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ABSTRACT

Channel estimation is vital in OFDM systems for efficient data
recovery. In this paper, we propose a blind algorithm for channel
estimation that is based on the assumption that the transmitted data
in an OFDM system is Gaussian (by central limit arguments). The
channel estimate can then be obtained by maximizing the output
likelihood function. Unfortunately, the likelihood function turns out
to be multi-modal and thus finding the global maxima is challeng-
ing. We rely on spectral factorization and the cyclostationarity of the
output to obtain the correct channel zeros. The Genetic algorithm is
then used to fine tune the obtained solution.

Index Terms— Blind channel estimation, Maximum likelihood
estimation, Spectral factorization, and Genetic algorithm.

1. INTRODUCTION

There has been increased interest in Orthogonal Frequency Division
Multiplexing (OFDM) due to its high achievable data rates, mul-
tipath robustness and simple receiver implementation. This is re-
flected by the many standards that considered and adopted OFDM,
e.g. ADSL, VDSL, power line communication, WiFi (IEEE 802.11a),
WiMAX (IEEE 802.16), terrestrial broadcast (DVB-T), and ultraw-
ideband personal area networks (IEEE 802.15.3a) [1].

In OFDM systems, channel must be estimated accurately for
high speed communication. The channel estimation techniques present
in the literature can be broadly divided into three categories:

1. Training-based: These techniques involve sending training
data (pilots) along with the data symbols for estimating the
channel [2], [3], [4]. Use of pilots decreases the bandwidth
efficiency.

2. Blind: Blind techniques use the structure of the communi-
cation system created by such constraints as finite alphabet
constraint [5], cyclic prefix [5], [6], and time and frequency
correlation [7], [8]. Blind techniques usually require averag-
ing over many symbols before they converge (this implicitly
assumes that the channel remains invariant over these sym-
bols).

3. Semi-blind: Semi-blind techniques are hybrid of training-based
and blind methods. These methods use pilots to obtain an
initial channel estimate and improve the estimate by using a
variety of a priori information [7], [9].
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In this paper, we perform blind estimation of block fading chan-
nels by utilizing the Gaussian assumption on the time-domain trans-
mitted data, and the cyclostationarity of the transmitted data due to
the presence of the cyclic prefix. The advantage of our method is
that it provides a blind estimate of the channel from only one output
OFDM symbol without the need for training or averaging1 (contrary
to the common practice in blind methods where averaging over sev-
eral symbols is required [6], [10]). Specifically, the channel estimate
is obtained by maximizing the log-likelihood of the channel given
the output data. While the frequency domain input in OFDM comes
from some finite alphabet (say a QAM constellation), the time do-
main input can be assumed to be Gaussian (by some central limit the-
orem arguments [9], [11]). This allows us to write the log-likelihood
function of the output given the channel h which would be in terms
of the second order statistics of the output. The channel can then be
obtained by maximizing the likelihood function.

It is well known that second order methods are phase blind and
so it can not uniquely identify non-minimum phase channels [12],
[13]. In the OFDM case, however, the input is cyclostationary [6]
and thus we can avoid this problem and we can maximize the like-
lihood function uniquely for the channel estimate. The challenge
here is that this maximization is non-convex and thus obtaining the
global maxima is a challenge. In this paper, we avoid this problem
by first identifying the minimum phase equivalent of the channel.
Subsequently, we find all non-minimum phase variations, and find
the variation that attains the global maxima of the likelihood func-
tion. This gives a good blind estimate that can be further refined
using the Genetic algorithm.

2. SYSTEM OVERVIEW

In this paper, an OFDM system is used which involves transmitting
data in symbols X i of length N each. Each symbol then undergoes
an Inverse Discrete Fourier Transform (IDFT) operation to produce
the time domain symbol xi, i.e.

xi =
√
NQX i, (1)

where Q is an IDFT matrix of size N × N . A cyclic prefix xi of
length L is appended to form the N + L length super-symbol xi =
[xT

i xT
i ]

T = [xT
i x̃T

i xT
i ]

T , where x̃i is N−L length symbol with
cyclic prefix stripped off. The symbol is then transmitted through an
FIR channel of maximum length L + 1, h = [h0 h1 ... hL]. The

1We assume that the channel is block fading which leaves us with one
OFDM symbol only to identify the channel.



time-domain input/output relationship is given by2

y = Hx+ n (2)

where y = [yT

i
yT
i ]

T is the received data of length N + L, x =

[xT
i−1 xT

i x̃T
i xT

i ]
T is the transmitted data of length N + 2L,3 n =

[nT
i nT

i ]
T is the circular complex Gaussian noise (with vairance σ2

n)
which is independent of x, and H is a convolution matrix of size
(N + L)× (N + 2L).

