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Abstract— This paper considers receiver design for space time block
coded MIMO OFDM transmission over frequency and time selective
channels. The receiver employs the expectation-maximization algorithm
for joint channel and data recovery. It makes collective use of the
data and channel constraints of the communication problem. The data
constraints include pilots, the cyclic prefix, the finite alphabet constraint,
and space-time block coding. The channel constraints include the finite
delay spread and frequency and time correlation as well as spatial
correlation. The channel estimation part of the receiver boils down to
an EM-based forward-backward Kalman filter. To avoid the latency and
storage associated with smoothing, we introduce a forward-only Kalman
that performas channel (and data) recovery with no latency. Simulations
show that the receiver outperforms other least-squares based iterative
receivers.

I. I NTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is a tech-
nique that enables high speed transmission over frequency selective
channels with simple equalizers. WhenMIMO is combined with
OFDM, space-time codes (STC) can be used per tone, providing the
benefit of multiple antennas (diversity and coding gain) with simple
channel equalization. Channel state information (CSI) is needed at the
receiver. With no receiver CSI, both the channel and the data have to
be recovered. Channel estimation techniques rely on some training
data as well asa priori constraints on the channel and data. The
data constraints include pilots, redundancy due to the cyclic prefix
[1], [2], the code, and the finite alphabet constraint [3]. The channel
constraints include the finite impulse response and time and frequency
correlation [4]. The channel estimate can also be improved iteratively
in a data-aided fashion [5] or more rigourously by the expectation
maximization (EM) approach [6], [7], [8], [9]. This paper considers
receiver design forOSTBC-OFDM transmission over a frequency
selective, time-variant channel. We propose a semi-blind iterative
receiver using theEM algorithm for joint channel and data recovery.
Our contributions are as follows:

1) We make a collective and optimal use of the structure of the
communication problem, i.e. constraints on the data (pilots,
space-time code, and soft estimate of the data) and on the
channel (finite delay spread, time and frequency correlation,
and spatial correlation).

2) The channel estimation and data detection as well as the ex-
ploitation of the system constraints through the expectation and
maximization algorithm which guarantees a relatively simple
receiver structure.

3) In spite of the complexity of the problem we work on and the
many constraints we incorporate, our algorithm maintains its
transparency: a) the maximization step is used for channel es-
timation and makes use of the channel constraints by employing
a forward-backward Kalman filter and b) the expectation step
is used for data detection and makes use of the data constraints.

A similar algorithm was proposed by the author in [9] for the SISO
case. Extending this algorithm to the MIMO case is non-trivial. For
in addition to the scale up in the number of transmit and receive
antennas, the MIMO case incorporates ST coding and makes a full
use of transmit and receive correlation.

A. Notation

We denote scalars with small-case letters, vectors with small-
case boldface letters, and matrices with uppercase boldface letters.
Calligraphic notation (e.g.X ) is reserved for vectors in the frequency
domain. Given a sequence of vectorshtx

rx
for rx = 1 · · ·Rx and

tx = 1 · · ·Tx, we define the following stack variables

hrx =

264 h1
rx

...
hTx

rx

375 and h =

264 h1

...
hRx

375 (1)

II. CHANNEL MODEL

The I/O equation for aMIMO system is given by

y(m) =

PX
p=0

H(p)x(m− p)

whereH(p) is theRx×Tx MIMO impulse response at tapp. The tap
H(p) incorporates the effect of the transmit and receive correlation

H(p) = R1/2(p)W (p)T 1/2(p) (2)

whereT (p) (R(p)) is the transmit (receive) correlation matrix at tap
p and is of sizeTx (Rx). The matrixW (p) consists ofiid elements
and varies from a ST block to the next according to

W t+1(p) = α(p)W t(p) +
p

(1− α2(p))e−βpU t(p) (3)

Here, U t(p) is an iid matrix with N (0, 1) entries andα(p) =
J0(2πfDT (p)), where T is the time duration of a ST block and
fD(p) the Doppler frequency. The variableβ corresponds to the expo-
nent of the channel decay profile while the factor

p
(1− α2(p))e−βp

ensures that each link maintains the decay profile(e−βp) for all time.
This channel model pushes the time variation to the limit (as the

channel can change arbitrarily from oneST block to the next) while
avoiding intercarrier interference and ensuring the proper operation
of STC. This model was adopted in [10] and [11] in aSISO context.
Here, we scale it up to theMIMO case and show how to incorporate
the effect of spatial correlation. We can use (2) and (3) to obtain a
dynamical equation forhtx

rx
, the IR between antennatx and antenna

rx

ht
(+)
x

rx
= Fhtx

rx
+Gutx

rx
(4)

whereF andG are diagonal matrices withfii = α(i − 1) and
gii =

p
1− α2(i− 1). Subsequently, we can obtain a dynamical

relation for the stack variableshrx andh (see the stacking convention
(1))

ht+1 = (ITxRx ⊗ F )ht + (ITxRx ⊗G)ut (5)

whereht+1, ht, andut, are vectors of sizeTxRx(P + 1)× 1. We
also need to characterize the covariance ofh0 andut which we can
show to be [12]

