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ABSTRACT

This paper is the second part of a framework for the
mean-square analysis of adaptive filtering algorithms.
In contrast to the companion article [1], the focus in
this paper is on the class of long adaptive filters with
general error nonlinearities. Among other results, the
paper characterizes the learning behavior of this class of
adaptive filters and derives expressions for steady-state
performance. In addition, sufficient conditions for sta-
bility, expressed as bounds on the step-size parameter,
are provided; these bounds are in terms of the Cramer-
Rao bound of the underlying estimation process. The
approach of this paper relies on energy conservation ar-
guments and is carried out without restrictions on the
input color or statistics.

1. ADAPTIVE FILTERS WITH ERROR
NONLINEARITIES

Consider noisy measurements {d(7)} that arise from the
system identification model

d(i) = wiw® + v(i), 1)

where w° is an unknown column vector of size M that
we wish to estimate, v(i) accounts for measurement
noise and modeling errors, and u; denotes a row in-
put (regressor) vector. In this paper, we consider the
following class of adaptive algorithms

wip1 = w; + pfle(d)]uf, i >0, (2)
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ERROR NONLINEARITIES
ALGORITHM ;
fle(@)]
LMS e(i)
LMF BI0)
LMF family e2F1(4)
LMMN ae(i) + be3(4)
Sign error sign[e(i)]
. e(%) 22
Sat. nonlin. Jo exp(—5£= ) dz

where w; is an estimate for w? at iteration ¢, u is the
step-size,

e(i) = d(i) —ww; = ww’® —ww; +v(E) (3)

is the estimation error, and f[e(7)] denotes a scalar func-
tion of the error e(i), examples of which can be found
in Table 1. The case when the update in (2) is linear
in the error and nonlinear in that data is studied in the
companion paper [1].

Our aim in this paper is to carry out a parallel study
to that in [1] for the class of adaptive algorithms (2)-
(3). There are many studies of such algorithms in the
literature under varied assumptions (e.g., see [2]-[5]). In
this paper, we pursue a unifying framework for adaptive
filter analysis that does away with many of these as-
sumptions. Our approach relies on energy conservation
arguments developed in [6]-[9] and in the companion
article [1].

2. PRELIMINARIES: DEFINITIONS AND
NOTATION

The techniques that are used here are similar to those
in the companion paper [1]. We shall therefore be brief.
Analysis of (2)-(3) is best carried out in terms of the



following error quantities:

_ A .
w; = w° —w; weight-error vector
N A - . _
ng () = u;Xw; weighted a priori error
s/ A _ . .
ey (1) = 0B weighted a posteriori error.

where 3 is a weighting matrix. We reserve special nota-

tion for the case X = I : e, (i) = el (i) and e, (i) = el ().
We will also find it convenient to introduce the following

notation for the weighted sum of squares:
_ A _
@3, = @] S,

For one reason, this notation is convenient because it
enables us to transform many operations on w; into
operations on the norm subscript (see [1] for a list of
such operations).

The estimation errors eg:(i), e? (), and e(%) can be
related by premultiplying both sides of the adaptation

equation (2) by ;=
WSy = wSw; — pflel)uly

and incorporating the defining expressions for eg] (7) and
e?(i). This process leads to

e2 (i) = 2 (i) — plluili fle(0)] (4)

If we now solve for f[(e(¢)] from the above equation,
substitute into the recursion for @;1, and compare en-
ergies, we arrive at the following relation (see [1, 8, 9]):

o Bel L Be)
@il + Tl = lwills + Tl (5)

No assumptions or approximations are used to derive
this energy relation, which applies to any adaptation
algorithm of the form (2)-(3). The unweighted version
of this recursion was originally developed in [6, 7] in the
context of deterministic analysis of adaptive filters, and
subsequently used in [8, 9] to study the steady-state per-
formance of various adaptive filtering and equalization
algorithms.

3. DYNAMICAL BEHAVIOR OF THE
WEIGHT-ERROR VECTOR

Starting from the energy conservation relation (5) and

D)

replacing the a- posteriori error e,

expression (4) leads to

(7) by its equivalent

31113 = ll@31% — 2e2(6) fle(6)] + |3 £2[e 6)]

or, upon taking the expectation of both sides,

—_
E [l %] = B [llaill] - 20 B [e2 () le()]
@
2 B % )] ©

Now, two expectations call for evaluation. As in [1], this
is facilitated by the following assumption on the noise
sequence:

AN The noise sequence v(7) is iid and independent of u;.

3.1. Evaluating ()

To evaluate the first expectation, we further assume
that the adaptive filter is long enough such that

AG For any constant matrix X and for all ¢, e, (i) and

ea2 (%) are jointly Gaussian.

This assumption is justified for long filters by central
limit arguments. Assumption AG can now be used to-
gether with the independence assumption AN and Price
Theorem to write

@ £ B[eX fleali) +v()]] (7)

= B[l (i)ead)] 2 [ea(”é Ezg;]+ Q).

Since e, (¢) is Gaussian, the expectation Ele,(3) f(e(3))]
in (8) depends on e,(¢) through the second moment
E[e2(i)] only. This fact motivates the following defi-
nition:

s Bleai)le(0)]
Ble3(0)]

For future reference, hg is evaluated for the algorithms
of Table 1 and the results are shown in Table 2.

