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How Much Does Transmit Correlation Affect the
Sum-Rate Scaling of MIMO Gaussian

Broadcast Channels?
Tareq Y. Al-Naffouri, Masoud Sharif, Senior Member, IEEE, and Babak Hassibi

Abstract— This paper considers the effect of spatial correlation
between transmit antennas on the sum-rate capacity of the
MIMO Gaussian broadcast channel (i.e., downlink of a cellular
system). Specifically, for a system with a large number of
users n, we analyze the scaling laws of the sum-rate for the
dirty paper coding and for different types of beamforming
transmission schemes. When the channel is i.i.d., it has been
shown that for large n, the sum rate is equal to M log log n +
M log P

M
+ o(1) where M is the number of transmit antennas,

P is the average signal to noise ratio, and o(1) refers to terms
that go to zero as n → ∞. When the channel exhibits some
spatial correlation with a covariance matrix R (non-singular
with tr(R) = M ), we prove that the sum rate of dirty paper
coding is M log log n+M log P

M
+log det(R)+ o(1). We further

show that the sum-rate of various beamforming schemes achieves
M log log n+M log P

M
+M log c+ o(1) where c ≤ 1 depends on

the type of beamforming. We can in fact compute c for random
beamforming proposed in [1] and more generally, for random
beamforming with precoding in which beams are pre-multiplied
by a fixed matrix. Simulation results are presented at the end of
the paper.

Index Terms— Broadcast channel, channel state information,
multi-user diversity, transmit correlation, wireless communica-
tions.

I. INTRODUCTION

MULTIPLE input multiple output (MIMO) communica-
tion has been the focus of a lot of research which

basically demonstrated that the capacity of a point to point
MIMO link increases linearly with the number of transmit
and receive antennas. Research focus has shifted recently to
the role of multiple antennas in multiuser systems, especially
broadcast scenarios (i.e., one to many communication) as
downlink scheduling is the major bottleneck for future broad-
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band wireless networks. An overview of the research on this
problem can be found in [3], [6], [16].

In these scenarios, when multiple users are present, one
is usually interested in 1) quantifying the maximum possible
sum rate to all users and 2) devising computationally efficient
algorithms for capturing most of this rate [3]. The first
question was settled recently by using a technique similar to
writing on dirty paper and hence known as dirty paper coding
(DPC). While DPC solves the broadcast problem optimally,
it is computationally expensive and requires a great deal
of feedback as the transmitter needs perfect channel state
information for all users [3].

There has been increased interest recently to devise simple
techniques that utilize multiuser diversity and achieve a sum-
rate close to the sum-rate capacity of the MIMO broadcast
channel (see, e.g., [1], [5]–[8], [12], [15]). The scheme pro-
posed in [1], known as opportunistic multiple random beam-
forming (or concisely random beamforming), has been proved
to asymptotically maximize the sum-rate (or throughput) of the
downlink of single antenna cellular systems by transmitting
to the users with the best channel conditions for a given set
of random beams. The gain of this and other beamforming
schemes can be attributed to multiuser diversity– each user
experiences a different channel and therefore the transmitter
can exploit this variation and choose the users that have the
best channel conditions. Clearly, the multiuser gain would be
specially magnified when the channels between the transmitter
and the users are changing independently.

In this paper we focus on a multi-antenna downlink channel
in the presence of correlation between transmit antennas. This
correlation is caused by local scatterers around the base station
or the fact that the transmit antennas in the base station
are not spaced far enough to create independent channels.
The overriding question then is to analyze the effect of this
correlation on the sum-rate of DPC and various beamforming
scheduling techniques.

Specifically, we consider three variations of random beam-
forming, namely, random beamforming with channel whiten-
ing, beamforming with general precoding, and deterministic
beamforming. In the first, the transmitter spatially whitens
the channel and then uses random beamforming. In ran-
dom beamforming with precoding, the transmitter employs a
more general precoding matrix. In both of these transmission
schemes, the transmitted signal needs to be scaled properly
to maintain the average power constraint. Finally, in deter-
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ministic beamforming, as its names suggests, we use a fixed
beamformer for all channel uses in place of the randomly
varying one.

When the number of users is large and there is no cor-
relation, the sum rate for DPC and random beamforming
asymptotically coincide (see Lemma 1 and [1], [2])

R = M log log n + M log
P

M
+ o(1) (1)

where n is the number of users, M is the number of transmit
antennas, and P is the average signal to noise ratio, and o(1)
represents terms that go to zero as n → ∞. It turns out that
this is not case for the channel with transmit correlation. In
this case, the sum-rate can be written as

M log log n + M log
P

M
+ M log c + o(1) (2)

where the constant c ≤ 1 (which refers to the sum-rate loss
due to correlation) depends on the scheduling scheme and the
eigenvalues of the covariance matrix R.

The results of this paper strongly depend on assuming
that the users have a common correlation matrix R.1 This
is essential to make the users’s channels (and hence SINR’s)
iid. Otherwise, it would be very difficult to use extreme
value theory to perform the scaling analysis. Fortunately,
our analysis extends to the case when the users experience
different path loss (i.e. when the users correlation matrices
are the same modulo some multiplicative constant).

The paper is organized as follows. After introducing the
channel model in the next section, we review in Section III
the different scheduling schemes studied in this paper. We
obtain the scaling law of the sum-rate for DPC and random
beamforming schemes in Section IV and V, respectively.
Section V-B, which is the heart of the paper, is devoted
to deriving the scaling law of random beamforming in a
spatially correlated environment. We use this result to derive
the scaling laws for random beamforming with precoding and
for deterministic beamforming. We conclude the paper with
simulations and conclusions.