E [h0h∗0] = ITxRx ⊗GG∗ (6)

E[utu∗t ] =

PX
p=0

IRx ⊗ T (p)⊗ �IpBIp�
(7)
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Fig. 1. OSTBC OFDM receiver

A block diagram of the receiver is shown in Figure 1. The re-
ceiver’s core operation is based on theEM algorithm which performs
joint channel and data recovery:

1) STBC Decoder/Data Detector (Estimation Step):The STBC
decoder/data detector calculates the conditional first and second
moments of the transmitted data (soft estimate) to be used by the
channel estimator.

2) Channel Estimator (Maximization Step):Pilots are used to
initialize cannel estimation. The channel estimator then uses the
soft data estimates together with the data and channel constraints
to improve the channel estimate. These two processes (channel
estimation and data detection) go on iteratively until a stopping
criterion is satisfied.

III. I/O E QUATIONS FORMIMO-OFDM

We derive two forms of the (I/O) equations: one that lends itself
to channel estimationand a dual version that lends itself todata
detection. To this end, LetX tx be theOFDM symbol transmitted
through antennatx which first undergoes anIDFT xtx = 1/NQX tx

whereQ is the N × N IDFT matrix. The system then appends a
cyclic prefix before transmission. At the receiver end, the receiver
strips the cyclic prefix to obtain the time domain symbolytx

rx
. The

I/O equation of theOFDM system between transmit antennatx and
receive antennarx is best described in the frequency domain

Ytx
rx

= diag (X tx)Q∗P+1h
tx
rx

+N rx (8)

whereYtx
rx

, X tx , Htx
rx

, andN tx
rx

are the (length-N ) DFT’s of ytx
rx

,
xtx , htx

rx
, nrx , respectively, and where (8) follows from the fact that

Htx
rx

= Q∗
�

htx
rx

O(N−P−1)×1

�
= Q∗P+1h

tx
rx

(9)

HereQP+1 represents the firstP + 1 rows ofQ. By superposition
and using the stacking notation (1), we can express theI/O equation
at receive antennarx as

Yrx = [diag(X 1) · · · diag(X Tx)] (ITx ⊗Q∗P+1S)hrx +N rx (10)

A. I/O Equations with Space Time Coding: Channel Estimation
Version

Let {S(1), . . . ,S(Nu)} denote the set of uncoded OFDM symbols
which we transmit overTx antennas andNc time slots. Following
[13], we can perform ST coding using the set ofTx × Nc matri-
ces{A(1),B(1), . . . ,A(Nu),B(Nu)} which characterizes theST
code. We can now show that theOFDM symbol transmitted from
antennatx at timenc is given by

X tx(nc) =

NuX
nu=1

atx,nc(nu)ReS(nu) + jbtx,nc(nu) ImS(nu) (11)

whereatx,nc(nu) is the(tx, nc) element ofA(nu) andbtx,nc(nu) is
the (tx, nc) element ofB(nu). Thus, in the presence ofST coding,
(10) reads

Yrx(nc) = [diag(X 1(nc)) · · · diag(X Tx(nc))](ITx ⊗Q∗P+1)hrx +N rx(nc)

This represents theI/O equation at antennarx at OFDM symbolnc

of a ST block. Collecting this equation for all such symbols yields

Yrx = Xhrx +N rx (12)

where

Yrx =

264 Yrx(1)
...

Yrx(Nc)

375 X =

26664
diag(X 1(1)) · · · diag(X Tx(1))
diag(X 1(2)) · · · diag(X Tx(2))

...
diag(X 1(Nc)) · · · diag(X Tx(Nc))

37775 (13)

Now, by further collecting this relationship over all receive antennas,
we obtain

Yt = (IRx ⊗Xt)ht +N t (14)