The channel is assumed to be block fading. Moreover, to guard
against sign ambiguity inherent in blind techniques, we set the first
coefficient of the channel to unity, i.e. h0 = 1.

3. EVALUATING THE LOG LIKELIHOOD FUNCTION

To derive the likelihood function of the output of a linear system, the
input is assumed usually to be Gaussian (otherwise writing down the
likelihood function can be very difficult). This is usually not true in
a data communication system as the input is generated from a finite
alphabet. Fortunately in an OFDM system, the time domain input
can be assumed to be Gaussian by central limit theorem arguments
for large N [11]. This fact can be motivated from the element-by-
element version of (1) which reads

xi(j) =
√
NqjX i

where qj is the jth row of Q. This shows that xi(j) is a large
(weighted) sum of iid random variables. From this fact and the fact
that noise is also Gaussian, we can conclude that output y will be
Gaussian with covariance matrix ΣY given by (follows from (2))

ΣY = E[yyH ] = HΣXHH + σ2
nI (3)

where ΣX is the input covariance matrix

ΣX = E

 xi−1

xi

x̃i

xi

 [
xH

i−1 xH
i x̃H

i xH
i

]

=

 IL 0 0 0
0 IL 0 IL

0 0 IN−L 0
0 IL 0 IL

 (4)

The probability density function (pdf) of the output y can thus be
written as

P (y|h) = 1

det(ΣY)
exp(−yHΣY

−1y) (5)

which yields the following log-likelihood function

L(y|h) = − ln det (ΣY) − yHΣY
−1y (6)

3.1. Maximum Likelihood Estimation of the Channel IR

We obtain the maximum-likelihood (ML) channel estimate by max-
imizing the log-likelihood function, i.e.

ĥML = max
h

L

= max
h

− ln det (ΣY) − yHΣY
−1y (7)

2The symbol index has been omitted for simplification.
3Note that we are assuming the channel to be constant over the vector x

consisting of the current OFDM symbol and the preceding cyclic prefix.
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Fig. 1. 3D plot of likelihood function against channel taps

This maximization depends only on the output data y and the chan-
nel h (through the dependance of ΣY on h).

Unfortunately, as is evident from Figure 1, the likelihood func-
tion is not uni-modal. In this figure, the input is BPSK modulated
data of length N = 64 and a cyclic prefix of length L = 2 is used.
Channel is considered to be an FIR of length L + 1 = 3 with first
tap fixed at 1 and the log-likelihood function is plotted against the
remaining two channel taps. It can be seen that the likelihood func-
tion is non-convex with several local maxima and thus finding the
global maxima can be challenging.

4. BLIND CHANNEL ESTIMATION ALGORITHM

The proposed algorithm performs blind channel estimation in three
steps:

1. The output data stripped off the cyclic prefix is used to esti-
mate the minimum phase equivalent of the channel IR. This
is done using spectral factorization.

2. The system phase is identified by maximizing the likelihood
function over all possible phase combinations.

3. The estimate obtained in step 2 is then used to kick start the
Genetic algorithm which further refines the channel estimate.

In what follows, we discuss these steps in detail.

4.1. Estimation of the minimum phase equivalent channel

As we mentioned in the introduction, the output of an OFDM sys-
tem is cyclostationary due to the presence of cyclic prefix. However,
if we discard the cyclic prefix from the input and output, then the
system appears as a linear system with stationary input and station-
ary output. We can thus use the second order statistics of the output
to obtain the minimum phase equivalent of the channel. This is a
standard spectral factorization problem [14].

Specifically, the power spectrum of the received data y (with
cyclic prefix stripped off) is given by

P y(e
jw) = P x(e

jw)|H(ejw)|2 (8)



Note that since y no more contains the cyclic prefix, it is stationary
and so its power spectrum is well defined which can be factored into
a product of the form [14]

P y(z) = σ2
xH(z)H∗(1/z∗) (9)

which implies that if the system function H(z) has a zero at z = z0,
the power spectrum of the received data will have a zero at z = z0
and another at the conjugate reciprocal position z = 1/z∗0 .

Thus, if we are able to approximately model P y(z) from the
received data only, we can estimate the zeros of the system function
H(z). Depending on the system function, the power spectrum of
the received data can be modeled by either auto-regressive (AR),
moving-average (MA) or auto-regressive moving-average (ARMA)
models. As we have assumed an FIR channel of length L + 1, its
system function will have the form

H(z) =
L∑

k=0

hkz
−k,

where hk are the coefficients of the L+1 length channel (described
in Section 2). Thus MA model of order L can be used for spectrum
estimation of the received data, i.e.

P̂ y(e
jw) =

∣∣∣∣∣
L∑

k=0

ĥke
−jkw

∣∣∣∣∣
2

(10)

where the MA parameters hk (channel coefficients) can be estimated
using the Durbin’s algorithm [14]. These estimated parameters rep-
resent the minimum phase equivalent of the channel IR.

