
DISTRIBUTION AGNOSTIC STRUCTURED SPARSITY RECOVERY ALGORITHMS

Tareq Y. Al-Naffouri1,2, Mudassir Masood1

1King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia
2King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.

{tareq.alnaffouri, mudassir.masood}@kaust.edu.sa

ABSTRACT

We present an algorithm and its variants for sparse sig-

nal recovery from a small number of its measurements in

a distribution agnostic manner. The proposed algorithm

finds Bayesian estimate of a sparse signal to be recovered

and at the same time is indifferent to the actual distribu-

tion of its non-zero elements. Termed Support Agnostic

Bayesian Matching Pursuit (SABMP), the algorithm also

has the capability of refining the estimates of signal and

required parameters in the absence of the exact parameter

values. The inherent feature of the algorithm of being ag-

nostic to the distribution of the data grants it the flexibility

to adapt itself to several related problems. Specifically, we

present two important extensions to this algorithm. One

extension handles the problem of recovering sparse sig-

nals having block structures while the other handles mul-

tiple measurement vectors to jointly estimate the related

unknown signals. We conduct extensive experiments to

show that SABMP and its variants have superior perfor-

mance to most of the state-of-the-art algorithms and that

too at low-computational expense.

1. INTRODUCTION

Recently, the problem of sparse signal recovery has at-

tracted huge interest mainly due to the advent of com-

pressed sensing and in part due to the possibility of sim-

plifying signal processing in many applications. A typical

sparse signal recovery problem is set up in the form of

linear regression

y = Ax+w (1)

where an N -dimensional sparse signal x is recovered

from its M possibly noisy linear combinations y. The

possibility of simplifying signal processing arises from

the fact that a sparse signal could be recovered from a

very small number of observations which defy the require-

ments imposed by the well-known Nyquist theorem. Thus

in this setting M � N and the linear regression model (1)

basically refers to an under-determined system of equa-

tions. Moreover, the matrix A ∈ CM×N is the sensing

matrix which defines the linear combinations and w is the

additive white Gaussian noise.

Several algorithms have been proposed for solving an

under-determined system of linear equations utilizing the

fact that the desired data vector (signal x in our case) is

sparse. Recently, the framework of compressed sensing

(CS) has been proposed in which Donoho et al [1] and

Candes et al [2] proved that the sparse signal x could be

recovered by solving the �1 minimization problem

x̂ = argmin
x

‖ x ‖1 subject to ‖ y −Ax ‖22< δ. (2)

Since N is usually large such an approach which has a

computational complexity ofO(N3) quickly becomes un-

realistic. Several faster approaches have been developed.

These include, most famously, the approaches based on

greedy algorithms. This category includes methods like

Orthogonal Matching Pursuit (OMP) [3], projection pur-

suit [4], and the method proposed by Haupt et al [5] to

name a few. An inherent feature of these algorithms is

that they do not take into consideration any a priori infor-

mation related to the distribution of the unknown signal

and the noise. The only a priori information utilized is

that of sparsity.

Furthermore, there exist algorithms based on Bayesian

inference which takes into account the a priori informa-

tion about the distribution of unknown signal as well as the

noise. However, a problem is that, in real world scenarios,

the distribution of unknown signals is most likely to be

unknown. Thus the Bayesian approaches resort to some

kind of assumption about the distribution of sparse sig-

nal x. This assumption, which is usually Gaussian, could

be wrong and thus could be detrimental to the accuracy

of the recovered signal. Examples of algorithms from this

category include those proposed by Larsson and Selen [6],

Schniter et al [7] and Babacan et al [8] from which the for-

mer two assume a Gaussian while the last one assumes a

Laplacian prior on the non-zero elements of the unknown

sparse signal x.

The algorithms mentioned above deal with a general

scenario of recovering sparse signals without taking into

account additional a priori information. It is obvious that

if additional information is incorporated, a better estimate

of the unknown sparse signal could be made. More re-

cently, there has been a growing trend of taking advan-

tage of the structure of the sparse signal recovery prob-

lem at hand. This opens up an important dimension of the

sparse signal recovery algorithms as utilizing this addi-

tional a priori information guarantees better recovery per-

formance. The structure utilized by these methods may

include the following:

1. structure in the sparse signal (x): signal might have
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a block structure in which non-zero elements occur

in groups (e.g., [9, 10, 11])

2. structure in measurement vector (y): presence

of multiple measurement vectors of a single phe-

nomenon from different sensors (e.g., [12, 13, 14])

3. structure in the measurement matrix (A): mea-

surement matrix might have a well-defined struc-

ture. For example, it could be a Fourier matrix or a

Toeplitz matrix. (e.g., [15, 16, 17])

4. global structure: problem rendering itself for dis-

tributed recovery where the information about the

measurement matrix and the corresponding obser-

vations is distributed over several nodes/sensors

(e.g., [18, 19, 20, 21])

A natural block structure might exist in the sparse sig-

nal where the few non-zero elements appear in groups.