II. CHANNEL MODEL AND PROBLEM FORMULATION

In this paper we consider a multi-antenna Gaussian broad-
cast channel with n receivers equipped with one antenna and
a transmitter (base station) with M antennas. Let S(t) be the
M × 1 vector of the transmit symbols at time slot t, and let
Yi(t) be the received signal at the i’th receiver. We can then
write the received signal at the i’th user as

Yi(t) =
√

PHiS(t) + Wi, i = 1, . . . , n, (3)

where Wi is the additive noise which is complex Gaussian
with zero mean and unit variance, CN(0, 1). Moreover,
S(t) is the transmit symbol satisfying the power constraint
E{S∗S} = 1. Here P denotes the average transmit power (or
equivalently the average SNR considering the normalization
of the variances for channel and noise).

1One could argue that when users have different correlations matrices, we
will continue to observe multiuser richness similar to that we observe in the
white case.

The channel Hi is a 1×M complex channel vector, known
perfectly to the receiver, and distributed as CN(0, R). The
M × M covariance matrix R is a measure of the spatial
correlation and is assumed to be non-singular with tr(R) = M
2. We also assume that Hi follows a block fading model, i.e.,
it remains constant during a coherence interval T and varies
independently from one such interval to the next. We finally
note that the channel is identically distributed across users but
is independent from one user to another.

Denoting the average rate of the i’the user by Ri over all
the channel realizations, we are interested in analyzing the
behavior of the sum-rate, i.e.,

∑n
i=1 Ri, of downlink for large

n.
In the following section, we review the scheduling schemes
that will be considered in this paper.

III. REVIEW OF TRANSMISSION SCHEMES IN THE

DOWNLINK

A. Dirty Paper Coding (DPC)

The capacity region of the multi-antenna broadcast channel
is achieved by dirty paper coding when full channel state
information (CSI) is available to the transmitter and users.
Intuitively, if the transmitter knows the channels of all users,
it can use DPC to pre-subtract the interference for each
user while preserving the average power constraint [3]. More
precisely, the sum rate capacity, RDPC , can be written as (see
[12] and the references therein),

RDPC = E

{
max

{P1,...,Pn,
P

Pi≤P}
log det

(
1 +

n∑
i=1

H∗
i PiHi

)}
(4)

In a system with a large number of users n, and for fixed M
and P, it has been shown that the sum-rate of DPC behaves
as in (1),

RDPC = M log log n + M log
P

M
+ o(1), (5)

when there is no spatial correlation, i.e., R = I [1], [2].
Scaling of the sum rate capacity has also been investigated
for other regions of n, M , and P (see [8]–[10] for details).

There are two major drawbacks of this scheme. First, it
is very computationally complex, both at the receivers and
transmitter. Moreover, it requires full CSI feedback from all
active users to the transmitter of the base station (this feedback
requirement increases with the number of antennas and users
and with the decrease of the coherence time of the system).

B. Random Beamforming

Given these drawbacks of DPC, research has focused on
devising algorithms for multiuser broadcast channels that have
less computational complexity and/or less feedback and still
achieve most of the sum-rate promised by DPC such as
random beamforming [15] and zero forcing [7] (see also [5],
[11]). A random beamforming scheme was proposed in [1]

2We assume that the spatial correlation is invariant across users. This
assumption is realistic because this is effectively the transmit correlation
among antennas at the base station. In the case when R is rank deficient, the
results of this paper apply with M replaced by the rank of the autocorrelation
matrix and with the SNR kept fixed at P/M .
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where the transmitter sends multiple (in fact M ) random
orthonormal beams chosen to users with the best signal to
interference ratio (SINR). In this scheme the only feedback
required from each user is the SINR of the best beam and the
corresponding index.

Specifically, the transmitter chooses M random orthonormal
beam vectors φm (of size M × 1) generated according to an
isotropic distribution. Now these beams are used to transmit
the symbols s1(t), s2(t), . . . , sM (t) by constructing the trans-
mitted vector

S(t) =
M∑

m=1

φm(t)sm(t), t = 1, . . . , T (6)

After T channel uses, the transmitter independently chooses
another set of orthogonal vectors {φm} and constructs the
signal vector (according to (6)) and so on. From now on and
for simplicity, we will drop the time index t. The signal Yi at
the i’th receiver is given by

Yi =
√

PHiS + Wi (7)

=
√

P

M∑
m=1

Hiφmsm + Wi, i = 1, . . . , n (8)

where E(SS∗) = 1
M I since the si’s are assumed to be

identical and independently assigned to different users. The
i’th receiver uses its knowledge of the effective channel gain
Hiφm, something that can be arranged by training, to calculate
M SINR’s, one for each transmitted beam

SINRi,m =
|Hiφm|2

M
P +

∑
k �=m |Hiφk|2

, m = 1, . . . , M.

(9)
Each receiver then feeds back its maximum SINR, i.e.
max

1≤m≤M
SINRi,m, along with the maximizing index m. There-

after, the transmitter assigns sm to the user with the highest
corresponding SINR, i.e. max

1≤i≤n
SINRi,m. If we do the above

scheduling, the throughput for large n can be written as [2] 3,

RRBF = ME log
(

1 + max
1≤i≤n

SINRi,m

)
+ o(1) (10)

where the term o(1) accounts for the small probability that
user i may be the strongest user for more than one signal sm

[1].
To further quantify (10), [1] used the fact that the SINRi,m’s

are iid over i and employed extreme value theory [20] to argue
that max

i≤n
SINRi,m behaves like P

M log n and hence concluded

that the sum rate capacity scales as in (1), meaning that the
sum-rate of random beamforming behaves the same as that of
DPC for large number of users.

