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Sparse Reconstruction Using Distribution
Agnostic Bayesian Matching Pursuit

Mudassir Masood, Student Member, IEEE, and Tareq Y. Al-Naffouri, Member, IEEE

Abstract—A fast matching pursuit method using a Bayesian ap-
proach is introduced for sparse signal recovery. This method per-
forms Bayesian estimates of sparse signals even when the signal
prior is non-Gaussian or unknown. It is agnostic on signal statistics
and utilizes a priori statistics of additive noise and the sparsity rate
of the signal, which are shown to be easily estimated from data if
not available. Themethod utilizes a greedy approach and order-re-
cursive updates of its metrics to find themost dominant sparse sup-
ports to determine the approximate minimum mean-square error
(MMSE) estimate of the sparse signal. Simulation results demon-
strate the power and robustness of our proposed estimator.

Index Terms—Basis selection, Bayesian, compressed sensing,
greedy algorithm, linear regression, matching pursuit, minimum
mean-square error (MMSE) estimate, sparse reconstruction.

I. INTRODUCTION

S PARSITY is a feature that is abundant in both natural
and man-made signals. Some examples of sparse signals

include those from speech, images, videos, sensor arrays (e.g.,
temperature and light sensors), seismic activity, galactic ac-
tivities, biometric activity, radiology, and frequency hopping.
Given the vast existence of signals, their sparsity is an attrac-
tive property because the exploitation of this sparsity may be
useful in the development of simple signal processing systems.
Some examples of systems in which a priori knowledge of
signal sparsity is utilized include motion estimation [1], mag-
netic resonance imaging (MRI) [2], impulse noise estimation
and cancellation in DSL [3], network tomography [4], and
peak-to-average-power ratio reduction in OFDM [5], [25]. All
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of these systems are based on sparsity-aware estimators such as
Lasso [6], basis pursuit [7], structure-based estimator [8], [26],
fast Bayesian matching pursuit [9], and estimators related to
the relatively new area of compressed sensing [10]–[12].
Compressed sensing (CS), otherwise known as compressive

sampling, has found many applications in the fields of commu-
nications, image processing, medical imaging, and networking.
CS algorithms have been shown to recover sparse signals from
underdetermined systems of equations that take the form

(1)

where , and are the unknown sparse signal and
the observed signal, respectively. Furthermore, is
the measurement matrix and is the additive Gaussian
noise vector. Here, the number of unknown elements, , is
much larger than the number of observations, . CS uses linear
projections of sparse signals that preserve structure of signals;
furthermore, these projections are used to reconstruct the sparse
signal using -optimization with high probability.

(2)

where . -optimization is a convex op-
timization problem that conveniently reduces to a linear pro-
gram known as basis pursuit, which has the high computational
complexity of . Other more efficient algorithms such as
orthogonal matching pursuit (OMP) [13] and the algorithm pro-
posed by Haupt et al. [14] have been proposed. These algo-
rithms fall into the category of greedy algorithms that are rel-
atively faster than basis pursuit. However, it should be noted
that the only a priori information utilized by these systems is
the sparsity information.1

Another category of methods based on the Bayesian approach
considers complete a priori statistical information of sparse
signals. The fast Bayesian matching pursuit (FBMP) [9], [15]
adopts such an approach and assumes a Bernoulli-Gaussian
prior on the unknown vector . This method performs sparse
signal estimation via model selection and model averaging. The
sparse vector is described as a mixture of several components,
the selection of which is based on successive model expansion.
FBMP obtains an approximate MMSE estimate of the unknown
signal with high accuracy and low complexity. It was shown
to outperform several sparse recovery algorithms, including
OMP [13], StOMP [16], GPSR-Basic [17], Sparse Bayes [18],
BCS [19] and a variational-Bayes implementation of BCS

1The advantage of these approaches is that they are distribution agnostic and
hence demonstrate robust performance.
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[20]. However, there are several drawbacks associated with
this method. The assumption that the support distribution2 is
Gaussian is not realistic, because, in most real-world scenarios,
it is not Gaussian, or it is unknown. In addition, its performance
is dependent on the knowledge of parameters of the Gaussian
and Bernoulli priors, which are usually difficult to compute.
Although a parameter estimation process is proposed, it is
dependent on knowledge of the initial estimates of these signal
parameters. The estimation process, in turn, has a negative
impact on the complexity of the method.
Another popular Bayesian method proposed by Larsson

