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Abstract— In this paper, we consider a multi-user system called
the group-broadcast system. In this scenario the users are divided
into different groups. Users in each group are interested in a
common information independent from that of other groups.
Such a situation occurs for example in digital audio and video
broadcast systems where the users are divided into various groups
according to the shows they are interested in. The paper first
obtains upper and lower bounds for the sum rate capacity. Then
it looks at system capacity for the large number of users regime
and fixed number of antennas. Finally, the case when the number
of users and antennas grow simultaneously is studied. It is shown
that in order to achieve a constant rate per user the number of
transmit antennas should scale at least logarithmically in the
number of users.

I. INTRODUCTION

Given the increasing emergence of high data rate application
for wireless networks, there has a great deal of research on
the fundamental capabilities and practical design of multi-
user systems in recent years. Examples of these systems are
broadcast channels and multiple access channels that model
the downlink and uplink of cellular systems respectively [1].
The MIMO Gaussian broadcast channel (GBC) resembles
downlink communication in a cellular system, where the base
station (possibly equipped with multiple transmit antennas) is
to convey independent messages (e.g., voice calls) to different
users. Much work has been devoted to find the capacity
region of MIMO GBC. The capacity region question was
recently settled by a technique called dirty paper coding
(DPC). Specifically, [2] and [3] have shown that DPC is
capable of achieving the maximum possible sum-rate capacity.
Subsequently, [4] showed that DPC is able to achieve any
point in the capacity region. Different practical schemes are
also devised that can deliver much of this capacity with lower
complexity compared to DPC [4]-[9].

The broadcast scenario considered above assumes that the
various users are interested in independent streams of data.
More common is the situation that one group of users would
be interested in one stream of data, another group with another
stream, and so on. An example where this might occur is
digital audio and video broadcast where there is a limited
number of shows and users are classified according to the
shows they are interested in [10], [11], [12]. We will refer
to such a scenario as the group-broadcast systems. Analyzing
the sum-capacity of these systems is the main topic of this
paper. We should remark that the definition of group-broadcast
systems include the broadcast systems described above and

the multicast systems. Simply, in a broadcast system each
group consists of only one user. In the multicast scenario,
there is only one group of user present in the system. All the
users demand the same information. The capacity of multicast
system with Gaussian channels has been recently considered
in [13], [15] and [16]. [15] finds the capacity scaling for large
number of users. In [16] scaling order of various techniques in
a multicast scenario with multiple antennas at the base station
is analyzed.

In this paper, we consider the multiple group in the large
number of users and antennas regime. The paper is organized
as follows. In the first part of the paper, we consider the
large number of users (n) case and obtain upper bounds (in
Section III) and lower bounds (in Section IV). In the rest of
the paper, we consider the scaling for the large number of
antennas (M) regime. We do so for n = βM (Section V) and
for n = eM (Section VI).

II. SYSTEM MODEL AND BACKGROUND

A. System Model

Consider a group-broadcast system with a base station
equipped with M antennas and n users each equipped with
a single receive antenna. The users are partitioned into K
groups. For simplicity of exposition, we will assume that the
number of users in each group is n

K . The different number of
users case can be treated similarly. The received signal at the
iTtH user is given by

yi = h∗i s + ni

where s is the transmitted signal, and ni ∼ CN(0, IM ) is the
additive Gaussian noise. We consider a block fading model in
this paper with coherent interval of T . hi is the channel matrix
between the base station and user i and is distributed according
to CN(0, IM ) and is assumed to be i.i.d over different users1.
We further assume that the transmitter is subject to an average
power constraint P , i.e., E [ss∗] ≤ P . We denote the capacity
region of the group-broadcast system under power constraint
P , by Cgb(P ). The sum-capacity point is also the maximum
of the sum of the rates in the capacity region and is denoted
by Cgb.

We should mention here that if the transmitter had one
antenna only, then the capacity region of the group-broadcast

1The results of this paper can be easily extended to the case where there
is correlation between different antennas.



system is known and is equivalent to the capacity region of
a broadcast channel. For in this case, all channels involved
would be single input single output. Thus, to transmit to the
k-th group of users, one simply needs to take care of the user
with the weakest link, i.e. the link for which |hi,k| ≤ |hj,k|
for all j. Such ordering of users, however, is not possible
in the multiple antenna case and the problem becomes more
challenging.

B. A Result in Extreme Value Theory

Here, we will mention a result concerning the scaling
behavior of the minimum of a large number of i.i.d random
variable. We will use this result throughout this paper. Let
X1, X2, · · · , Xn be iid nonnegative random variables with
CDF F (x), and characteristic function φ(x). We would like to
find the scaling law of the minimum of these random variables,
Xmin(n) = {X1, X2, · · · , Xn} . We can state the following
lemma regarding the asymptotic behavior of Xmin(n). The
proof of this lemma is omitted due to space limitations and
can be found in [18].