This equation captures theI/O relationship atall frequency bins, for
all input and output antennas, and forall OFDM symbols of the
tth ST block. To perform initial channel estimation, we select those
equations where the pilots are present. LetIp denote the index set
of the pilots bins. Then, the pilot/output equation takes the form

YtIp
= (IRx ⊗XtIp

)ht +N tIp
(15)

B. I/O Equations with Space Time Coding: Data Detection Version

Signal detection inST-codedOFDM is done on a tone-by-tone
basis (i.e., as inSISO OFDM), except that the tones are collected
for the wholeST block (i.e., forRx receive antennas and overNc

time slots). From (8), we can construct the followingI/O equationat
any tonen belonging to theOFDM symbolnc

Yrx(nc) =
� H1

rx
· · · HTx

rx

� 264 X1(nc)
...

XTx(nc)

375+Nrx(nc) (16)



We suppress the dependence onn for notational convenience. Col-
lecting this relationship for all receive antennas yields" Y1(nc)
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.

.

.
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#
Or, more succinctly,

Y(nc) =HX (nc) +N (nc)

By further concatenating this relationship fornc = 1, · · · , Nc, we
can show that the following relationship holds (see [13])

Y = C
�

ReS
ImS

�
+N (17)

where

Y =

264 Y(1)
...

Y(Nc)

375 , S =

264 S(1)
...

S(Nu)

375 , and C =
�
Ca Cb

�
with Ca =

�
vec(HA(1)) · · · vec(HA(Nu))

�
and

Cb

�
vec(HB(1)) · · · vec(HB(Nu))

�
. We finally note

that the STBC code is orthogonal if and only if the matrixC
satisfies [13]

Re [C∗C] = ||H||2I2Nu ∀H (18)

This property is essential to perform data detection. We stress that
the relationships (16) through (18) apply at a particular tonen and
that this dependence has been omitted for notational convenience.

IV. T HE EM ALGORITHM FOR JOINT CHANNEL AND DATA

ESTIMATION

A. TheEM-Based Forward-Backward Kalman

Consider theOFDM system of this paper, essentially described by

ht+1 = (ITxRx ⊗ F )ht + (ITxRx ⊗G)ut (19)

Yt = (IRx ⊗Xt)ht +N t (20)

with h0 ∼ N (0,Π) and ut ∼ N (0,Ru). Given a sequence of
T +1 input and output symbolsXT

0 andYT
0 , 1 we obtain theMAP

estimate of the sequencehT
0 by the maximizing the likelihood

L = ln p(YT
0 |XT

0 ,hT
0 ) + ln p(hT

0 ) (21)

Using (20), we can express the first term of the log-likelihood as

ln p(YT
0 |XT

0 ,hT
0 ) =

TX
t=0

ln p(Yt|X t,ht)

= −
TX

t=0

‖Yt − (IRx ⊗Xt)ht‖21
σ2

n

Using (19), we can express the second term of (21) as

ln p(hT
0 ) =

TX
t=1

ln p(ht|ht−1) + ln p(h0)

= −
TX

t=1

‖ht − (ITxRx ⊗ F )ht−1‖2(GRuG∗)−1 − ‖h0‖2Π−1
0

1We useXT
0 to denote the sequenceX0,X1, · · · ,XT .

Combining these two expressions yields

L = −
TX

t=1

‖Yt − (IRx ⊗Xt)ht‖21
σ2

n

(22)

−
TX

t=1

‖ht − (ITxRx ⊗ F )ht−1‖2(GRuG∗)−1 − ‖h0‖2Π−1
0

Since the channel sequencehT
0 is jointly Gaussian, theMAP estimate

of the channel sequence given the input and output sequencesXT
0

andYT
0 is the same as theMMSE estimate given the same sequences.

TheMMSE estimate itself is obtained by the forward-backward (FB)
Kalman filter. This allows us to state the following theorem.

Theorem 1:Channel estimation–Known input caseConsider the
state-space model (19)–(20). Given the input and output sequences
XT

0 andYT
0 , the MAP (or equivalentlyMMSE) estimate ofhT

0 is
obtained by applying the following (forward-backward Kalman) filter
to the state-space model (19)–(20)
Forward run: Start with P 0|−1 = Π0 and for i = 1, . . . , T,
calculate

Re,t = σ2
nITxRxN + (IRx ⊗Xt)P t|t−1(IRx ⊗X∗

t ) (23)

Kt = P t|t−1(IRx ⊗X∗
t )R

−1
e,t (24)

ĥt|t =
�
ITxRx(P+1) −Kt(IRx ⊗Xt)

�
ĥt|t−1 +KtYt,(25)