C. Other Beamforming Schemes

The scaling result (1) applies for iid channels. As such,
we derive in Section V the scaling law of this scheme for
correlated channels. Alternatively, given this correlation, we
consider the following beamforming schemes.

3The proof follows from the fact the when n is large the maximum SINR
and the M ’th maximum SINR behave quite similarly.

Random beamforming with channel whitening
In the presence of correlation, one can first whiten
the channel and then use random beamforming
scheduling. In this case, and instead of using Φ as
the beamforming matrix4, we would use

√
αR−1/2Φ

where α is a constant to make sure that the transmit
symbol has an average power of 1. The scaling of
this scheme would follow directly from the scaling
of random beamforming over iid channels (see Sec-
tion V-A).

Random beamforming with general precoding
More generally, we can precode with a general
matrix

√
αA−1/2 before beamforming, i.e. we use√

αA−1/2Φ to transmit the information symbols.
The scaling of this scheme follows directly from
the scaling of random beamforming over correlated
channels and so is considered in Sections V-B and
V-D. We go one step further and show how to
compute the sum-rate when the beamforming matrix
is premultiplied by the full rank matrix A.

Deterministic beamforming
Finally, by fixing the beamforming matrix Φ, we ob-
tain deterministic beamforming, a scheme analyzed
by Park and Park [14] (for the two antenna case) and
which we further analyze in Section V-C.

As we mentioned above, and as we shall soon see, all these
schemes have scaling similar to the iid case (1) with a penalty
term M log c where c ≤ 1 is a constant that depends only on
the scheduling scheme and the correlation matrix R.

IV. EFFECT OF TRANSMIT CORRELATION ON THE

SUM-RATE OF DPC

In this section, we derive the scaling laws of DPC for
correlated channels. As mentioned earlier, dirty paper coding
achieves the sum-rate capacity of the multi-antenna broadcast
channel. The sum-rate capacity is given by (4) and its behavior
when n is large is given by (5) for iid channels. It turns
out that when the number of users is large, the sum-rate
capacity will be decreased by a constant which depends on the
covariance matrix of the channel. It should be mentioned that
throughout the paper, we assume R is fixed and non-singular
with tr(R) = M .

The next theorem proves this statement. The proof is along
the same line as the proof for the i.i.d. case (as shown in [1])
with the only difference that the lower bound rather than being
achieved with random beamforming is achieved with a special
type of deterministic beamforming 5. We first give the lower
bound in the following lemma.

Lemma 1: Consider a Gaussian broadcast channel with
a channel covariance matrix R which is non-singular with
tr(R) = M . Let there be one transmitter with M antennas
and n users with single antennas that have access to the
CSI and the transmitter knows the CSI perfectly. We assume
the transmitter uses the deterministic beamforming matrix

4Note that Φ is an orthonormal matrix composed of the beam (column)
vectors φ1, . . . , φM .

5It should be stressed that the optimality here is in the asymptotic of large
number of users.
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Φ = U∗ where U is the unitary matrix consisting of the
eigenvectors of R. Then for large n, the sum-rate of this
scheduling is

RBF−D = M log log n+M log
P

M
+M log M

√
det(R)+o(1).

(11)

Proof: See Section V-C for the proof.

Clearly (11) is a lower bound for the sum-rate capacity. In
the next theorem we show that (11) is indeed an upper bound
for the sum-rate as well.

Theorem 1: Consider a Gaussian broadcast channel with
an autocorrelation matrix R defined in Lemma 1. Let there
be one transmitter with M antennas and n users with single
antennas that have access to the CSI. Assume further that the
transmitter knows the CSI perfectly. The sum-rate capacity
(which is achieved by DPC) scales like

RDPC = M log log n + M log
P

M
+ M log M

√
detR + o(1),

(12)
for large n.
Proof: Lemma 1 implies that the right hand side of (12) is
achievable. All we need to prove the theorem is to show that
the sum-rate of DPC can not be larger than (12). We use the
sum rate capacity expression given in (4) to obtain an upper
bound for the sum-rate. To this end, define Hi = HwiR

1
2 ,

where Hwi is N(0, I). With this decomposition, the sum-rate
capacity can be written as

RDPC = E max
{P1,...,Pn,

P
Pi=P}

{
log det

(
R−1 +

n∑
i=1

H∗
wi

PiHwi

)
det(R)

}
(13)

Now using the geometric-arithmetic mean inequality

det(A) ≤
(

tr(A)
M

)M

, we obtain

n∑
i=1

tr
(
H∗

wi
PiHwi

) ≤ max
i

tr(H∗
wi

Hwi)
n∑

i=1

Pi

= max
i

‖Hwi‖2P

to replace the log det with an upper bound

log det

(
R−1 +

n∑
i=1

H∗
wi

PiHwi

)
≤

M log

(
1
M

tr(R−1) +
1
M

n∑
i=1

tr(H∗
wi

PiHwi)

)
≤

M log
(

1
M

tr(R−1) + max
i

‖Hwi‖2 P

M

)

Since ‖Hwi‖2 is χ2(2M) distributed, with high probability,
the maximum max

i
‖Hwi‖2 behaves like log n+ O(log log n).