Lemma 1: Let i0 be the first non-zero derivative of F (x) at
zero, i.e., F (i0)(0) 6= 0 and F (j)(0) = 0 for all j < i0. Then
n

1
i0 Xmin(n) converges in distribution to random variable Y

with CDF of

FY (y) = 1− exp(−F (i0)(0)
i0!

yi0).

Furthermore, we can find F (i0)(0) using the initial value
theorem as follows

lim
x→0

F (i0)(x) = lim
s→∞

si0φ(s).

a) Example: Let’s find the scaling laws for mini ‖hi‖2
when hi are iid CN(0, R). The pdf and CDF of ‖hi‖2 will
both have different forms depending on the whether some of
the eigenvalues λl of R are the same or different. On the other
hand, the characteristic function takes one form and is given
by

φ(s) =
M∏

l=1

1
1 + λls

From this, it is easy to see that

lim
s→∞

siφ(s) = F (i)(0) = 0 for i < M

and that

lim sMφ(s) = F (M)(0) =
1∏M
l=1

1
λl

=
1

det(R)

We thus conclude that

E min
i
‖hi‖2 scales as det(R)

1
M

1
n

1
M

III. UPPER BOUNDS

A. An Upper Bound Using the MAC-BC Duality

We can use the MAC-BC duality [17] to obtain an up-
per bound for the sum-capacity of group-broadcast systems.
Specifically, the sum-capacity cgb is upper-bounded by the
sum-capacity of a broadcast channel with K users, chosen
one from each group. More specifically, let i1, . . . , ik refer to
the users selected from group 1, . . . , k respectively. Then we
have

Cgb ≤ E max
bk,
P

bk≤P
log det

(
I +

K∑

k=1

hik
bkh∗ik

)
, (1)

where the right hand side is the sum-capacity of the broadcast
channel (written in terms of the dual MAC). Since, this rate
has to appeal to user selections, we have

Cgb ≤ E min
i1
· · ·min

iK

max
bk:
P

bk≤P
log det

(
I +

K∑

k=1

hik
bkh∗ik

)
, (2)

where il is chosen from group l for 1 ≤ l ≤ K. Now, to
get rid of the determinant in (2), we use the arithmetic-mean

geometric-mean (AM-GM) inequality det(A) ≤
(

tr(A)
M

)M

to
write

Cgb ≤ M log

(
1 + min

i1
· · ·min

iK

max
bk

1
M

K∑

k=1

bk‖hi‖2
)

(3)

= M log
(

1 +
P

M
min

i1
· · ·min

iK

max
k
{‖hi1‖2, · · · , ‖hiK

‖2}
)

= M log
(

1 +
P

M
max

k
min

i1
· · ·min

iK

{‖hi1‖2, · · · , ‖hiK
‖2}

)

= M log

(
1 +

P

M
CM

K
1

M

n
1

M

)
(4)

where the last line is a direct application of Lemma 1 for

random vectors hi and CM = Γ( 1
M )(M !)

1
M

M . Alternatively, and
with the aid of the relationship det(I+AA∗) = det(I+A∗A),
we can show that

C ≤ K log

(
1 +

P

K
CM

K
1

M

n
1

M

)
(5)

From (4) and (5), we conclude that

C = min{M,K} log
(

1 + P
min{M,K}CM

K
1

M

n
1

M

)
(6)

Using the approximation that for small x, log(1+x) ' x, we
can write

C ≤ PCM
K

1
M

n
1

M
(7)



B. An Alternative Upper Bound

Another alternative upper bound is obtained by determining
the maximum rate possible assuming there is one group only

max
Tr(B)≤P

min
hi

log (1 + h∗i Bhi) = log
(

1 + min
hi

h∗i Bhi

)

= log(1 +
P

M

CM

n
1

M

)

' P

M

CM

n
1

M

Thus, for K such groups, the sum rate can not exceed K times
the single group case

C ≤ K
P

M

CM

n
1

M

Combining this with (7) yields

C ≤ min{1, K
M }P CM

n
1

M

IV. LOWER BOUND

Having obtained an upper bound, we now quantify how
various scheduling techniques behave for large number of
users. This would give us an idea about the achievable rates.
In what follows we consider the following scheduling schemes

• Time sharing
• Scheduling by treating interference as noise

A. Time Sharing

In this scheduling we assume that the base station time
shares in transmission to different groups. More specifically
the transmitter allocates 1

K of the time to transmit to each
group. Clearly this technique provides a lower bound on Cgb

and we have

Cgb ≥ 1
K

max
Tr(B)=P

K∑

k=1

min
hik

log det
(
1 + h∗ik

Bhik

)
(8)

=
1
K

max
Tr(B)=P

K∑

k=1

log
(

1 + min
hik

h∗ik
Bhik

)
(9)