For example, an ideal sparse channel consisting of a

few multi path components could be represented in a

block sparse structure [22]. Some other interesting situa-

tions where block sparsity arises include gene expression

analysis [23], time series data analysis involving lagged

variables forming a block, multiple measurement vector

(MMV) [24], Peak-to-average-power-ratio (PAPR) reduc-

tion in OFDM [25], neural activity [26] and seismic data

analysis [27].

Several algorithms have been proposed taking into ac-

count the knowledge of the block structure. The foun-

dational work in this respect was [9] which proposed the

group-LASSO algorithm. However, it has limited appli-

cability as compared to other algorithms as it makes some

assumptions on the dictionary being used. Block-OMP

[11] is an extension of the classical orthogonal matching

pursuit algorithm (OMP [3]). It was proposed by Eldar

et al where they used the concept of block coherence to

extend the OMP algorithm. Another algorithm by El-

dar called mixed �2/�1-norm recovery algorithm proposed

in [24] extended the basis pursuit (BP) method to tackle

block sparsity. Similarly, extensions of the CoSAMP al-

gorithm [28] and IHT [29] were used to propose an algo-

rithm called Block-CoSAMP [30] which has provable re-

covery guarantees and robustness properties. The LaMP

algorithm proposed in [31] used Markov Random Fields

model to capture the structure of sparse signal. They

demonstrated that their algorithm performed well using

fewer number of measurements.

Similar to block sparsity a closely related problem

of jointly recovering multiple unknown sparse vectors

having same support from multiple measurement vec-

tors (MMV) has gained increased attention. This prob-

lem could be viewed as recovering an unknown row-

sparse matrix X ∈ C
N×L from an observation matrix

Y ∈ C
M×L. Some of the applications where multiple ob-

servations could be utilized include equalization of sparse

communication channels [32, 33], blind source separation

[34], imaging of brain using magnetoencephalography

(MEG) and electroencephalography (EEG) [35, 26, 36]

and multivariate regression [14].

Several algorithms have been proposed taking into ac-

count the case of multiple measurement vectors. Most

of the foundational and important work in this respect

is the extension of already developed SMV algorithms.

For example, simultaneous orthogonal matching pursuit

(S-OMP) [12], MMV-orthogonal matching pursuit (M-

OMP) and MMV-focal underdetermined system solver

(M-FOCUSS) [13], multiple sparse Bayesian learning

(M-SBL) [37] and multivariate group LASSO [14]. An-

other class of algorithms exploit the properties of the

unknown sparse signals such as correlation and struc-

ture. For example, auto-regressive sparse Bayesian learn-

ing (AR-SBL) [38], and orthogonal subspace matching

pursuit (OSMP) and subspace-augmented multiple signal

classification (SA-MUSIC) algorithms proposed by Lee

et al [39] utilize some of the inherent properties of the un-

known signals for recovery.

Most of these algorithms mentioned above belong to

the category of convex relaxation algorithms which are ag-

nostic to support distribution1 and hence demonstrate ro-

bust performance. Algorithms considering the problem of

Bayesian support recovery are not as common.

In this paper we pursue a Bayesian approach which

combines the features of the distribution agnostic greedy

algorithms and the Bayesian approaches [40]. Thus on the

one hand, the proposed algorithm is Bayesian acknowl-

edging the noise statistics and the signal sparsity rate,

while on the other hand, the approach is agnostic to the

signal support statistics (making it especially useful when

these statistics are unknown or non-Gaussian). Specifi-

cally, the advantages of our approach are as follows

1. The approach provides a Bayesian estimate even

when the support prior is non-Gaussian/unknown.

2. The approach does not require the parameters of

signal distribution (whether Gaussian or not) to be

estimated.