Thus,

RDPC ≤ M log
(

tr(R−1)
M

+
P

M
log n + O(log log n)

)
+

log det R + o(1) (14)

or using the fact that for large n

log(
tr(R−1)

M
+

P

M
log n + O(log log n)) =

log
P

M
+ log log n + log

(
tr(R−1)

P
+ O

(
log log n

log n

))
=

P

M
+ log log n + O

(
log log n

log n

)
, (15)

we can further simplify (14) and obtain

RDPC ≤ M log log n + M log
P

M
+ M log M

√
detR + o(1)

which is the desired upper bound. This completes the proof
of the theorem.

V. EFFECT OF TRANSMIT CORRELATION ON RANDOM

BEAMFORMING

The deterministic beamforming scheme of Lemma 1 asymp-
totically achieves the DPC sum-rate. However it has the draw-
back that, unless the Hi’s change very rapidly over different
channel uses, it will often transmit to a fixed set of users. To
make the scheduling more short-term fair, it is useful to further
randomize the user selection by random beamforming (see [1],
[15] for more details). In this section, we analyze the effect
of correlation on the sum-rate of random beamforming. We
start by the simplest case in which the beamforming matrix
is multiplied by R−1/2 in order to whiten the channel. We
then turn our attention to the random beamforming scheme
and finally use it to deduce the sum rates of deterministic
beamforming and beamforming with general precoding.

A. Random Beamforming with Channel Whitening

To whiten the channel, we multiply all the beams with√
γR−1/2 where γ is a normalization factor. The transmit

symbol is therefore equal to

S(t) =
M∑

m=1

√
γR−1/2φm(t)sm(t) (16)

We choose γ to satisfy the power constraint– that the transmit
symbol average power is bounded by unity,

E{γS∗R−1S} = γE{tr(SR−1S∗)}
= γE{tr(R−1S∗S)}
= γtr(R−1E(S∗S))}
= γ

tr(R−1)
M

(17)

Thus, the constraint E{γS∗R−1S} ≤ 1 implies that γ ≤
M

tr(R−1) . We can therefore write the SINR as

SINRi,m =
|HiR

−1/2φm|2
M
Pγ +

∑
k �=m |HiR−1/2φk|2

(18)

=
|Hw

i φm|2
M
Pγ +

∑
k �=m |Hw

i φk|2
, m = 1, . . . , M (19)
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where Hw
i = HiR

−1/2 has covariance of I and therefore
has i.i.d. Gaussian entries with zero mean and unit variance.
Therefore we can apply the random beamforming result of [1]
to obtain the sum rate of random beamforming with channel
whitening. This is summarized in the following Theorem.

Theorem 2: Consider a Gaussian broadcast channel with
a channel covariance matrix R defined in Lemma 1. Let
there be one transmitter with M antennas and n users with
single antennas that have access to the CSI. If the transmitter
knows the channel autocorrelation perfectly, then the sum rate
capacity for random beam forming with channel whitening
(denoted by RBF−W ) is given by

RBF−W = M log log n + M log
P

M
−M log

tr(R−1)
M

+ o(1)
(20)

for sufficiently large n.

When the the channel is i.i.d, Theorem 2 reduces to the already
known result of [1]. It is also worth mentioning that (20) is
less than the sum-rate achieved by DPC in (12).

B. Sum-Rate of Random Beamforming

In this section, we study the effect of transmit correlation
on random beam-forming. To do this, we need to derive the
CDF and pdf of the SINR defined in (9).

The sum rate capacity of random beamforming is given by
(10). Now consider the expectation in (10). The averaging here
is done over Hi and Φ in the following order,

E log
(

1 + max
1≤i≤n

SINRi,m

)
=

EΦ

{
EH′

is|Φ log
(

1 + max
1≤i≤n

SINRi,m

)
|Φ
}

(21)

i.e., we evaluate the expectation by first conditioning on Φ
and calculating the expectation over Hi and we subsequently
average over Φ. The advantage of doing so is that Φ is
common among all users and so, by conditioning over Φ,
all the SINR’s, SINR1,m, . . . , SINRn,m remain iid. This in
turn allows us to evaluate max

1≤i≤n
SINRi,m using extreme value

theory provided we can evaluate the CDF (and pdf) of the
SINR.

It turns out that the main challenge lies in calculating
the CDF. When the channel is iid, calculating the CDF is
straightforward as the SINR numerator and denominator are
independent [1]. This ceases to be the case in the presence
of correlation and in evaluating the CDF, we use a contour
integral representation of the unit step and find the CDF using
the Gaussian integral. Once the CDF is available, we appeal
to results in extreme value theory to obtain the behavior of
max

1≤i≤n
SINRi,m when n is large and proceed to calculate the

expectation in (21)
With the scaling law for random beamforming at hand,

it becomes straightforward to obtain the scaling laws of
random beamforming with precoding and of deterministic
beamforming.

1) Distribution of SINRi,1 Given Φ : We first obtain the
complementary CDF of SINRi,m defined in (9) by defining
the auxiliary variable S as

S = −x

ρ
+ Hi((1 + x)φmφ∗

m − xI)H∗
i (22)

Here ρ = P
M just to simplify the notation and where the

beamforming matrix Φ is given and Hi is an 1 × M vector
with Gaussian entries and with covariance matrix R. We can
write the probability that SINRi,m > x as,

P (SINRi,1 > x) = P (S > 0) =
∫ ∞

−∞
P (Hi)u(S)dHi

=
1

πM det(R)

∫ ∞

−∞
e−HiR

−1H∗
i u(S)dHi (23)

where u(S) is the unit-step function. To evaluate P (S > 0),
we can view S as a weighted sum of correlated Gaussian ran-
dom variables and employ one of various techniques that have
been suggested in the literature. Unfortunately, the expres-
sions we get involve recursions and infinite sums and hence
don’t lend themselves to further mathematical manipulations.
Instead, we use the following representation of the unit step
function [4]

u(S) =
1
2π

∫ ∞

−∞

e(jω+β)S

jω + β
dω (24)

which is valid for any β > 0. This frees (23) from the
constraint on S and, as we shall see, allows us to compute
(23) in closed form.