We now relax the problem further by setting B = P
M I, from

which we conclude that

Cgb ≥ log

(
1 +

P

M
CM

K
1

M

n
1

M

)

or using the approximation log(1 + x) = x,

Cgb ≥ P
M CM

K
1

M

n
1

M

B. Treating Interference as Noise

The other extreme would be to allow all groups to transmit
simultaneously. Each group would then ignore signals that are
meant for the other groups, treating them as additive noise.
Assuming that the covariance matrix of the transmitted signal
intended for group j is Bj for j = 1, . . . , K with Tr

∑
Bj ≤

P ,the rate that the 1st group achieved with this strategy would
be

R1 = min
i1

log

(
h∗i1B1hi1

1 + h∗i1
∑K

k=2 Bkhi1

)

Now, relax the problem further by assuming equal isotropic
covariances for all user groups, i.e. set

Bk =
1
K

P

M
I

then

Ri = log min
i1

1
K

P
M ‖hi1‖2

1 + K−1
K

P
M ‖hi1‖2

= log min
i1

1
K − 1

(
1− 1

1 + K−1
K

P
M ‖hi1‖2

)

= log
1

K − 1

(
1− 1

1 + K−1
K

P
M mini1 ‖hi1‖2

)

= log

(
1
K

P
M mini1 ‖hi1‖2

1 + K−1
K

P
M mini1 ‖hi1‖2

)

= log




1
K

P
M

CM

n
1

M

1 + K−1
K

P
M

CM

n
1

M




' 1
K

P

M

CM

n
1

M

Thus, the sum rate for K such user groups is upper bounded
according to

Cgb ≥ RInterf ≥ P
M

CM

n
1

M

From the bounds obtained in this section and the previous
section, we conclude the following theorem:

Theorem 1: Consider a group broadcast system with K
groups, n users and M antennas at the base station and the
assumptions of Section II. Assume that K,M are fixed and n
grows. Then the sum-capacity Cgb of this system scales as

Cgb = αP
CM

n
1

M

where
1
M

≤ α ≤ min{1,
K

M
}.

The result of this theorem is an unfortunate result as it
shows that the sum-rate decreases with the number of users.
To counter this, we increase the resources (i.e., number of
antennas M ). In the rest of this paper, we can study the scaling
of group broadcast capacity with the number of antennas for
1) M

n = β and 2) M = log n.



V. SCALING WITH M AND n, M
n = β

Here we consider the scaling of the upper and lower bounds
when the both the number of users and antennas grow to
infinity while their ratio remains constant M

n = β. To this end,
notice first that both the upper and the lower bounds depend
on the value of minhi

‖hi‖2
M and so we need to evaluate the

scaling of this quantity as n,M → ∞. To do this, consider
the matrix

Ψ =




h∗1
h∗2
...

h∗n




[
h1 h2 · · · hn

]

Note that diag(Ψ) =
[ ‖h1‖2 ‖h2‖2 · · · ‖hn‖2

]T
.

Note also that

λmin(
Ψ
M

) ≤ min
i

‖hi‖2
M

≤ λmax(
Ψ
M

) ≤ max
i

‖hi‖2
M

(10)

Moreover as n,M →∞ with M
n = β, the eigenvalues of Ψ

M
become uniformly distributed in the range [(1 − √β)2, (1 +√

β)2]. We can thus write

(1−
√

β)2 ≤ lim
n,M→∞

min
i

‖hi‖2
M

≤ (1 +
√

β)2

This allows us to get a lower bound on capacity which is
obtained using time-sharing

C ≥ K max
B≥0 Tr(B)≤P

1
K

log(1 + min
i

h∗i Bhi) (11)

C ≥ log
(

1 + P min
i

‖hi‖2
M

)
(12)

i.e.,

C ≥ log
(
1 + P (1−√β)2

)
(13)

We obtain the upper bound through another matrix construc-
tion. Our starting point is the bound (see Subsection III-B)

C ≤ K max
B≥0 Tr(B)≤P

log(1 + min
i

h∗i Bhi)

= K log(1 + max
B≥0 Tr(B)≤P

min
i

h∗i Bhi)

We need an upper bound for maxB≥0 Tr(B)≤P mini h∗i Bhi.
To do so, we replace the minimization over the hi’s with the
sum average (as done in [16])

max
B≥0 Tr(B)≤P

min
i

h∗i Bhi ≤ 1
n

max
B≥0 Tr(B)≤P

n∑

i=1

h∗i Bhi (14)

=
1
n

max
B≥0 Tr(B)≤P

n∑

i=1

Tr(Bhih
∗
i )

=
1
n

max
B≥0 Tr(B)≤P

Tr

(
B

n∑

i=1

hih
∗
i

)

=
1
n

max
B≥0 Tr(B)≤P

Tr (BHH∗)

=
1
n

Pλmax(HH∗)

Where H = [ h1 h2 · · · hn ]. Now, as n,M →∞ with
M
n = β, the eigenvalues of HiH

∗
i

n will be confined to the range
[(1− 1√

β
)2, (1+ 1√

β
)2]. We can thus obtain the following upper

bound on capacity

C ≤ K log(1 + P (1 + 1√
β
)2)

Thus, if we allow the number of antennas to grow linearly with
the number of users, we can guarantee a constant sum rate.
But is it still possible to do so without straining the resources
as much?