ĥt+1|t = (ITxRx ⊗ F )ĥt|t, h0|−1 = 0 (26)

P t+1|t = (ITxRx ⊗ F )
�
P t|t−1 −KtRe,tK∗

t

�
(ITxRx ⊗ F ∗)(27)

+ GRuG∗

Backward run: Starting from�T+1|T = 0 and for t = T, T −
1, . . . , 0, calculate

�t|T = (IP+N − (IRx ⊗X∗
t )K

∗
t ) (I ⊗ F ∗)�t+1|T (28)

+ (I ⊗Xt)R−1
e,t

�
Yt − (I ⊗Xt)ĥt|t−1

�
ĥt|T = ĥt|t−1 + P t|t−1�t|T (29)

The desired estimate iŝht|T . For a proof, see problem 10.9 in [14].
This theorem allows us to obtain the estimate ofhT

0 when the
input sequenceXT

0 is not available. For in this case, we maximize
the likelihood (22)averagedover the sequenceXT

0 . Thus, thej-
th iteration of theEM algorithm is now obtained by maximizing
the averaged log-likelihoodL = E

XT
0 |YT

0 ,h
T (j−1)
0

[L]. By inspecting
(22), we note that the only term that is modified under expectation
is the first summand, and its expectation is given by



� Yt

0TxRx(P+1)×1

�
−
�

IRx ⊗ E[Xt]

IRx ⊗ Cov[X∗
t ]

1/2

�
ht





2

1
2σ2

n

where the expectations are taken given the previous estimateĥ
(j−1)

0

and the output symbolsYT
0 . We thus have

L = −
TX

t=0





� Yt

0TxRx(P+1)×1

�
−
�

IRx ⊗ E[Xt]

IRx ⊗ Cov[X∗
t ]

1/2

�
ht





2

1
2σ2

n

−

TX
t=1

‖ht − Fht−1‖2(GRuG∗)−1 − ‖h0‖2Π−1
0

Note that we can obtain the averaged likelihood (30) from the original
likelihood (22) by performing the substitution

IRx ⊗Xt −→
�

IRx ⊗ E[Xt]

IRx ⊗ Cov[X∗
t ]

1/2

�
, Yt −→

� Yt

0TxRx(P+1)×1

�
(30)

We can thus state the following theorem



Theorem 2:Channel estimation–Unknown input caseConsider
the state-space model (19)–(20) and assume that the receiver does
not have access to the transmitted dataXT

0 . The channel estimate at
the jth iterationhT

0
(j)

of the EM algorithm is obtained by applying
the forward-backward Kalman (23)–(29) to the following state-space
model

ht+1 = (ITxRx ⊗ F )ht + (ITxRx ⊗G)ut (31)� Yt

0TxRx(P+1)×1

�
=

�
IRx ⊗ E[Xt]

IRx ⊗ Cov[X∗
t ]

1/2

�
ht +

� N t

nt

�
(32)

wherent is virtual noise that is independent ofN t.
To fully implement theEM algorithm, we need to initialize the
algorithm and calculate the first and second moments of the input,
which we do next.

B. Initial Channel Estimation

We obtain the initial channel estimate from the pilot/output equa-
tion (15) together with the dynamical channel model (5). Specifically,
we do this by applying theFB Kalman to the following state-space
model

ht+1 = (ITxRx ⊗ F )ht + (ITxRx ⊗G)ut (33)

YtIp
= (IRx ⊗XtIp

)ht +N tIp
(34)

i.e., by applying TheFB Kalman (23)-(29) with the substitution

Yt −→ YtIp
, Xt −→XtIp

, and ITxRxN −→ ITxRx|Ip| (35)

C. Data Detection

To detect the data, we use the data detection version of the I/O
equation (17). Upon multiplying both sides byC∗ and taking the
real part, we obtain

Ỹ = ‖H‖2
�

ReS
ImS

�
+ Ñ (36)

whereỸ andÑ are2Nu × 1 vectors defined by

Ỹ = ReC∗Y and Ñ = ReC∗N
SinceC is orthogonal, the noisẽN remains white, and the input can
be detected on an element-by-element basis. We will now demonstrate
how to detect the elements ofReS (the imaginary part can be treated
similarly). So letR =

�
r1, . . . , r|R|

	
denote the alphabet set from

which the elements ofReS take their values. We can show that the
conditionalpdf f(ReS(nu)|Ỹ(nu)) is given by

f(ri|Ỹ(nu)) =
e
− |Ỹ(nu)−‖H‖2ri|2

2σ2
nP|R|

i=1 e
− |Ỹ(nu)−‖H‖2ri|2

2σ2
n

(37)