Using (24), we can express (23) as

P (S > 0) =
1

2πM+1 det(R)

∫ ∞

−∞
dω

1
jω + β∫ ∞

−∞
dHie

(jω+β)S−HiR
−1H∗

i

Using the definition of S in (22), we get

P (S > 0) =
1

2π det(R)

∫ ∞

−∞
dω

e−(jω+β) x
ρ

jω + β∫ ∞

−∞
dHie

−HiR̃H∗
i (25)

=
1

2π det(R)

∫ ∞

−∞
dω

e−(jω+β) x
ρ

jω + β

1
det(R̃)

(26)

where

R̃ = R−1 + x(jω + β)I − (1 + x)(jω + β)φmφ∗
m (27)

a) Evaluating the roots of R̃: Now to evaluate the
integral with respect to ω, we need to find the roots of det(R̃)
with respect to ω. To this end, note that

det(R̃) = det(U∗Λ−1U + (jω + β)(xI − (1 + x)φmφ∗
m))

= det(Λ−1 + (jω + β)(xI − (1 + x)φmφ
∗
m)) (28)

= det(Λ−1) det(−A) det((jω + β)I − A−1) (29)

where U∗Λ−1U represents the eigenvalue decomposition of
R−1, φm

Δ= Uφm, and

A = (1 + x)Λ1/2φmφ
∗
mΛ1/2 − xΛ (30)
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Now

det(Λ−1) det(−A) = det(xI − (1 + x)φmφ
∗
m) (31)

= xM−1(x − (1 + x)) (32)

= −xM−1 (33)

because xI − (1 + x)φmφ
∗
m has x as an eigenvalue with

multiplicity M − 1 and an eigenvalue at x− (1 + x)‖φm‖2 =
−1. We can thus write

det(R̃) = −xM−1 det((jω + β)I − A−1)

Now consider the equation

det((jω + β)I − A−1) = 0 (34)

The roots of this equation, with respect to jω+β, are 1/λi(A)
where λi(A) is an eigenvalue of the matrix A. Since A is
Hermitian and nonsingular, these eigenvalues are real and
nonzero. To find these eigenvalues, decompose A as

A = A1 + A2

where

A1 = (1 + x)Λ1/2φmφ
∗
mΛ1/2 and A2 = −xΛ

The matrix A1 has only one nonzero eigenvalue, (1 +
x)φ

∗
mΛφm. The eigenvalues of A2 are

−xλM (Λ) ≤ −xλM−1(Λ) ≤ · · · ≤ −xλ1(Λ)

where λ1(Λ) ≤ λ2(Λ) ≤ · · · ≤ λM (Λ) are the diagonal
elements of Λ (ordered) 6. The second largest eigenvalue of
A thus satisfies [13]

λM−1(A) ≤
{

λM−1(A1) + λM (A2)
λM (A1) + λM−1(A2)

(35)

=
{

0 − xλ1

φ
∗
mΛφm − xλ2

(36)

This means that λM−1(A) ≤ −xλ1 < 0. So the second largest
eigenvalue is negative. The largest eigenvalue, however, is
positive (otherwise A would be negative definite or singular,
neither of which is the case). This means that (34) has exactly
one positive root

λ =
1

λM (A)

Henceforth, we drop the dependence upon the matrix A as it
is understood. From above, we can express R̃ as

det(R̃) = −xM−1((jω + β) − 1
λM

)
∏M−1

i=1 ((jω + β) − 1
λi

)

6In general, the M eigenvalues of a size M matrix K are written as
λ1(K) ≤ λ2(K) ≤ · · · ≤ λM (K). We will drop the dependence on K for
notational convenience whenever it is understood.

b) Deriving the CDF of SINR: With the above factor-
ization of det(R̃), we can proceed to evaluate the probability
P (λ > 0) in (26) and hence the CDF of the SINR can be
written as,

P (S > 0) = − 1
xM−1

1
2π det(R)

∫
e−(jω+β) x

ρ

(jω + β)((jω + β) − 1
λM

)
∏M−1

i=1 ((jω + β) − 1
λi

)
dω (37)

Using partial fraction expansion, we can write

1

(jω + β)(jω + β − 1
λM

)
∏M−1

i=1 (jω + β − 1
λi

)
=

ζM

jω + β − 1
λM

+
M−1∑
i=1

ζi

jω + β − 1
λi

+
ζ0

jω + β
(38)

The term ζM

jω+β− 1
λM

is the only one that contributes to the

integral in (37) (the other terms integrate to zero since the
poles are outside the contour of integration), and so we only
need to calculate ζM

ζM =
1

(jω + β)
∏M−1

i=1 (jω + β − 1
λi

)

∣∣∣∣∣
jω+β= 1

λM

(39)

=
1

1
λM

∏M−1
i=1 ( 1

λM
− 1

λi
)

(40)

and

P (S > 0) =
1

2π det(R)
1

xM−1

∫
ζMe−(jω+β) x

ρ

1
λM

− (jω + β)
dω

=
1

det(R)
ζM

xM−1
e
− 1

ρ
x

λM (41)

This represents the probability P (SINRi,m > x). Thus, the
CDF of the SINR is given by

F (x) = 1 − 1
det(R)

ζM

xM−1
e
− 1

ρ
x

λM

Or, upon replacing ζM by its value obtained in (40),

F (x) = 1 − 1
det(R)λM

∏M−1
i=1

λiλM

x(λi−λM )e
− 1

ρ
x

λM (42)

We would like to emphasize that the eigenvalues of A, λi, are
functions of x.