3. The approach utilizes the prior Gaussian statistics

of the additive noise and the sparsity rate of the sig-

nal.

4. The approach has low complexity due to its greedy

and recursive approach.

We extend the proposed approach to solve problems hav-

ing the first two types of structures mentioned above i.e.,

block sparsity and presence of multiple measurement vec-

tors.

The rest of the paper is organized as follows. In Sec-

tion 2 we discuss in detail our algorithm for sparse signal

recovery. In Section 3 we present the variants of our algo-

rithm for block sparse signal recovery and joint recovery

of sparse signals utilizing multiple measurement vectors.

In the end we conclude in Section 4.

1In the paper we use the term support distribution to refer to the dis-

tribution of the active elements of the unknown signal x.
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2. SUPPORT AGNOSTIC BAYESIAN MATCHING
PURSUIT (SABMP)

In this paper we consider the estimation of a sparse vector

x ∈ C
N , from an observation vector y ∈ C

M obeying the

linear regression model

y = Ax+w. (3)

Here A ∈ C
M×N is a known regression matrix and

w ∼ CN (0, σ2
wIM ) is the additive white Gaussian noise

vector. We shall assume that x has a sparse structure and

is modeled as x = xA ◦ xB where ◦ indicates element-

by-element multiplication. The vector xA consists of el-

ements that are drawn from some unknown distribution2

and the entries of xB are drawn i.i.d. from a Bernoulli

distribution with success probability λ. The sparsity pa-

rameter λ controls the sparsity of x.

We pursue an MMSE estimate of x given observation

y as follows

x̂MMSE � E[x|y] =
∑
S

p(S|y)E[x|y,S], (4)

where the sum is executed over all possible 2N support

sets of x. Given the support S , (3) becomes y = ASxS+
w where AS is a matrix formed by selecting columns of

A indexed by support S . Similarly, xS is formed by se-

lecting entries of x indexed by S . Since the distribution of

x is unknown, it is difficult or even impossible to compute

the expectation E[x|y,S]. Thus, the best we can do is to

replace it with the best linear unbiased estimate (BLUE)3

E[x|y,S]← (
AH
SAS

)−1
AH
Sy. (5)

The posterior in (4) can be written using the Bayes rule as

p(S|y) = p(y|S)p(S)
p(y)

. (6)

The probability, p(y), is a normalizing factor common to

all posteriors and hence can be ignored. Since the ele-

ments of x are activated according to the Bernoulli distri-

bution with success probability λ, we have

p(S) = λ|S|(1− λ)N−|S|. (7)

It remains to evaluate the likelihood p(y|S). Since, by

virtue of xS , y is also non-Gaussian/unknown, we are mo-

tivated to eliminate the non-Gaussian component to esti-

mate p(y|S). This is done by projecting y onto the or-

thogonal complement space of AS . This is done by mul-

tiplying y by the projection matrix P⊥S = I − PS = I −
2The distribution may be unknown or known with unknown param-

eters or even Gaussian. Our developments are agnostic with regard to

signal statistics.
3This is essentially minimum-variance unbiased estimator (MVUE)

which renders the estimate (6) itself an MVU estimate. The linear

MMSE would have been a more faithful approach of the MMSE but

that would depend on the second-order statistics of the support, defying

our support agnostic approach.

AS
(
AH
SAS

)−1
AH
S . This leaves us with P⊥S y = P⊥Sw,

which is Gaussian with a zero mean and covariance

K = E[(P⊥Sw)(P⊥Sw)H] = P⊥S σ
2
wP⊥S

H
= σ2

wP⊥S . (8)

This allows us to write the likelihood in a simplified form

as follows

p(y|S) � exp

(
− 1

2σ2
w

∥∥P⊥S y∥∥2

2

)
. (9)

To evaluate the sum in (4) is a challenging task when N
is large. Therefore, we approximate the posterior over a

few support sets corresponding to significant posteriors,

yielding

x̂AMMSE =
∑
S∈Sd

p(S|y)E[x|y,S]. (10)

where Sd is the set of supports corresponding to signifi-

cant posteriors. Next, we propose a greedy algorithm to

find Sd. For convenience, we represent the posteriors in

the log domain. In this regard, we define a dominant sup-

port selection metric, ν(S), to be used by the greedy algo-

rithm as

ν(S) � ln p(y|S)p(S)

= ln exp

(
− 1

2σ2
w

∥∥P⊥S y∥∥2

2

)
+ ln

(
λ|S|(1− λ)N−|S|

)
=

1

2σ2
w

∥∥AS(AH
SAS)

−1AH
Sy

∥∥2

2
− 1

2σ2
w

‖y‖22
(11)

+ |S| lnλ+ (N − |S|) ln(1− λ).