and Selén [21] computes the MMSE estimate of the unknown
vector, . Its approach is similar to that of FBMP in the sense
that the sparse vector is described as a mixture of several com-
ponents that are selected based on successive model reduction.
It also requires knowledge of the noise and signal statistics.
However, it was found that the MMSE estimate is insensitive
to the a priori parameters and therefore an empirical-Bayesian
variant that does not require any a priori knowledge of the data
was devised.
Babacan et al. [22] have also proposed a greedy algorithm

based on a Bayesian framework. They utilize a hierarchical form
of the Laplace prior to model the sparsity of unknown signal.
Their fast approach is fully automatic and does not require user
intervention. They have also shown that their technique outper-
forms several sparse recovery algorithms. The list includes all of
the algorithmswhich FBMP used to compare their performance.
The Bayesian approaches mentioned above in [9], [15] and

[21] assume Gaussian prior on the non-zero elements of the un-
known sparse vector3 , while the Bayesian approach of [22]
assumes a Laplace prior. It is reasonable to assume that any ad-
ditive noise, generated at the sensing end, is Gaussian. How-
ever, assuming the signal statistics to be Bernoulli-Gaussian or
Laplacian does not always reflect reality. Moreover, regardless
of whether the actual prior is Gaussian or not, the parameters
(mean and variance) of the Gaussian prior to be used need to
be estimated, which is challenging especially when the signal
statistics are not i.i.d. In that respect, one can appreciate convex
relaxation approaches that are agnostic to signal statistics.
In this paper, we pursue a Bayesian approach for sparse

signal reconstruction that combines the advantages of the two
approaches summarized above. On the one hand, the approach
is Bayesian, acknowledging the noise statistics and the signal
sparsity rate, while on the other hand, the approach is agnostic
to the support distribution. While the approach depends on the
sparsity rate and the noise variance, it does not require estimates
of the parameters but is able to estimate these parameters in a
robust manner. Specifically, the advantages of our approach are
as follows
1) The approach provides a Bayesian estimate of the sparse
signal even when the signal support prior is non-Gaussian
or unknown.

2) The approach is agnostic to the support distribution and so
the parameters of this distribution whether Gaussian or not

2In the paper we use the term support distribution to refer to the distribution
of the active elements of .
3While the Bayesian approaches of [9], [15], and [21] assume a Gaussian

prior, these approaches continued to work when this assumption is violated.

need not be estimated. This is particularly useful when the
signal support priors are not i.i.d. Therefore, it is agnostic
to variations in distributions.

3) The approach utilizes the prior Gaussian statistics of the
additive noise and the sparsity rate of the signal. The ap-
proach is able to estimate the noise variance and sparsity
rate in a robust manner from the data.

4) The approach enjoys low complexity thanks to its greedy
approach and the order-recursive update of its metrics.

The fact that our approach is agnostic to support distribution
motivates us to call it Support Agnostic Bayesian Matching
Pursuit (SABMP). The remainder of this paper is organized as
follows. In Section II, we formulate the problem and present
the MMSE setup in the non-Gaussian/unknown statistics case.
In Section III, we describe our greedy algorithm that is able to
obtain the approximate MMSE estimate of the sparse vector
followed by a description of our hyperparameter estimation
process. Section IV demonstrates how the greedy algorithm
can be made faster by calculating various metrics in a recursive
manner. This is followed by Section V in which we present our
simulation results and in Section VI, we conclude the paper.

A. Notation

We denote scalars with small-case letters (e.g., ), vectors
with small-case, bold-face letters (e.g., ), matrices with upper-
case, bold-face letters (e.g., ), and we reserve calligraphic no-
tation (e.g., ) for sets. We use to denote the th column of
matrix , to denote the th entry of vector , and to de-
note a subset of a set .We also use to denote the sub-matrix
formed by the columns , indexed by set . Finally,
we use , , , and to respectively denote the estimate,
conjugate, transpose, and conjugate transpose of the vector .