We can use thispdf to two moments ofReS(nu)

E[ReS(nu)|Ỹ(nu)] =

P|R|
i=1 rie

− |Ỹ(nu)−‖H‖2ri|2
2σ2

nP|R|
i=1 e

− |Ỹ(nu)−‖H‖2ri|2
2σ2

n

(38)

E[|ReS(nu)|2 |Ỹ(nu)] =

P|R|
i=1 r2

i e
− |Ỹ(nu)−‖H‖2ri|2

2σ2
nP|R|

i=1 e
− |Ỹ(nu)−‖H‖2ri|2

2σ2
n

(39)

We can similarly calculate the two moments of the imag-
inary part. Now equations (38)–(39), just like (16)–(18), ap-
ply at a certain frequency tonen. So collecting (38) and (39)

for all tones (n = 1, · · · , N ) produces the two moments
of the uncoded OFDM symbols. Specifically, we can calcu-
late E[ReS(nu)], E[ImS(nu)], E[diag(ReS(nu))2], and
E[diag(ImS(nu))2].

D. Summary of theEM-BasedFB Kalman

Given a sequence of input and output symbolsXT
0 and YT

0

perform the following operations:

1) calculate the initial channel estimatehT
0

(0)
by applying the

FB Kalman filter to the state-space model (33)–(34), i.e. by
applying (23)–(29) the substitutions (35).

2) Iterate between the expectation and maximization steps forj =
1, . . . , Niter :

a) Expectation: Compute the first two moments of the
uncodedOFDM symbolsS(1), · · · ,S(nu), given the
outputYT

0 and the most recent estimate of the channel,
hT

0
(j−1)

. Use these moments to calculate the moments of
X through the relationships (11) and (13).

b) Maximization: Obtain the channel estimatehT
0

(j)
by

employing theFB Kalman to the state-space model (31)–
(31), i.e. by applying (23)–(29) the substitutions (30).

E. A Simplification: Kalman- (Forward-Only) Based Estimation

One disadvantage of theFB Kalman is the storage and latency
involved. The algorithm needs to wait for allT +1 symbols before it
can execute the backward run and hence obtain the channel estimate.
One way around this is to reduce the window sizeT. Alternatively,
we can run the filter in the forward direction only (i.e., run (23)–(27))
for both the initial estimation and theEM iteration. The algorithm
then collapses to the Kalman-based filter proposed in [15] where the
data and channel are recovered within oneST symbol.

V. SIMULATION RESULTS

The two Kalman filters (forward only and forwad-backward)
derived in this paper apply toOFDM transmission over bothSISO
andMIMO transmission. We demonstrate the behavior of the forward
only Kalman forMIMO-OFDM transmission and bench mark theFB
Kalman with SISO-OFDM (see [9]. The conclusions that we draw
from our simulations apply equally well to both algorithms.

A. MIMO-OFDM: Testing the Forward-Only Kalman

Throughout the simulation, we use a rate1/2 convolutional en-
coder. The coded bits are mapped to 16-QAM symbols. We use the
Alamouti STC code for whichNs = 2 and Tb = 2. We use the
channel model (5) with parameters,α = 0.985, β = 0.2, andP = 7
and set the number of antennas toTx = 2 Rx = 1 or Rx = 2. Three
thousand packets were simulated perSNR value. Each packet is
comprised of 12OFDM symbols transmitted over 6ST blocks. Each
OFDM symbol consists of 64 frequency tones and a cyclic prefix of
length 16. We employ 16 pilots in theOFDM symbols making up
the firstST block, while the number of pilots in subsequent symbols
vary between 2, 6, and 10. In the following, we discuss the effect of
various parameters on theBER performance of the receiver design.

1) Bench Marking:We compare our algorithm with anEM-based
iterativeMMSE receiver such as the one proposed in [7] and [16]. In
contrast to our work, the authors in [7] and [16] take a data-centric
approach, treating the transmitted signal as the desired parameter and
the channel as the unobserved data. This algorithm further confines
its pilots to the firstST block. The pilots are used to produce an
initial channel estimate for the firstST block. This estimate is in
turn used to predict the initial channel estimate for the subsequent
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ST blocks by employing a time correlation filter [7]. These initial
estimates are used to kick-start theEM algorithm.