2) Probability Density Function of SINR: To find the pdf
of the SINR, we simply evaluate the derivative dF (x)

dx . To do
this, we first need to find the derivative of the eigenvalues dλi

dx .
So let qi be the eigenvector associated with λi. Then, we can
write

λi = ‖qi‖2
A

= q∗i Λ1/2(φmφ
∗
m − x

∑
k �=m

φkφ
∗
k)Λ1/2qi

where we used the notation ‖qi‖2
A = q∗i Aqi. We can use this

to show that

dλi

dx
= ‖qi‖2

B (43)
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where B = Λ1/2(φmφ
∗
m − I)Λ1/2. We can in turn use this

result to show that

d

dx

(
λiλM

x(λi − λM )

)
=

λ2
M‖qi‖2

C − λ2
i ‖qM‖2

C

x2(λi − λM )2
(44)

where C = Λ1/2φmφ
∗
mΛ1/2. From (42)–(44), we can show

that the SINR pdf is given by

f(x) =
1

det(R)
e
− 1

ρ
x

λM

M−1∏
i=1

λiλM

x(λi − λM )

{
1
ρ

‖qM‖2
C

λM
− ‖qM‖2

B −
M∑
i=1

1
λi

λ2
M‖qi‖2

C − λ2
i ‖qM‖2

C

x(λi − λM )

}

(45)

3) Scaling Law of the Maximum SINR:
Lemma 2: Let F (x) denote the CDF of SINRi,m given by

(42) and let f(x) denote the associated pdf (given by (45)).
Then

lim
x→∞

1 − F (x)
f(x)

=
ρ

‖φm‖2
Λ−1

Proof: See Appendix A for the proof.

Note that in the absence of spatial correlation, Λ = I, and
the above limit reduces to

lim
x→∞

1 − F (x)
f(x)

=
ρ

‖φm‖2
= ρ

which is the scaling obtained in [1].
Using extreme value theory [17]–[19], and the lemma

above, we know that max
1≤i≤n

SINRi,m behaves like
ρ

‖φm‖2
Λ−1

log n. Upon substituting this in (21) and noting that

the φ’s are identically distributed, we can write

RRBF =

M∑
m=1

Eφm log

(
1 +

P

M‖φm‖2
Λ−1

log n + o(log log n)

)
+ o(1)

=
M∑

m=1

Eφm log

(
P

M‖φm‖2
Λ−1

log n

)
+ o(1) (46)

= M log log n + M log
P

M
+ MEφm log

(
1

‖φm‖2
Λ−1

)

+o(1). (47)

It thus remains to calculate the expectation in (47) for which
we need to derive the CDF of 1

‖φm‖2
Λ−1

.

4) Calculating the CDF of 1
‖φ‖2

Λ−1
:

Lemma 3: The CDF of y = 1
‖φ‖2

Λ−1
is given by

G(x) = P r( 1
‖φ‖2

Λ−1
< x) = 1 − P

i ηi

„
1
x

− 1
λi(Λ)

«M−1
u

„
1 − x

λi(Λ)

«

where ηi = 1Q
j �=i(

1
λj(Λ)− 1

λi(Λ) )
.

Proof: See Appendix B for the proof.

5) Calculating the sum-rate: Now all we need to do to
calculate the sum-rate in (47) is to compute E log( 1

‖φ‖2
Λ−1

)

where the distribution of 1
‖φ‖2

Λ−1
is given in Lemma 3. We

employ integration by parts and use the CDF to calculate the
expectation as follows

E

(
log(

1
‖φ‖2

Λ−1

)

)
= G(y) log(y)|λM (Λ)

λ1(Λ)

−
∫ λM (Λ)

λ1(Λ)

G(y)
1
y
dy

= G(λM (Λ)) log(λM (Λ)) −
∫ λM (Λ)

λ1(Λ)

G(y)
1
y
dy

= log(λM (Λ)) −
∫ λM (Λ)

λ1(Λ)

1
y

+
M∑
i=1

ηi

∫ λi(Λ)

λ1(Λ)

(
1
y
− 1

λi
)M−1 1

y
dy

= log(λ1(Λ)) +
M∑
i=1

ηi

∫ λi(Λ)

λ1(Λ)

(
1
y
− 1

λi
)M−1 1

y
dy

= log(λ1(Λ)) +
M∑
i=1

ηi

M−1∑
k=0

∫ λi(Λ)

λ1(Λ)

1
yk+1

(
−1
λi

)M−1−kdy

= log(λ1(Λ)) +
M∑
i=1

ηi log(
λi

λ1
)

M−1∑
k=1

∫ λi(Λ)

λ1(Λ)

1
yk+1

(
−1
λi

)M−1−kdy

= log(λ1(Λ)) +
M∑
i=1

ηi log(
λi

λ1
)

M−1∑
k=1

1
k + 2

(
−1
λi

)M−1−k

1
yk+2

∣∣∣∣
λi(Λ)

λ1(Λ)