II. PROBLEM FORMULATION AND MMSE SETUP

A. The Signal Model

The analysis in this paper considers estimating an
sparse vector, , from an observations vector, . These
observations obey the linear regression model

(3)

where is a known regression matrix and
is the additive white Gaussian noise

vector.
We shall assume that has a sparse structure and is modeled

as where indicates Hadamard (element-by-el-
ement) multiplication. The vector consists of elements that
are drawn from some unknown distribution and the entries of

are drawn i.i.d. from a Bernoulli distribution with success
probability . We observe that the sparsity of vector is con-
trolled by and, therefore, we call it the sparsity parameter/rate.
Typically, in Bayesian estimation, the signal entries are assumed
to be drawn from a Gaussian distribution but here we would like
to emphasize that the distribution of the entries of does not
matter.4

4The distribution may be unknown or known with unknown parameters or
even Gaussian. Our developments are agnostic with regard to signal statistics.
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B. MMSE Estimation of

To determine , we compute the MMSE estimate of given
observation . This estimate is formally defined by

(4)

where the sum is executed over all possible support sets of
. In the following, we explain how the expectation ,
the posterior and the sum in (4) can be evaluated.
Given the support , (3) becomes

(5)

where is a matrix formed by selecting columns of indexed
by support . Similarly, is formed by selecting entries of
indexed by . Since the distribution of is unknown, it is dif-
ficult or even impossible to compute the expectation .
Thus, the best we can do is to use the best linear unbiased
estimate (BLUE)5 as an estimate of . Therefore, we replace

by the BLUE as follows,

(6)

The posterior in (4) can be written using the Bayes rule as

(7)

The probability, , is a factor common to all posterior prob-
abilities that appear in (7) and hence can be ignored. Since the
elements of are activated according to the Bernoulli distribu-
tion with success probability , we have

(8)

It remains to evaluate the likelihood . If is Gaussian,
would also be Gaussian and that is easy to evaluate.

On the other hand, when the distribution of is unknown or
even when it is known but non-Gaussian, determining
is in general very difficult. To go around this, we note that
is formed by a vector in the subspace spanned by the columns
of plus a Gaussian noise vector, . This motivates us to
eliminate the non-Gaussian component by projecting onto
the orthogonal complement space of . This is done by mul-
tiplying by the projection matrix

. This leaves us with , which
is Gaussian with a zero mean and covariance

(9)

5This is essentially minimum-variance unbiased estimator (MVUE) which
renders the estimate (6) itself an MVU estimate. The linear MMSE would have
been a more faithful approach of the MMSE but that would depend on the
second-order statistics of the support, defying our support agnostic approach.

Thus we have,6

(10)
Simplifying and dropping the pre-exponential factor yields,

(11)

Substituting (8) and (11) into (7) finally yields an expression for
the posterior probability. In this way, we have all the ingredients
to compute the sum in (4). Computing this sum is a challenging
task when is large because the number of support sets can
be extremely large and the computational complexity can be-
come unrealistic. To have a computationally feasible solution,
this sum can be computed over a few support sets corresponding
to significant posteriors. Let be the set of supports for which
the posteriors are significant. Hence, we arrive at an approxima-
tion to the MMSE estimate given by,

(12)

In the next section, we propose a greedy algorithm to find .
Before proceeding, for ease of representation and convenience,
we represent the posteriors in the log domain. In this regard, we
define a dominant support selection metric, , to be used by
the greedy algorithm as follows:

(13)

III. SUPPORT AGNOSTIC BAYESIAN MATCHING PURSUIT
(SABMP)

A. A Greedy Algorithm

We now present a greedy algorithm to determine the set of
dominant supports, , required to evaluate in (12).
We search for the optimal support in a greedy manner. We first
start by finding the best support of size 1, which involves eval-
uating for , i.e., a total of search
points. Let be the optimal support. Now, we look
for the optimal support of size 2. Ideally, this involves a search
over a space of size . To reduce the search space, how-
ever, we pursue a greedy approach and look for the point
such that maximizes . This involves

search points (as opposed to the optimal search over
points). We continue in this manner by forming

and searching for in the remaining points

6Results in Section V show that indeed this approximation is justified. More-
over, to provide the reader a feel of the quality of this approximation, we are
motivated to provide a relevant discussion in Appendix.
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Fig. 1. An example run of the greedy algorithm for and .

and so on until we reach . The value of
is selected to be slightly larger than the expected number of
nonzero elements in the constructed signal such that
is sufficiently small.7 An example run of this algorithm for

and is presented in Fig.1.
One point to note here is that in our greedy move from

to , we need to evaluate around times,
which can be done in an order-recursive manner starting from
that of . Specifically, we note that every expansion,

, from requires a calculation of using
(13). This translates to appending a column to in the
calculations of (13), which can be done in an order-recursive
manner. We summarize these calculations in Section IV. This
order-recursive approach reduces the calculation in each search
step to an order of operations down from in
the direct (non-recursive) approach. Since, we are searching for
the best support of size up to , we need to repeat this process
times and so the complexity we incur is of the order .
The nature of our greedy algorithm allows us to output not

just the set of dominant supports but also the ingredients needed
to compute in (12) without any additional cost. Specifi-
cally, since is simply , we do not need to compute
the posteriors separately. Similarly, the form of in (6)
lends itself as an intermediate computation performed to calcu-
late . We now present a formal algorithmic description of
our greedy algorithm in Table I.