4.2. Identification of the system phase

Let {z0, z1, ..., zL−1} denote the zeros of the minimum phase equiv-
alent channel. The power spectral density (10) will not change if
we replace any zeros zi with its corresponding conjugate recipro-
cal 1/z∗i . However, the log-likelihood function (6) which is not
phase blind will change depending on the mixed phase possibility we
choose. There are 2L such possibilities that we can use to construct
the mixed phase IR and evaluate the corresponding log-likelihood
function. We can then choose the channel with largest value of the
log-likelihood.

The estimate obtained using spectral factorization can be used
to initialize the Genetic algorithm which we describe next.

4.3. Genetic Algorithm

Genetic algorithm (GA) is an iterative stochastic search algorithm
which was introduced by Holland [15] in 1975. GA finds the best
solution in a population of candidate solutions (called chromosomes)
based on natural selection (survival of the fittest) and evolution. Each
chromosome has a fitness value associated with it which in our al-
gorithm is found by evaluating the likelihood function in Equation
(6). The next generation is produced by using genetic operators like
crossover and mutation.

A. Crossover: Crossover is a technique of combining the fea-
tures of two parent chromosomes to form two offspring. We selected
the BLX-α algorithm (with α = 0.5) for implementing crossover due
to its superior performance in real coded genetic algorithms [16].

B. Mutation: Mutation is a method in which an arbitrary ele-
ment of a selected chromosome is altered to prevent the premature
convergence of GA to suboptimal solutions. GA is able to avoid

local minima/maxima due to this operator. We have used the Non-
uniform mutation algorithm as it is very appropriate for real coded
genetic algorithms [16].

5. COMPUTATIONAL COMPLEXITY

Both spectral factorization and GA require calculation of the log-
likelihood function (Equation (6)) that involves the computation of
inverse and determinant of output autocorrelation matrix ΣY (of size
(N + L)× (N + L)). We will rely on block matrix calculations to
simplify these matrix operations. The output autocorrelation matrix
ΣY can be decomposed as

ΣY = GGH + σ2
nI (11)

where G is a square matrix of size N + L given by4

G =


C B O · · · O
O C B · · · O
...

...
. . .

. . .
...

O O O · · · B
O B O · · · C

 (12)

with

B =


h0 0 · · · 0
h1 h0 · · · 0
...

. . .
hL−1 hL−2 · · · h0

 (13)

and C =


hL hL−1 · · · h1

0 hL · · · h2

...
. . .

...
0 0 · · · hL

 (14)

Alternatively, we can write G in the following block form

G =

[
C D
O A

]
(15)

where

D =
[
B O · · · O

]
and

A =


C B O · · · O
O C B · · · O
...

. . .
. . . · · ·

...
B O O · · · C

 (16)

It is easy to see that the matrix A is circulant so it is diagnolizable
by an FFT matrix. So, ΣY can now be written as

ΣY = GGH + σ2
nI

=

[
CCH +DDH + σ2

nI DAH

ADH AAH + σ2
nI

]
(17)

In the following sections, we use the above structure of ΣY to cal-
culate its inverse and determinant.

4In writing (12), we assume that N is a multiple of L to simplify the
subsequent exposition. Computational complexity can still be reduced in a
similar manner even if this condition is not valid



5.1. Calculating ΣY
−1

To calculate ΣY
−1, we use the block inversion formula [17] (page

30, formula (2)) shown in equation (18), which is valid provided the
inverses involved exist. There are two inverses that we need to cal-
culate here. 1) Ω−1, and 2) (Γ−ΦΩ−1Ψ)−1. Given the structure
of ΣY in Equation (17), this boils down to calculating

(AAH + σ2
nI)

−1 (19)

and(
CCH +DDH + σ2

nI −DAH(AAH + σ2
nI)

−1ADH
)−1

(20)

As A is circulant (from (16)), we can write it as

A = QHΛQ (21)

where Q is the IDFT matrix and Λ is the DFT of the first row of A
(which is the DFT of [hL hL−1 ... h0 ... 0]). It is easy then to see
that the inverse in (19) can be computed as follows

(AAH + σ2
nI)

−1 = QH (
|Λ|2 + σ2

nI
)−1

Q

= QH


1

|λ1|2+σ2
n

· · · 0

...
. . .

...
0 · · · 1

|λN |2+σ2
n

Q

It is easy to calculate the L×L inverse in (20). However, it involves
an N ×N matrix inversion, namely A(AAH +σ2

nI)
−1AH which

can be evaluated as

AH(AAH + σ2
nI)

−1A = QH


|λ1|2

|λ1|2+σ2
n

· · · 0

...
. . .