Therefore the sum-rate of beamforming can be written as,

RRBF = M log log n + M log
P

M
+ M log λ1(Λ)+

M

M∑
i=1

ηi log
(

λi

λ1

)M−1∑
k=1

1
k + 2

(
−1
λi

)M−1−k

{
1

(λi(Λ))k+2
− 1

(λ1(Λ))k+2

}
+ o(1). (48)
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C. Sum-Rate of Deterministic Beamforming

Here we consider the case where the beamforming matrix Φ
is fixed over all channel uses. In this case, we can use the same
analysis as we done in the case of random beamforming with
the only exception that we do not need to take expectation
over the beamforming matrix. Therefore, we may write the
sum-rate for the deterministic beamforming matrix Φ as,

RBF−D =

M log log n + M log
P

M
+

M∑
i=1

log
(

1
φ∗

i U
∗Λ−1Uφi

)
+ o(1)

(49)
where U∗Λ−1U is the eigenvalue decomposition of the cor-
relation matrix R−1.

One interesting special case would be the case where the
Uφi’s are the columns of the identity matrix. In this case, the
beamforming matrix is in fact equal to U∗ and the argument
in the logarithm would therefore reduce to λm. Thus, when n
is large, the sum-rate is given by

RBF−D = M log log n + M log
P

M
+M log M

√
detR + o(1).

(50)
Keeping in mind that the eigenvalues of Λ are such that∑M

i=1 λi(Λ) = M , it is clear that the geometric mean of λi’s
would be less than 1. Eq. (50) in fact proves Lemma 1. It
should be also mentioned that this result is obtained in [14]
for M = 2.

D. Sum-Rate of Random Beamforming with Precoding

We can consider a generalization of the random beamform-
ing by using precoding. In this scheme the new beamforming
matrix is

√
γA−1/2Φ where A is a positive definite matrix and

γ is just a normalization factor to adjust the transmit power.
Again similar to Section V-B, we can state that γ has to be
less than M

tr(A−1) .
In order to analyze the sum-rate, we can follow along the

same line as what we did for the analysis of the random
beamforming with the only exception that the covariance
matrix of the channel is replaced with R = A−∗/2RA−1/2.
Therefore the same result holds for this case with the new
covariance matrix R̃. Here is the main result.

Corollary 1: Considering the random beamforming
scheduling with beamforming matrix

√
γA−1/2Φ where Φ is

a random unitary matrix, the sum-rate of this scheme can be
written as

RBF−Prec = M log log n + M log
P

M
+

M∑
i=1

E log
(

1 +
tr(Λ−1)

M

P

φ∗
i U

∗Λ−1Uφi

)
+ o(1). (51)

for large n, where U∗Λ−1U represents the eigenvalue decom-
position of R−1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−2.5

−2

−1.5

−1

−0.5

0

Correlation factor

S
um

 r
at

e 
lo

ss

DPC

Deterministic RBF

RBF

RBF with whitening

Fig. 1. Sum-rate loss versus the correlation factor α for a system with
M = 2 and n = 100.

VI. SIMULATION RESULTS

In this section we present the simulation results for the sum-
rate of beamforming schemes and DPC. In the first example,
we consider a system with two transmit antennas, i.e., M = 2,
and 100 users. The covariance matrix is assumed to be like

F =
[
1 α
α 1

]
(52)

where α is the correlation. Fig. 1 shows the sum-rate loss
(relative to the case of no correlation) versus the correlation
coefficient α for DPC, RBF and RBF with whitening. It is
clear that RBF outperforms the one with channel whitening.
Fig. 2 also shows the actual sum-rate for such a setting for
RBF and RBF with whitening. Fig. 3 shows the sum-rate loss
for the there antenna case M = 3 where the covariance matrix
is now given by

F =

⎡
⎣ 1 α α2

α 1 α
α2 α 1

⎤
⎦ (53)

where α is changing from 0 to 0.8. In Fig. 4, we show the
sum-rate versus the number of users in system with M = 2,
α = 0.5, P = 10 for beamforming scheme and it is compared
to the case of having no correlation.

VII. CONCLUSION

This paper considers the effect of spatial correlation on
various multiuser scheduling schemes for MIMO broadcast
channels. Specifically, we considered dirty paper coding and
various (random, deterministic, and channel whitening) beam-
forming schemes. When the channel is i.i.d. and for large
number of users, the sum rate of all these techniques exhibits
the same scaling, namely, as M log log n + M log P

M + o(1)
where n is the number of users, M is the number of transmit
antennas and P is the average SNR.

In the presence of a correlation between transmit anten-
nas, the channel matrix has a covariance matrix R which
is assumed to be non-singular and tr(R) = M . In this
case, the sum-rate of DPC and beamforming schemes will be
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different. It turns out that in these case, the sum-rate can be
written as M log log n + M log P

M + M log c + o(1) where
c < 1 is a constant that only depends on the scheduling
scheme and the covariance matrix R. For DPC, c is just the
geometric mean of the eigenvalues of R. We further obtain
c for different beamforming schemes; For example, for the
case of beamforming with channel whitening, c will be equal
to the harmonic mean of the eigenvalues of R. It is worth
mentioning, numerical results suggest that sum-rate of random
beamforming outperforms that of the random beamforming
with channel whitening 7.