B. Refined Greedy Search

One of the advantages of the proposed greedy algorithm is
that it is agnostic to the support distribution; the only parame-
ters required are the noise variance, , and the sparsity rate,
. However, the proposed SABMP method can bootstrap itself
and does not require the user to provide any initial estimate of
and . Instead the method starts by finding initial estimates of
these parameters which are used to compute the dominant sup-
port selection metric in (13). Since the decisions made

7 , i.e., support of the constructed signal, follows the binomial dis-
tribution , which can be approximated by the Gaussian distribu-
tion if . For this case,

.

TABLE I
THE GREEDY ALGORITHM

TABLE II
SUPPORT AGNOSTIC BAYESIAN MATCHING PURSUIT (SABMP)

by our greedy algorithm in support selection are influenced by
the values of these parameters, we expect that refining these pa-
rameters will improve our chances of selecting the right sup-
port. The refinement demands that the greedy algorithm men-
tioned above be repeated with new estimates of sparsity rate
and noise variance. In this way both the hyperparameters ( and
) and support are refined simultaneously. The repetition con-

tinues until a predetermined criterion has been satisfied. A de-
scription of the SABMP algorithm which repeatedly calls the
greedy algorithm to estimate the hyperparameters and the un-
known signal is provided in Table II.

C. Estimation and Refinement of the Hyperparameters and

When the hyperparameters and are unknown, we need
to calculate them iteratively. This starts from some initial esti-
mate usually supplied by the user. Here, we show how we can
initialize the process from the observed data.
To calculate the initial estimate of the sparsity rate , we

project the observation vector onto the basis vectors ,
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(columns of ).We observe that these projections tend
to be higher for those which determine the actual support of
the unknown signal. However, because of the underdetermined
nature of the problem at hand, other projections could also be
sufficiently high. Therefore, to start with, we could use this ob-
servation to find a rough estimate of as follows:

where is the in-
finity-norm, is the initial estimate of the sparsity rate and
the outer-most refers to the cardinality of set bounded by it.
Note that our algorithm is robust enough to find the right sup-
port even if is initialized badly. This feature of our algorithm
has been demonstrated in Experiment 1 of the Results section.
We would also like to point out that the projections performed
above are required by the first step of the greedy algorithm and,
therefore, do not require any additional computation. As for the
noise variance, our experimental results show that using an ini-
tial estimate as rough as is good enough. We
would like to point out that our method is robust to this initial
estimate and performs quite well in estimating the actual noise
variance.
In order to refine these parameters we might opt for finding

themaximum-likelihood (ML) ormaximum a posteriori (MAP)
estimates using the expectation maximization (EM) algorithm.
However, this will add to the computational complexity and is
unnecessary as a fairly accurate estimation could be performed
in a very simple manner as follows.
Recall that, our greedy algorithm returns a set of dominant

supports along with the corresponding posteriors
and expectations . These are used to compute the
approximate MMSE from (12). Similarly, by deter-
mining we are able to determine

. Based on these quantities we update
and as follows:

(14)

(15)

The greedy algorithm is called again with this new set of param-
eters. The output of which is then used to update and again
using (14) and (15). This process continues until the estimate
of changes by less than a prespecified factor (eg., we use 2%
in simulations), or until a predetermined maximum number of
iterations have been performed. The process is effective as the
simulation results show that, in most case, converges rapidly
and the corresponding estimate of is also close to the actual
noise variance (for example, see Fig. 6).
We would also like to highlight that the nature of our algo-

rithm allows us to penalize the growth of support, thus encour-
aging sparser estimated signal. More specifically, since the de-
scription of includes factors which grow as the support
size grows, the metric has an inherent capability of discour-
aging denser solutions. As explained in Section III-A, we com-
pute the dominant support selection metric at each stage of
our greedy algorithm and based on the values of we select

the best supports. Therefore, unlike normal matching pursuit al-
gorithms, our algorithm could select supports of varying sizes
based on the values of .
In Section III-A, we mentioned that the greedy algorithm

incurs a complexity of order . However, in the
refinement process the algorithm is repeated a number of
times. Therefore, the computational complexity will increase
to an order of , where is the maximum
number of times the greedy algorithm was repeated. For a
detailed description of the steps followed by the method the
algorithms are provided in Tables I and II. The MATLAB code
for our algorithm, called support agnostic Bayesian matching
pursuit (SABMP), is provided on the author’s website.8

Remarks: While we use a greedy approach similar to those
proposed by [9], [15], [21], [22], we would like to point out the
distinctive features of our approach in the following.
1) Our approach is agnostic to the distribution of active ele-
ments of the sparse signal.