2.1. A Greedy and Recursive Approach to Find the
Most Probable Supports
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Fig. 1: Inflating the support in a greedy and recursive

manner by finding the best location at each stage in terms

of posterior.

To determine the set of dominant supports, Sd, re-

quired to evaluate x̂AMMSE in (10) we search for the op-

timal support in a greedy manner. We first start by find-

ing the best support i�1 of size 1, which involves evaluat-

ing ν(S) for S = {1}, . . . , {N}. Next, we look for the
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1: procedure GREEDY(A,y, λ, σ2
w)

2: initialize L← {1, 2, . . . , N}, i← 1
3: initialize empty sets
Smax, Sd, p(Sd|y), E[x|y,Sd]

4: Li ← L
5: while i ≤ P do
6: Ω ← {Smax ∪ {α1},Smax ∪
{α2}, · · · ,Smax ∪ {α|Li|} | αk ∈ Li}

7: compute {ν(Sk) | Sk ∈ Ω}
8: find S� ∈ Ω such that ν(S�) ≥ maxj ν(Sj)
9: Sd ← {Sd,S�}

10: compute p(S�|y),E[x|y,S�]
11: p(Sd|y)← {p(Sd|y), p(S�|y)}
12: E[x|y,Sd]← {E[x|y,Sd],E[x|y,S�}
13: Smax ← S�

14: Li+1 ← L \ S�

15: i← i+ 1
16: end while
17: return Sd, p(Sd|y),E[x|y,Sd]
18: end procedure

Algorithm 1: The Greedy Algorithm

optimal support of size 2 in a greedy manner and look

for the point i�2 �= i�1 such that S2 = {i�1, i�2} maxi-

mizes ν(S2). We continue in this manner until we reach

SP = {i�1, . . . , i�P }. The value of P is selected to be

slightly larger than the expected number of nonzero ele-

ments in the constructed signal such that Pr(|S| > P ) is

sufficiently small4. The process explained above is illus-

trated in Fig. 1. The figure shows how the support is in-

flated based on the best non-zero location detected at each

stage.

It is also important to note that our approach while in-

flating the support utilizes the computation of ν(Sj) for

the computation of ν(Sj+1) in an order-recursive manner.

This greatly reduces the computational complexity of our

approach and makes it one of the fastest among the state-

of-the-art algorithms. We now present a formal algorith-

mic description of our greedy algorithm in Algorithm 1.

2.2. Refinement of the Estimated Signal

The only parameters required by the SABMP algorithm

are the noise variance, σ2
w, and the sparsity rate, λ. The

proposed SABMP method can bootstrap itself and does

not require the user to provide any initial estimate of λ
and σ2

w. Instead the method starts by finding initial esti-

mates of these parameters which are used to compute the

dominant support selection metric ν(S) in (11). These pa-

rameters are refined by repeated execution of the greedy

algorithm. The repetition continues until a predetermined

criterion has been satisfied. Specifically, this process con-

tinues until the estimate of λ changes by less than a pre-

specified factor (eg., we use 2% in simulations), or until a

4|S|, i.e., support of the constructed signal, follows the binomial dis-

tribution B(N,λ), which can be approximated by the Gaussian distribu-

tion N (Nλ,Nλ(1 − λ)) if Nλ > 5. For this case, Pr(|S| > P ) =
1
2

erfc P−Nλ√
2Nλ(1−λ)

.

Greedy 
Algorithm

Inputs: y, A, 
estimates of 
parameters

Compute 
x_MMSE

Re-estimate 
parametersConverged?

NO

Return 
x_MMSE

YES

Fig. 2: Refinement of parameters and signal estimated by

repeated execution of the greedy algorithm.

predetermined maximum number of iterations have been

performed. Fig. 2 shows the process in the form of a flow

chart.

2.3. Simulation Results (Signal estimation perfor-
mance comparison for varying sparsity parameter λ)

We now demonstrate the performance of our algorithm.

Experiments were conducted for signals whose active el-

ements are drawn from non-Gaussian (uniform non-i.i.d.)

distributions.