APPENDIX A: PROOF OF LEMMA 2

From (42) and (45), we can write

1 − F (x)
f(x)

=

λM

1
ρ

‖qM‖2
C

λM
− ‖qM‖2

B −∑M−1
i=1

1
λi

λ2
M‖qi‖2

C−λ2
i ‖qM‖2

C

x(λi−λM )

(54)

To evaluate the limit of this expression, we need to investigate
the behavior of the eigenvalues and eigenvectors of A as x →
∞. Now from the bound (36), we deduce that

lim
x→∞λi = −∞ for all i �= m

We now have to evaluate the behavior of the maximum of
eigenvalue as x tends to infinity. This is done by using the
Rayleigh quotient for the maximum eigenvalue as,

λM = max
‖u‖2=1

u∗Au =

max
‖u‖2=1

u∗(Λ1/2φmφ
∗
mΛ1/2 − xΛ1/2

∑
m �=i

φiφ
∗
i )u (55)

The vector u that maximizes λM is the associated eigenvector.
Since any vector u of dimension M can be written as u =∑M

i=1 αiΛ−1/2φi, we can write ‖Au‖2 as

‖Au‖2 = u∗Au = u∗

⎛
⎝αmΛ1/2φm − x

∑
i�=m

αiΛ1/2φi

⎞
⎠

= α2
m − x

∑
i�=m

α2
i (56)

where we used the fact that the φi’s are orthonormal vectors.
Now as x tends to infinity, ‖Au‖2 could go to −∞ and is
maximized when

∑
i�=m α2

i is equal to zero (i.e., αi = 0 for
i �= m and as a result αm = 1q

‖φm‖2
Λ−1

). We have thus proved

that

lim
x→∞ qM = lim

x→∞u =
Λ−1/2φm√
‖φm‖2

Λ−1

(57)

and

lim
x→∞λM =

1
‖φm‖2

Λ−1

7Channel whitening is like zero forcing in that it takes care of the worst
eigenvalue and thus would result in a big waste of power.
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Using the above, it is easy to verify that

lim
x→∞

1
λi

λ2
M‖qi‖2

C

x(λi − λM )
= 0

and

lim
x→∞− 1

λi

λ2
i ‖qM‖2

C

x(λi − λM )
= lim

x→∞− λi‖qM‖2
C

x(λi − λM )
= 0

From (57) and the defining expression of B, we also deduce
that

lim
x→∞ ‖qM‖2

B =
1

‖φm‖2
Λ−1

φ
∗
m(φmφ

∗
m − I)φm = 0

Thus, the only nonzero limit in the denominator of (54) is
1
ρ
‖qm‖2

C

λM
and

lim
x→∞

1 − F (x)
f(x)

=
λ2

M
1
ρ‖qm‖2

C

=
ρ

‖φm‖2
Λ−1

(58)

APPENDIX B: PROOF OF LEMMA 3

Consider the inequality

y =
1

‖φ‖2
Λ−1

> x

which can be equivalently written as 1 − x‖φ‖2
Λ−1 > 0. As

we did to derive the SINR CDF above, we use the unit-step
representation

u(1 − x‖φ‖2
Λ−1) =

1
2π

∫
e(1−x‖φ‖2

Λ−1)(jω1+β1)

jω1 + β1
dω1

Now the pdf of φ is

p(φ) =
Γ(M)
πM

δ(‖φ‖2 − 1)

Alternatively, following the approach of [4], we can use an
integral representation for the Dirac delta

p(φ) =
Γ(M)
πM

1
2π

∫
dω2e

jω2(‖φ‖2−1)

So the probability p( 1
‖φ‖2

Λ−1
> x) = p(1 − x‖φ‖2

Λ−1 > 0) is

given by

p(
1

‖φ‖2
Λ−1

> x) =

Γ(M)
4πM+2

∫
dω1

∫
dω2

∫
dφ

e(jω1+β1)(1−x‖φ‖2
Λ−1)ejω2(‖φ‖2−1)

jω1 + β1

=
Γ(M)
4πM+2

∫
dω1

e(jω1+β1)

jω1 + β1

∫
dω2e

−jω2

∫
dφe−φ∗(x(jω1+1)Λ−1−jω2I)φ

=
Γ(M)
4πM+2

∫
dω1

e(jω1+β1)

jω1 + β1

∫
dω2e

−jω2

1
det (x(jω1 + β1)Λ−1 − jω2I)

(59)

Now use partial fraction expansion to show that

1
det (x(jω1 + β1)Λ−1 − jω2I)

=

1∏M
i=1

(
x

λi(Λ) (jω1 + β1) − jω2

)

=
1

xM−1

1
(jω1 + β1)M−1

M∑
i=1

ηi
x

λi(Λ) (jω1 + β1) − jω2
(60)

where ηi = 1Q
j �=i(

1
λj(Λ)− 1

λi(Λ) )
. We thus have

p(
1

‖φ‖2
Λ−1

> x) =

Γ(M)
4π2

1
xM−1

∫
dω1

ejω1+β1

(jω1 + β1)M

∑
i∫

dω2
ηi

x
λi(Λ) (jω1 + β1) − jω2

e−jω2 (61)

=
Γ(M)

2π

1
xM−1

∑
i

ηi

∫
dω1

e
(jω1+β1)(1− x

λi(Λ) )

(jω1 + β1)M
(62)

or after some straight-forward calculations,

p(
1

‖φ‖2
Λ−1

> x) =
∑

i

ηi

(
1
x
− 1

λi(Λ)

)M−1

u

(
1 − x

λi(Λ)

)

Alternatively, the CDF, G(x) = p( 1
‖φ‖2

Λ−1
< x) is given by

G(x) = 1 −
∑

i

ηi

(
1
x
− 1

λi(Λ)

)M−1

u

(
1 − x

λi(Λ)

)

which completes the proof of the Lemma.
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