2) The updates required in the Bayesian matching pursuit
with Gaussian prior (FBMP) are essentially those of order
recursive least squares [23]. However, our method depends
on the projection matrix which is not commonly en-
countered in signal processing algorithms. So the recur-
sions required for updates in our algorithm had to be de-
veloped from scratch.

3) Since the method is support distribution agnostic, we do
not need to estimate the parameters of distribution.

4) Our greedy algorithm still requires the sparsity rate and
noise variance. That said, the nature of the algorithm does
not change whether we know these parameters perfectly
or not. In addition, the performance of the algorithm is
robust to the initial estimates of these parameters (which
are supplied directly from the data with no need for user
intervention). In other words, our algorithm is automatic
and is able to bootstrap itself. Contrast this with Gaussian
Bayesian matching pursuit (FBMP) in which the algorithm
needs to run many more times when the parameters are
unknown and might actually not lead to satisfactory results
if not initialized properly.9

IV. EFFICIENT COMPUTATION OF THE DOMINANT SUPPORT
SELECTION METRIC

As explained in Section III-A, requires extensive com-
putation to determine the dominant supports. The computational
complexity of the proposed algorithm is therefore largely de-
pendent upon the way is computed. In this section, a com-
putationally efficient procedure to calculate this quantity is pre-
sented.
We note that the efficient computation of de-

pends mainly on the efficient computation of the term

. Our
focus is therefore on computing efficiently.

8The MATLAB code of the SABMP algorithm and the results from var-
ious experiments discussed in this paper are provided at http://faculty.kfupm.
edu.sa/ee/naffouri/publications.html.
9See in particular Figs. 2(a) and 3(a) in Experiment 1 for the effect of initial

and Fig. 6(b) in Experiment 4 for the effect of parameter estimation on the run
time.
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Fig. 2. NMSE and average runtime versus graphs for Gaussian-i.i.d. input. , , , . (a) NMSE versus .
(b) Runtime versus .

Consider the general support with
and let and denote the following subset

and superset, respectively:

where . In the following, we demonstrate how to

update to obtain10 .
Here, we use to designate the supports and thus refers
to . We note that could be written as given in
(16).

(16)
By using the block inversion formula to express the inverse

of (16) and simplifying, we get the result as given in (17), shown
at the bottom of the page.

This recursion is initialized by
for . The recursion also depends on

, and

10We explicitly indicate the size of in this notation as it elucidates the
recursive nature of the developed algorithms.

. The recursions for , and
may be determined in a similar fashion as given in

(18), shown at the bottom of the page, and11

(20)

The two recursions (18) and (20) start at and
are thus initialized by and for

. This completes the recursion of
which we utilize for recursive evaluation of as shown in
(19), at the bottom of the page.

V. RESULTS

To demonstrate the performance of the proposed SABMP, we
compare it here with Fast Bayesian Matching Pursuit (FBMP)
[9], [15], Fast Laplace (FL) algorithm [22] and the convex relax-
ation-based -optimization approach. The problem given in
(2) was solved using CVX, a package for specifying and solving
convex programs [24]. This particular problem is also re-
ferred to as Basis Pursuit Denoising (BPDN). For FBMP and FL
their MATLAB implementations available on their respective
websites were used. The reason FBMP and FL were selected is

11Notation such as is a short hand for .