In this algorithm, theE-step is calculated by a conditional ex-
pectation of the channel given the received symbol and the current
estimate of the transmitted data (i.e., throughMMSE estimation). The
maximization step is simply the hard decision, i.e. theML estimate
of the transmitted data.

In Figure 2, we compare both schemes with 16 pilots in the initial
ST block and zero pilots in the subsequent blocks.EMA refers to the
iterativeMMSE scheme whileEMB refers to the Kalman filter based
scheme proposed in this chapter. Our algorithm (EMB) outperforms
EMA of [7] in both pilot scenarios. One reason for this performance
improvement is that our algorithm incorporates the time correlation
information and the most recent channel estimate in every iteration
of the EM algorithm.
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Fig. 3. BER performance with iterations and spatial diversity

2) Effect of Number of Iterations and Spatial Diversity:In this
subsection, we test the sensitivity of our algorithm to the number
of EM iterations used. We demonstrate this for one and two receive
antennas. Here we employ 6 pilots perOFDM symbol (in addition
to the 16 pilots per symbol employed in the firstST block). From
Figure 3, we see that the first iteration yields substantial improvement
over the pilot-based estimation. Iterating beyond that yields dimin-
ishing returns. The results apply toRx = 1, 2.

3) Sensitivity to Time Variation:In this subsection, we test the
performance of our receiver against different degrees of time varia-
tion. This is parameterized byα (0 ≤ α ≤ 1) with lower values of
α indicating a more time-variant channel. In Figure 4 we show the
BER curves for a system that employs 10-pilots perOFDM symbol.
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Fig. 5. BER performance with varying channel correlation with 6 pilots

From this figure, we observe that asα decreases (indicating more
channel variation), theBER improves. This comes from increasing



time diversity in the channel. Therefore, with enough number of
pilots, we are able to track the channel and capture time diversity.

For comparison, in Figure 5, we show theBER curves for a system
with fewer pilots (6-pilots perOFDM symbol) forα = 0.7, 0.8 and
0.985. We observe an error-floor as the channel variation increases.
So, in this case, we are unable to capture the time diversity. More
pilots are thus needed to capture diversity and improve performance.

B. SISO-OFDM: Testing theFB Kalman

We use an input similar to the one employed in theMIMO case;
a sequence of 5OFDM symbols each with 64 carriers andCP of
length 15. TheOFDM symbols are constructed from an uncoded bit
stream mapped to 16QAM symbols through gray coding. We use
a SISO channel model similar to the one employed for theMIMO
simulation except that the number of transmit and receive antennas
is set to 1 and the number of channel taps is about doubled to 16.

We bench mark theBER performance of theFB-Kalman against
two receivers that have been suggested in literature 1)EM-based
least-squares (LS) receiver (i.e. a receiver employing frequency
correlation only), 2) theEM-based receiver proposed in [7]) in
addition to the forward-only Kalman that is suggested in this paper.
These receivers employ the same number of pilots (16 in the first
OFDM symbol andx number of them in the subsequent 4 (with
0 ≤ x ≤ 16)).

Figure 6 demonstrates that the Kalman andFB-Kalman outperform
the LS receiver and the receiver of [7], especially for low number of
pilots. Moreover, for this case of moderate time variation, the FB-
Kalman consistently outperforms the Kalman receiver.
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Fig. 6. Comparing theBER curves for various receivers.

VI. CONCLUSION

This paper proposed a receiver forMIMO-OFDM transmission
over time-variant channels. While the paper assumed the channel to
be constant within anyST block, it is allowed to vary from one
block to the next. This makes the receiver suitable for operation in
high-speed environments.

The receiver employs theEM algorithm to achieve channel and
data recovery. Specifically, data recovery (or the E-step) is as simple
as decoding a space-time block code. Channel recovery (or the M-
step) is performed using a forward-backward Kalman filter. We also

suggested a relaxed (forward-only) version of the algorithm that is
able to perform recovery with no latency and hence avoid the delay
and storage shortcomings of theFB-Kalman.

When compared with otherMIMO receivers, our receiver makes
the most use of the underlying structure. Specifically, the algorithm
makes use of the finite alphabet constraints (in (38–(39)), the data in
its soft form (in (31)–(32)), pilots (in (33)–(34)), finite-delay spread
(in that channel estimation is done in the time domain), frequency-
and time-correlation (in (5)), spatial correlation in (7), and space-time
coding. It is also straightforward to incorporate the effect of an outer
code [17], sparsity [18] and the CP [9]. Our simulations show the
favorable behavior of the two Kalman filters as compared to other
receivers.
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