The size of the sensing/measurement matrix A was

selected to be 128 × 512 where the elements were drawn

i.i.d. from zero mean complex Gaussian distribution. In

addition, the columns of A were normalized to the unit

norm. The noise had a zero mean and was white and Gaus-

sian, CN (0, σ2
nIM ), with σ2

n determined according to the

desired signal-to-noise ratio (SNR).

In Fig. 3a and 3b, NMSE and mean runtime are plot-

ted, respectively, for different values of sparsity parame-

ter λ. The plot shows the performance comparison of the

proposed SABMP with FBMP [7], oracle-FBMP (oracle-

aided version of FBMP), oracle-FL [8] and the CS al-

gorithm [41]. The value of SNR selected for these ex-

periments was 10 dB and the results were averaged over

K = 250 trials.

Results demonstrate the superiority of SABMP over

all other algorithms. The figures suggest that, 1) even

though true parameters were provided to all other algo-

rithms, they were still outperformed by SABMP, and, 2)

the huge gap in performance of FBMP and SABMP is due,

in part, to the superior parameter estimation and refine-

ment capability of SABMP.

Runtime graph of Fig. 3 depict that SABMP has an

added advantage of being faster than other algorithms.
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(a) NMSE vs λ. (b) Runtime vs λ.

Fig. 3: NMSE and average runtime vs λ graphs for Uniform non-i.i.d. input.

3. UTILIZING STRUCTURE OF SPARSITY
RECOVERY PROBLEMS

The proposed SABMP algorithm could be extended to

handle the presence of special structure present in the

problem at hand. We, specifically, present here the ex-

tensions of SABMP that relate to the recovery of block-

sparse signals and the one that could take advantage of

the multiple measurement vectors.

3.1. Block SABMP

The SABMP algorithm could be extended to solve the

problem of block-sparse signal recovery. The block-

sparse signal recovery problem could be divided into two

categories:

1. known block partition

2. unknown block partition

In the known block partition case we know exactly where

the blocks could possibly occur in the sparse signal. More-

over, we also have the knowledge of the size of the blocks.

This could be visualized as shown in Fig. 4 .

On the other hand, in the unknown block partition case

we do not have any a priori knowledge about the blocks.

The blocks could be of any size and could occur anywhere

in the signal. Such a signal is also illustrated in Fig. 4

Fig. 4: Examples of known (top) and unknown (bottom)

block partition block-sparse signals.

The block SABMP algorithm that we will focus on in

this paper deals with the known block partition case. In

this case, x is modeled as x = xA ◦ xB where ◦ indi-

cates element-by-element multiplication. The vector xA

models the support distribution and consists of elements

that are drawn from some unknown distribution and xB is

a block-structured binary vector with K blocks of size C
each as shown below:

xB = [0T xT
B1

0T xT
B2

0T · · ·xT
BK

0T]T, (12)

where Bi, i = 1, . . .K refer to the size C supports of each

block. Equivalently, we can write xB as5

xB = xb ⊗ 1C (13)

where 1C is a C×1 vector of 1’s and xb is a K×1 binary

vector. Block sparsity requires that only a few among the

K blocks in xB are non-zero. Pursuing the same method-

ology as discussed in Sec. 2 we conclude that the dom-

inant support selection metric ν(S), to be used by the

greedy algorithm, is

ν(S) � ln p(y|S)p(S)
= ln exp(

−1
2σ2

w

∥∥P⊥S y∥∥2
) + ln(λ|S|/C(1− λ)K−|S|/C)

=
1

2σ2
w

∥∥AS(AH
SAS)

−1AH
Sy

∥∥2 − 1

2σ2
w

‖y‖2

+
|S|
C

lnλ+ (K − |S|
C

) ln(1− λ). (14)

This dominant support selection metric for block-

structured signals could now be used to perform greedy

estimation. The process is similar to that discussed in Sec.

2.1.

3.2. Simulation Results (Block SABMP)

To demonstrate the performance of the known block parti-

tion case block-SABMP algorithm we compare it with the

known block partition version of cluster-SBL algorithm

5Our algorithm applies to the general case when the C sized blocks

could be placed arbitrarily within xB . However, due to space limitation

we focus on the special case (13).
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Fig. 5: Block-sparsity: NMSE vs sparsity rate. Distribu-

tion of non-zero elements: Gaussian (solid), non-Gaussian

(dotted)

[42] and Block-CoSaMP [30]. These methods were se-

lected for comparisons as these have been shown to be

robust and outperform many of the state-of-the-art algo-

rithms. The results shown in Fig. 5 demonstrate that the

proposed method outperforms the other two algorithms.