(17)

(18)

(19)
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Fig. 3. NMSE and average runtime versus graphs for Uniform non-i.i.d. input. , , , . (a) NMSE versus .
(b) Runtime versus .

that they have shown to outperform a number of the contem-
porary sparse signal recovery algorithms, including OMP [13],
StOMP [16], GPSR-Basic [17], and BCS [19]. Comparisons
with FBMP, FL and BPDN show that SABMP performs better
than all of these algorithms and is robust to situations where
these algorithms fail. We present comparisons for various signal
settings which are discussed in detail in the following.
Signal Setup: Experiments were conducted for signals

whose active elements are drawn from Gaussian as well as
non-Gaussian distributions. The following configurations were
used for the experiments:
1) Gaussian (i.i.d. ( , )),
2) Non-Gaussian (Uniform, non-i.i.d. ( ,

)),
3) Unknown distribution (compressible signals)
4) Unknown distribution (for this example, different images
with unknown statistics were used),

where and refer to the mean and variance of the corre-
sponding distributions, respectively.
Entries of sensing/measurement matrix were i.i.d.,

with zero means and complex Gaussian distribution where the
columns were normalized to the unit norm. The size of se-
lected for the experiments was , . The noise
had a zero mean and was white and Gaussian, ,
with determined according to the desired signal-to-noise
ratio (SNR). Initial estimates of the hyperparameters used
for the simulations were , ,

, and , where these estimates
were needed for FBMP.
In FBMP the greedy search is repeated a number of times
. For simulation purposes we used unless otherwise

stated. In all of the experiments, parameter refinement was per-
formed for both SABMP and FBMP. For FBMP, the surrogate
EM method proposed by its authors was used to refine the hy-
perparameters. The refinements were allowed to perform for a
maximum of iterations unless otherwise stated.
For FL the default settings recommended by its authors were
used. For fairness, support and amplitude refinement [3] pro-

cedures were performed on the results of the BPDN.12 More-
over, the experiments also include results when true values of
required parameters were provided to FBMP, FL and SABMP.
Since there is no need for parameter estimation in this case, we
used the versions of algorithms where parameter updation is not
performed. We would refer to these particular instances of algo-
rithms as oracle-FBMP, oracle-FL and oracle-SABMPwhile re-
serve FBMP, FL and SABMP, respectively, for their parameter
refinement versions. Note that the code of FL does not allow
us to control the refinement process. Therefore, oracle-FL will
refer to the version of FL where we provide true values of pa-
rameters and refinement is also performed. Moreover, since FL
works only on real data, in all of the experiments we generate
real data for FL and complex for the other three algorithms. In
doing so we make sure that all parameters of generated signal
realizations are same. Please also note that our algorithm can
deal with both real and complex data. Finally, the normalized
mean-squared error (NMSE) between the original signal, , and
its MMSE estimate, , was used as the performance mea-
sure:

(21)

where is the number of trials NMSE was averaged over. The
value of used in experiments vary and is provided therein.
Experiment 1 (Signal Estimation Performance Comparison

for Varying Sparsity Parameter ): In the first set of experi-
ments, NMSE and mean runtime were measured for different
values of sparsity parameter and plotted to compare the per-
formance of SABMPwith FBMP, oracle-FBMP, FL and BPDN.
The value of SNR selected for these experiments was 20 dB and
the results were averaged over trials.
Figs. 2 and 3 demonstrate the superiority of SABMP over all

other algorithms. The figures suggest that, 1) even though true

12Actual parameter values were provided to BPDN instead of estimates; fur-
thermore, support and amplitude refinement was also performed to demonstrate
that, despite these measures, its performance was inferior to that of SABMP.
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Fig. 4. NMSE versus SNR graphs for uniform non-i.i.d. and Gaussian i.i.d. inputs. , , , . (a) NMSE versus SNR for
uniform non-i.i.d. input. (b) NMSE versus SNR for Gaussian i.i.d. input.

parameters were provided to all other algorithms, they were still
outperformed by SABMP, and, 2) the huge gap in performance
of FBMP and SABMP is due, in part, to the superior parameter
estimation and refinement capability of SABMP.We would like
to point out that the discrepancy between oracle-aided versions
of algorithms and SABMP is due to incorrect support estima-
tion. This shows that our method is better able to estimate the
support; which explains why we perform better even when we
do not know the exact prior. The figures also show that for both
i.i.d. Gaussian and non-i.i.d. Uniform inputs, the performance
of SABMP is exactly the same while that of oracle-FBMP de-
teriorates for the later case. This shows the robustness of our
algorithm and ascertain our claim that it is agnostic to signal
statistics.
Runtime graphs of Figs. 2 and 3 depict that SABMP is faster

than all of the algorithms. However, the runtime of SABMP
increases for higher values of . This occurs because the ini-
tial estimate of was 0.003, and as the sparsity rate of in-
creased, more iterations were required to estimate the value of
. With higher values of , the difference in runtime is insignif-
icant given the excellent NMSE performance of our method. In
the figures, we did not plot the results for oracle-SABMP as its
performance closely follows that of SABMP.
Experiment 2 (Signal Estimation Performance Comparison

for Varying SNR): In the second set of experiments, NMSEs
were measured for values of SNR between 0 dB and 30 dB
and plotted to compare the performance of SABMPwith FBMP,
oracle-FBMP, FL and BPDN. The signal sparsity rate selected
for these experiments was . The results were averaged
over trials.
Figs. 4(a) and 4(b) show that the proposed method has better