VI. SCALING WITH M AND n, M = log n

In this section, we will look at the behavior of the sum-
capacity when M grows logarithmically with n. As we will
see, this growth is fast enough to guarantee constant rate per
user in the system. For this we need to study the behavior
of mini

‖hi‖2
M . Note that since M is growing with n we can

not simply use the result of Lemma 1. We will use Chernoff
bound instead. Using Chernoff bound for Y = ‖hi‖2

M we have

P (Y ≤ 1− ε) ≤ eν(1−ε)E [e−νY ],

for any ν ≥ 0. Computing the above expectation gives

P (
‖hi‖2
M

≤ 1− ε) = eν(1−ε) 1(
1 + ν

M

)M
, (15)

For any ν > 0. We can tighten the upper bound by choosing
the optimum ν, which, upon setting the first derivative to zero,
turns out to be

ν = M
ε

1− ε
> 0

and the bound reads

P (
‖hi‖2
M

≤ 1− ε) ≤ eMε(1− ε)M (16)

= eM(ε+log(1−ε)) (17)

We can use this to bound the probability P (mini
‖hi‖2

M ≤ 1−ε)

P (min
i

‖hi‖2
M

≤ 1− ε) = 1− (1− P (
‖hi‖2
M

≤ 1− ε))n

≤ 1− (1− eM(ε+log(1−ε)))n

= 1− (1− nε+log(1−ε))n

where the last line follows from the fact that M = log n. For
the above probability to vanish as n grows, we require that

ε + log(1− ε) < −1

Let εl be the infimum of the set

{ε : ε + log(1− ε) < −1},
i.e.,εl satisfies εl + log(1− εl) = −1 or εl ' .8414. Then,

limn→∞ P (mini
‖hi‖2

M ≥ 1− εl) = 1 (18)



We can similarly obtain an upper bound for mini
‖hi‖2

M .
Employing Chernof bound again, it is easy to show that for
ν ≥ 0

P (
‖hi‖2
M

≥ 1 + ε) ≤ e−ν(1+ε) 1
(1− ν

M )M

Moreover, the upper bound is tightest for

ν = M
ε

1 + ε

We thus have

P (
‖hi‖2
M

≥ 1 + ε) ≤ e−Mε(1 + ε)M

= eM(−ε+log(1+ε))

or

P (min
i

‖hi‖2
M

≥ 1 + ε) ≤ (n(−ε+log(1+ε)))n

where we used the fact that n = log M. This probability
vanishes provided that −ε + log(1 + ε) < 0 and the infimum
for which this is true is εu = 0. We can thus write

limn→∞ P
(
mini

‖hi‖2
M ≤ 1

)
= 1 (19)

From (18) and (19), we see that

limn→∞ P
(
mini

‖hi‖2
M ∈ [1− εl, 1]

)
= 1 (20)

A. Bound on the Sum-rate Capacity (M = log n)

We are now ready to derive the lower bound for the sum rate
capacity which we obtain through time sharing. Specifically,
we have

max
B≥0 Tr(B)≤P

log(1 + min
i

h∗i Bhi) = log(1 + P min
i

‖hi‖2
M

)

where the second inequality follows by setting B = P
M I. Or

with M = log n and as n →∞

C ≥ log(1 + PH) (21)

where H ∈ [1− εl, 1]. This lower bound shows that a growth
of M = log n will guarantee a constant capacity because for
M = βn the sum rate is upper bounded by a constant. We have
summarized the arguments in this Section in the following
theorem.

Theorem 2: Consider a group broadcast system with K
groups, n users and M = log n transmit antennas. Then
the sum-capacity in such a system scales like constant and
therefore, a constant capacity per user (stream) is achievable
in the system.

VII. CONCLUSION

In this paper, we studied scaling of multi-group broadcast
for large number of users. Specifically, we obtained upper and
lower bounds for the sum-rate capacity in the large number
of users regime. We showed that the sum rate capacity scales
as αP CM

n
1

M
. This is an unfortunate result as it shows that the

capacity decreases with the number of users. To go around
this, we study scaling of the group broadcast capacity with
the number of users and antennas. Specifically, we showed
that if we set M = log n, we can guarantee a constant rate
for each user in spite of the increase in the number of users.
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