...
0 · · · |λN |2

|λN |2+σ2
n

Q

So, evaluating inverse of (N+L)× (N+L) matrix ΣY reduces to
calculating an FFT (to find Λ) and to calculating the L × L inverse
of (20).

5.2. Calculating det(ΣY)

In order to calculate determinant of ΣY , we use [17] (page 50, for-
mula (6))

det

[
Γ Φ
Ψ Ω

]
= det(Ω) det(Γ−ΦΩ−1Ψ) (22)

Now, from (17),

Ω = AAH + σ2
nI (23)

⇒ det(Ω) = det
(
QH(|Λ|2 + σ2

nI)Q
)

(24)

= det(|Λ|2 + σ2
nI) (25)

We already know how to calculate Ω−1 from (22), thus det(Γ −
ΦΩ−1Ψ) involves calculating the determinant of an L× L matrix.

To summarize, the inverse and the determinant of the (N+L)×
(N + L) matrix ΣY essentially reduces to calculating

1. N -point FFT (to find Λ)
2. Inverse and determinant of an L× L matrix.
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Fig. 2. Comparison with Blind algorithm [10] for BPSK modulated
data with N = 16 and L = 4

6. SIMULATION RESULTS

An OFDM system with N = 16 BPSK modulated symbols and
cyclic prefix of length L = 4 is considered. The channel IR consists
of 5 iid Rayleigh fading taps. Moving average (MA) model of order
L is used to model the power spectrum of the received data in spec-
tral factorization (SF) method. The estimate obtained by SF is used
to initialize the GA. The parameters used in implementing the GA
are listed in Table 1.

Table 1. Simulation Parameters used to implement GA
Population Size 50

Number of Generations 100
Cross-over Scheme BLX-α (α = 0.5)

Cross-over Probability 0.8
Mutation Scheme Non-Uniform Mutation

Mutation Probability 0.08
Number of Elite Chromosomes 5

To bench mark our algorithm, we compare it with 1) the sub-
space blind algorithm proposed by Muquet et al. in [10], 2) a train-
ing based method in which the channel is estimated using L + 1
pilots, and 3) the perfectly known channel state information case.
As opposed to our algorithm in which the estimation is done using
only a single OFDM block, the subspace method in [10] requires the
channel to remain fixed over several OFDM blocks. The subspace
algorithm was implemented in two ways. One with 50 blocks of data
to make the covariance matrix full rank and the other with 20 blocks.
Only a single block was used for channel estimation in our algo-
rithm. In Figure 2, as expected, the best performance is achieved for
the perfectly known channel case, followed by the pilot based case.

[
Γ Φ
Ψ Ω

]−1

=

[
(Γ−ΦΩ−1Ψ)−1 −(Γ−ΦΩ−1Ψ)−1ΦΩ−1

−Ω−1Ψ(Γ−ΦΩ−1Ψ)−1 Ω−1 +Ω−1Ψ(Γ−ΦΩ−1Ψ)−1ΦΩ−1

]
(18)
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Fig. 3. BER vs SNR comparison for BPSK modulated data with
N = 64 and L = 4

It can be observed that our blind algorithm (using SF and GA) easily
outperforms the subspace algorithm presented in [10] even when it is
uses 50 blocks of data. The BER curve of our algorithm using only
SF becomes flat at high SNR. When this estimate is used to initial-
ize the Genetic algorithm, it refines the estimate and thus results in
better performance even at high SNR but this estimate still appears
to flatten at high SNR which is due to the small number of carriers
N .5 It can also be seen that the performance of the subspace algo-
rithm [10] becomes worse when only 20 data blocks are used as the
covariance matrix is not full rank.

In Figure 3, the performance of our algorithm with large number
of carriers (N = 64) is demonstrated. It can be seen that the BER
curve of our algorithm (using SF and GA) does not flattens at high
SNR in this case.

7. CONCLUSION

In this paper, a blind channel estimation method for OFDM system
with block fading channel was presented. The method avoids any
latency or storage by estimating the channel from current symbol
only. It was argued in this paper that the time-domain transmitted
data in OFDM is Gaussian. Using this assumption and the cyclic
prefix, an algorithm was devised to perform channel estimation in
three steps. First, a minimum phase equivalent of the channel IR is
estimated using spectral factorization. This is followed by identify-
ing the channel phase by maximizing the likelihood function over
all possible phase combinations. Finally, the Genetic algorithm is
used to refine the channel estimate. The Genetic algorithm can also
be replaced by the steepest descent algorithm which is the subject
of a future paper. Methods to reduce the computational complexity
involved in calculating the likelihood function have also been dis-
cussed. Simulation results show the favorable performance of the
proposed algorithm.

5The Gaussian assumption on the transmitted data is valid for large N .
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