NMSE performance than all other algorithms for all considered
signals. Only at very high values of SNR does the NMSE per-
formance of these algorithms approach at each other. As in the
previous experiment oracle-SABMP is not plotted as its perfor-
mance closely followed that of SABMP.
Note that the performance of BPDN, as shown in experiments

1 and 2, is for the case when true parameter values were pro-
vided to it. Moreover, support and amplitude refinement proce-

Fig. 5. Comparison for compressible signals. NMSE versus . ,
, , , .

dures were also performed on the results. Since its performance
is not comparable with our algorithm, we will not consider it for
the rest of the experiments. We will continue to provide com-
parisons between our algorithm and the plain and oracle-aided
versions of FBMP and FL.
Experiment 3 (Recovery of Compressible Signals): In this

experiment, we performed signal recovery for compressible
signals using SABMP, FBMP, FL and oracle-FBMP. The
signal given in [9] was selected for this purpose and its com-
ponents were generated using for

with . Here controls the sparsity,
with higher values giving sparser compressible signals. To
make the experiment more challenging, SNR was deliberately
kept low as there will be higher chances of confusing noise
with components of compressible signal. All results were
averaged over trials. We conducted two different
experiments. In the first experiment was selected
for both SABMP and FBMP so that both algorithms have ample
chance to refine their estimates. All other required parameters
were intialized as mentioned in the Signal Setup section. Since
we can not tell beforehand, with certainty, the true sparsity rate
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Fig. 6. Estimation of performance for i.i.d. Gaussian inputs. , , , , . (a) Average MSE between actual
and estimated . (b) Average number of iterations required to estimate .

for these particular type of signals, we provided to
both oracle-FBMP and oracle-SABMP. NMSE performance
resulting from all considered algorithms is plotted in Fig. 5.
We observe that, while FBMP failed to perform well at lower
values of , it is able to catch up to the performance of SABMP
at .
Experiment 4 (Parameter Estimation): In the previous ex-

periment we saw a comparison of how well the noise variance
is estimated. In this experiment, we will study the performance
of sparsity rate estimation procedure. In this regard, signals
were generated with sparsity rates ranging from to

. Both FBMP and SABMP algorithms were tested by
providing two different initial estimates of the sparsity param-
eter, i.e., and . True values for all other
parameter were provided to FBMP for fairness. Both algorithms
were allowed a maximum of iterations for refine-
ment of . Moreover, the refinement procedure was stopped if
the two consecutive estimates of differed by less than 2%. The
results were averaged over trials. Interestingly, Fig. 6
shows that SABMP took much less iterations to refine the spar-
sity rate and even then its estimates were better than those of
FBMP in almost all cases.
Experiment 5 (How Good are the Selected Models?): In this

experiment, we plot rank ordered posterior probabilities
of the models selected by our greedy algorithm in Fig. 7. Note
that SABMP selects models based on the dominant support se-
lection metric given in (13). Therefore, by looking at the poste-
rior probabilities of the selected models we can have an idea of
the effectiveness of our metric. As shown in Fig. 7, we found
that indeed our greedy algorithm was able to return models
with high posterior probabilities. The results were generated
for , , , , and

. The results were averaged over trials.
Experiment 6 (Performance Under Different Undersampling

Ratios (N/M)): In this experiment, we study the performance
under different undersampling ratios (N/M). For this purpose
we used oracle FBMP, oracle FL and SABMP. The input signal
size was fixed at while the observation size was
varied from 10 to 200. From Fig. 8 it is evident that as the ratio

Fig. 7. Rank ordered posterior probabilities of the models selected by SABMP
greedy algorithm.

