consider the speci&ly completing the squares, we can write the sum of (weighted)
case when botlB, and By are diagonal. In this case norms that appears above as a single (noncentral) quadratic
form

/\1(37) = bli — bgix
and\;(xz) = A;(x) provided that

bli - blj = (sz - b2j )y 1
b1, —b1, b = (I+- A’l)’la

I+ 1 = allfjusgya = 1 = b5+ c

where

If by, # by, this happens at = 5, 5, an event that occurs jw+ 0

with zero probability. Alternatively, ib;, = by, andby, = by, B = I+ (jw+p)A
then);(z) = \;(x) for all z. For general matriceB, andB,, ¢ = a"(I+ A~H g
the condition\;(z) = \;(x) is satisfied for alk: provided that Jjw+ B3

both B, ande h.ave repeated eigenvalues and share the Safi¥ich allows us to reduce (17) into a 1-dimensional integral
corresponding eigenvector (see [24] for a proof).

i iri i : 1 [ ey(iw+p) 1
Figure 1 shows the empirical and analytical CRFdefined Priy <y} = / e e

in (14) whereH is white Gaussian of sizé0 x 1 and B, o | o ju+f ¢ 4det(I+ (jw+ B)A) d




Now, let A = @*AQ denote the eigenvalue decomposition ofhe H-dependent part of the integral can be represented as
A. Assuming that non of the eigenvalues Afare repeated, 1 2
we can rewrite the integral above as a sum of simpler integrals Iz = s / dHe WMt Gor o atGostons (18)

by relying on the partial fraction expansion ) . )
Now, just as we argued in Appendix A3, and 8 can be

00 jw+0 . L.
Pr{y <y} = i/ &chduﬂr chosen to make the real part of the weight above positive
2 Jooo Jw+ B definite and so (18) reduces to
M 1 /oc ey(jw—i—ﬁ) iy / 1
_— ———< € w = - B
= 27?]_[1#(1— %) oo L+ XN (Jw + 0) H det(I + (jwi + B1)A + (jwa + B2)B)

As, we can see, we need to evaluadte—+ 1 integrals of the SO that

form . 1 eTa(jwi+p1)

I = i/oo eywth) e~ dw XX (a, To) = 2272 / 1 jwi + 51
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whered = Qa. It is not possible to evaluate this integral in det(I + (jwr + f1)A + (jws + 2) B)
closed form (except when all the eigenvalues are equal), but (19)
we can evaluate it numerically. In general, we can not evaluate this integral in closed form
C. The Real Quadratic Form Case unlessA and B are jointly diagonalizable by an orthonormal

ggansformation or equivalently that and B are diagonal.

Let's now consider the case when the quadratic form , ) i ) .
der this assupmtion, the determinant in (19) can be easily

in real Gaussian variable. In this case, we arrive at t ded and th CDF takes the f
same expressions in Section Il except that conjugate transp8§Ban ed and the joint takes the form

is replaced with transpose and the matrix is now real 1 / a(Jerﬂl)/ eTv(jw2+P2)

. = - o ——————
symmetric Xa, Xp 92,2 Yo+ B 2 s + Ba

1 ey(iw+p) T ) 1
Fy(y) = —— dw_i dHe " U+AGO+BH g , : : (20)
v () 2rM+1 / w+p [T, (I + (jor + Br)ai + (jws + Ba)b;)

The inner integral now integrates te\/ﬁ and this Now it is tedious but straightforward to evaluate this double
leads to the 1-dimensional integral ! integral in closed form. We consider the fraction that appears

, in (20) as a function injws + B2 and expand it in a partial

1 [ evliwtsd) 1 . . . .

il / . dw  fraction expansion. This results i + 1 terms (assuming that

21 J o Jw+ B /det(I + A(jw + B)) that non of the terms are repeated). Each of these terms can
This integral can not be evaluated in closed form in genera¢ integrated with respect to, to produce)M + 1 terms that

and can instead be evaluated numerically. are in turn partial fractions inw; + 51. The same process
can now be repeated for the variable, arriving finally at a

closed form expression for the CDF.

Pr{Y <y} =

IV. JOINT DISTRIBUTIONS OFINDEFINITE HERMITIAN
QUADRATIC FORMS

We can use the same method considered above to find the V. CONCLUSION
joint distribution of several quadratic forms. We shall demon- In this paper, we derived the distribution of indefinite
strate this here for the two quadratic forms case, although auradratic forms in Gaussian random variables. As opposed to
insights can be easily extended to more than two quadrate many studies in literature that considered this problem,
forms. Thus, consider the CDF we avoided the traditional “characteristic function to pdf”
2 2 approach and instead focused on finding the CDF directly.
Fx,x, (e, 20) = Pr{| H|[3 < 2o, | H|[5 < a0} Tﬂz CDF is a more useful expression thgan the pdf since )i/t
By representing the inequalities, — ||H||% > 0 andz;, — gives the probability value directly and since it can be used
|H|% > 0 as step functions and further replacing the step obtain the moments using integration (by parts) just as is
functions using the integral representation (8), we can write case for the pdf. Our approach relies on representing the

the CDF above as th&/ + 2 dimensional integral inequalities that naturally appear in CDF calculations using the
1 e@a(jwi+p1) unit step function and representing the latter using its Fourier
Fx, %, (T, ®) = 5 / Sy transform. Our approach is unified in that it equally applies to

2o (jwa-+B2) the real and complex cases and to the zero and nonzero mean

/de_i /dH cases. It can be naturally extended to joint CDF calculations.
Jjwa + B2 While, we have not shown that in this paper, our approach can

¢ WP =180, 150 a1 HIGes 10,5 pe used to obtain bounds on the CDF and also to find the CDF



of (non) quadratic forms in (non) Gaussian random variabl@g®]

[24]. 1]

VI. APPENDIX [12]

In this appendix, we prove our in claim in (9) that

L[~ araGors) 1
— wHOH g =
™ /e det(I + A(jw + B))

To see this, leUAU* denote the eigenvalue decomposition 01‘15]
the Hermitian matrix4. Now introduce the change of variable§

(13]

(21) g

H= U*H, [16]

then sincel is unitary
. [17]
dH = |detU*|*dH = dH

and the integral in (9) can be decomposed as (18]

/dﬁe,g*(HA(Wrﬁ))ﬁ — 1l
M 00 [ 0
H/ 67(1+ﬁ>\i+>\iﬂ'w)|H(i)|2df{(i) o
I/, 21]

For eachx, we can choos@ such thatl + 8\; > 0. With this
choice ofg, it is easy to see that [20]

1 0o X N2 i
/ e~ (IFBNAAGH@I g F7 (1)
—o0

[22]

1
T 1+ N(Gw+B)

™

[23]
We finally arrive at the result [24]

M

1 * . 1
| dHe H U+AGw+B)H _
M / ‘ 1;[1 L4+ Xi(y)(jw + )

An alternative way to express the result above is

1 » ; 1
| dHe H U+AGw+B)H _
M / ¢ det(I + A(jw + 5))

which is the expression we arrived at in (9) intuitively by
considering the left hand side as a formal Gaussian integral
with correlation(! + A(jw + 3)) 1.
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