3.3. Multiple Measurement Vector (MMV) SABMP
(M-SABMP)

In this section we show how the SABMP algorithm could

be extended to use multiple measurement vectors for joint

sparse signal recovery. In this case we basically consider

the estimation of a row-sparse matrix, X ∈ C
N×L, from

multiple observation vectors represented as a matrix Y ∈
C

M×L, obeying the linear regression model,

Y = AX+W. (15)

Here A ∈ C
M×N is a known regression/sensing matrix6

and W is a matrix representing a collection of additive

white Gaussian noise vectors following CN (0, σ2
wIM ).

To assist in algorithm development in the following, we

will represent the matrices X,Y and W as collection of

column vectors X = [x1 x2 . . . xL], Y = [y1 y2 . . . yL]
and W = [w1 w2 . . . wL] respectively, wherever needed.

The formulation is valid for L = 1 (SMV) as well as

L > 1 (MMV) case. We shall assume that each unknown

sparse vector xi is modeled as xi = xAi ◦ xB where

xAi and xAj are independent and ◦ indicates element-by-

element multiplication. The vector xAi
models the sup-

port distribution and consists of elements that are drawn

from some unknown distribution and xB is a binary vec-

tor whose entries are drawn i.i.d. from a Bernoulli distri-

bution with success probability λ. Recall that all vectors

xi’s have exactly the same sparse structure due to X being

row-sparse.

Following a method similar to that presented in Sec.

2 we find that the dominant support selection metric ν(S)
6Our algorithm is capable of modeling the scenario where multiple

sensing matrices could be used to sense the unknown sparse vectors.

However, in this paper we focus on the case where sensing matrices are

same.

Fig. 6: MMV: Signal recovery success rate.

in this case is given by

ν(S) � ln p(Y|S)p(S)

= ln exp(
−1
2σ2

w

L∑
i=1

∥∥P⊥S yi

∥∥2
) + ln(λ|S|(1− λ)N−|S|)

=
1

2σ2
w

L∑
i=1

[∥∥AS(AH
SAS)

−1AH
Syi

∥∥2 − ‖yi‖2
]

+ |S| lnλ+ (N − |S|) ln(1− λ). (16)

ν(S) is then used to construct the row-sparse matrix X
by following the greedy process discussed in detail for the

single measurement vector (Sec. 2.1).

3.4. Simulation Results (M-SABMP)

In order to demonstrate the performance of the proposed

M-SABMP algorithm we compare it with the multiple

measurement vectors versions of the FOcal Underdeter-

mined System Solver (FOCUSS) [13] and Basis Pursuit

Denoising (BPDN) [43]. It was shown in Sec. 2 that the

SMV version of the proposed algorithm detects the un-

known support with high accuracy and thus results in bet-

ter signal reconstruction. In the MMV case, since more

information is available the decisions made by M-SABMP

are strengthened even further and thus are more reliable.

In Fig. 6 we plot the rate of successfully reconstructing

sparse signals using multiple measurements as a function

of sparsity rate. Success rate is calculated as the ratio

of the total number of successful recoveries and the to-

tal experiments. The success rate for each value of spar-

sity rate was averaged over a total of 200 experiment re-

alizations. An experiment was declared successful if the

resulting NMSE was ≤ −10dB. It is observed that the M-

SABMP algorithm was able to recover signals with higher

values of the sparsity rate which correspond to dense sig-

nals. Specifically, we notice that for L = 3 the proposed

algorithm was able to recover signals having 35% non-

zero elements with 100% accuracy. Moreover the graphs

also show that both M-BPDN and M-FOCUSS fail com-

pletely at 40% and 30% sparsity rate respectively while

this figure for M-SABMP is 45%.
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4. CONCLUSION

In this paper we presented a sparse signal recovery algo-

rithm which is Bayesian and at the same time is agnostic

to the distribution of the active elements of the unknown

signal. It was shown that the algorithm can be easily ex-

tended to recover block-sparse signals and to utilize multi-

ple measurement vectors. Extensive simulations and com-

parisons show that the algorithm and its extensions outper-

form many state-of-the-art algorithms.
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