Fig. 8. NMSE performance for various N/M ratios for Gaussian iid input.
, , .

decreases (i.e., increases) the performance of all three algo-
rithms improve. It is evident that SABMP performs much better
than the two techniques. Furthermore, as expected, when the
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Fig. 9. SABMP performance for Gaussian, Laplacian and Uniform noise. , , . (a) NMSE versus sparsity rate . .
(b) NMSE versus SNR. .

number of observations decreased the performance of all algo-
rithms deteriorated. trials were performed to generate
the graphs.
Experiment 7 (Performance Under Non-Gaussian Noise As-

sumption): In this experiment, we study the performance of
SABMPwhen the assumption of Gaussian noise is not valid.We
performed this experiment for the Laplacian and Uniform noise
and compared it with the Gaussian noise case. Noise were con-
sidered to be zero-mean and the noise power adjusted according
to the desired SNR. Fig. 9(a) shows the performance for varying
sparsity rate . In this case the SNR was kept at 20 dB. Simi-
larly, in Fig. 9(b), a comparison is performed for varying SNR
while the sparsity rate was fixed at 0.015. Both figures show
that the performance is same irrespective of the noise distribu-
tion and thus highlight the robustness of SABMP against noise
distribution.
Experiment 8 (Comparison of Multiscale Image Recovery

Performance): In another experiment, we carried out mul-
tiscale recovery of Mondrian image of 128 128 pixels in
size. The image is shown in Fig. 10. One-level Haar wavelet
decomposition of the image was performed, resulting in one
‘approximation’ (low-frequency) and three ‘detail’ (high-fre-
quency) images. Unlike the approximation component, the
detail components are compressible in nature. We, therefore,
decided to conduct two experiments; one on the compressible
components and the other on their sparse versions which
were obtained by applying a suitable threshold. Noisy random
measurements were acquired later from both versions for

. The number of measurements taken were 1/4
of the number of elements in detail components. For each of
the case, the detail components were reconstructed from these
measurements through SABMP. Finally, inverse wavelet trans-
form was applied to reconstruct the image from the recovered
details and the original approximations. Reconstruction errors
were recorded and, for comparison, recoveries were obtained
using FL and FBMP. The reconstructions were performed with

, , and where, as mentioned
earlier, is a parameter required by FBMP. All other parame-
ters were initialized as mentioned in the Signal Setup section.
The results were averaged over trials. The resulting

Fig. 10. Clockwise from top left: Original image, difference images for
SABMP, FL, and FBMP.

difference images showing the reconstruction error for the
threshold version (i.e., when the detail components are strictly
sparse) are shown in Fig. 10. Numerical details of the results
for these experiments are given in Table III. It is obvious that
images reconstructed using SABMP have lower NMSEs when
the detail components were strictly sparse. Similarly, for the
case of compressible components, SABMP performed better.
Here, we would like to emphasize that any gain in NMSE
is crucial for image recovery. Edges in any image define its
distinct features and the detail components contain the infor-
mation of these edges. Therefore, if we are able to recover the
detail components with less error, we will be preserving more
edges; hence, the reconstructed image quality will improve to a
great degree. For example, Fig. 10 shows the difference images
highlighting the regions where reconstruction errors occurred.
It is obvious from this image that SABMP was able to recover
the detail components in a better way.

VI. CONCLUSION

In this paper, we presented a robust Bayesian matching pur-
suit algorithm based on a fast recursive method. Compared with
other robust algorithms, our algorithm does not require signals
to be derived from some known distribution. This is useful when
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TABLE III
NMSE (dB) COMPARISONS BETWEEN FBMP, FL AND SABMP FOR THE
TEST IMAGE (MONDRIAN) SHOWN IN FIG. 10 WHEN RECONSTRUCTION WAS
PERFORMED USING BOTH COMPRESSIBLE AND SPARSE COMPONENTS

we can not estimate the parameters of the signal distributions.
Application of the proposed method on several different signal
types demonstrated its superiority and robustness.

APPENDIX
ON THE QUALITY OF THE APPROXIMATION OF

LIKELIHOOD

In order to have an idea of how good of an approximation
our equation for likelihood (11) is to the actual , let us
compare it to the case when the distribution is known. So, let us
assume for simplicity that . In this case is
also Gaussian , where .
Let us compare the log likelihood in the two cases

(22)

(23)

By the matrix inversion lemma, we have that

(24)

(25)

(26)

which if the is high enough reads,

(27)

(28)

It thus follows that

(29)

(30)

(31)

Unfortunately in non-Gaussian case it is difficult to evaluate
the actual and so it is not easy to tell how the proposed

likelihood is good of an approximation.
However, our experimental results which were conducted under

a multitude of diverse situations attest to the robustness of the
proposed likelihood.
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