Combining (8) and (9) yields

ha [Eleq(i)] (9)

O = E [eX())ea(s)] ha [Ele2(0)]

= B [l | he [Ble2)] (10)

!The Gaussianity assumption AG is the major assumption
leading to the defining expression (9) for hg, hence the subscript
G. The subscript U of hy, which is defined in (12), is similarly
motivated.



Table 1: hg[] for the error nonlinearities of Table 1
(92 2 E[e3()])

a

[ ALGORITHM | halo?] |
LMS 1
LMF 3(0% +3)
LMF family | 3%, ( 2k+1 ) 021 B [029) (7)]
LMMN a + 3boso?2 + 3bo?
[ 22 ]
Sign error \/%UeE e 22
G
Sat. nonlin. 7%219 e 20Z+oD)

3.2. Evaluating(®

To handle the second expectation in (6), we use the long
filter assumption:

AU The adaptive filter is long enough such that ||u,»||22
and f2[e(i)] are uncorrelated.

The assumption becomes more realistic as the filter gets
longer. It enables us to split the expectation®) as

B [l 2e@]] = B [lull] B[] (1)

Moreover, since e, (i) is Gaussian and independent of
the noise, E [f2[e(¢)]] depends on e, (i) through its sec-
ond moment only. This prompts us to define

A

hy [Ele; ()] = E [f?[e(0)] (12)
which together with (11) yields
@ = E [Ilwl;| ho [B [e2(0)]]] (13)

The function hy is evaluated for the algorithms of Ta-
ble 1 and the results appear in Table 3 in the same
order.

By substituting (10) and (13) into (6), we obtain

E [|@:ll3;] = E [I@:%;] - 2uhe [Ble26)] B [l@i1%, 7.,

+4°E [[luills] ho [Eleq(9)]] (14)

3.3. Learning Curves

To construct the learning curves, we impose the inde-
pendence assumption on the data:

AT The sequence u; is independent with zero mean and
autocorrelation matrix R.

Table 2: hy[-] for the error nonlinearities of Table 1
(02 2 E[e3(0)])

I hylo] |
15068 + 450202 + 150%E [v*(3)] + E [v°(7)]

4k + 2 Ny i .
2521 2 ) %Ung |:,U2(2k j+1) (Z)]

15b%08 + (45b%02 + 6ab)o?
+(1562E [v*(3)] + 12abo? + a?)o?
+E [(bv2(1) + a)?v%(2)]

1
\/L‘ 1 [ ﬂ—z—rﬁ(i) ]
w2 3 2 T 2(02402(1—22))
oZ — 20 e etos dz
0
27z Zf o24+02(1—z2)

Under this assumption, recursion (14) takes the more
homogeneous form

E(|@ill5] = E [ll@:ll5] — 2phe [E [l@il|R]] B [I1@i]5,]
+UE [[[wills] hu [E [JlwillZ]] (15)

Notice that (15) is not self-contained. However, we
can take advantage of the free parameter X to go around
this problem. Let us in particular write (15) for the

choices £ = I,R,--- ,RM~! (the arguments of the
functions hg and hy remain the same (i.e., E [||’L~Uz||§g})

regardless of the choice of ¥ and are therefore sup-
pressed for convenience of notation):

[ E[|lWi1l7] = E [|l9:]|7] — 26hc E [[|@:]|%]
+ 2B [|luil7] by
E [[®is1ll %] = E [l@:]|%] — 2uhe E [||Wi] 3]
+1°E [|luil| %] b

E [||@it1lgae-1] = E [|@illgas-1] — 2uhcE g|ﬁ’i||§M]
{ +1E [||luillga—1] hu
(16)

Now the additional variable  [|[i|%] in the last

equation of (16) can be expressed in terms of the lower-
order variables. In particular, by the Cayley-Hamilton

theorem, we can write
RM = —pI —pyR—---—py 1RM™! (17)

where

>

det (zI — R)
= po+pz+--+pu_1z™ T+

p(z)

is the characteristic polynomial of R. This induces the
desired “order-reducing” relation

~ 2 ~ 112 ~ 12 ~ 12
l@illge = —pollwill™ — pall@illg — - - - — Pr—all@illgar-s



and enables us to rewrite the last equation in (16) as

B (551 200-1] = B [1is1les] + 52 [[jos]Zae 2] ho
+2u (p0||’fvil|2+ p1||'ﬁ.7i||?3 + .- +pM71I|'a’il|2RM—1) ha

The system (16) now becomes truly self-contained as
can be seen from the equivalent state-space form

| Wipr = AW + 12 | (18)
where
B [|ls||°] B [Jluil|"]
E [||@]|7] E [|luill7]
i — : ) = nu .
B (||l a1 E [[[uil -]
and
1 —2uhg - 0
A= : : : (19)
0 0 —2uhg
2upohc  2ppirhce 14+ 2uprm-1he

This state-space model is nonlinear but time-invariant.
It describes the evolution of the weight-error energy.

4. STEADY-STATE ANALYSIS
Our starting point for steady-state analysis is the aver-
aged energy relation (14) reproduced in an equivalent
form here:
E (1@isll}] = E [lil1%] — 208 [e2 (ea(d)] ho [Ele2@)]]
+1* E [|[ui|5] ho [Ele3 ()] (20)

Assuming the filter is stable, the energy of the weight-
error vector eventually reaches a steady-state value, i.e.

Jim B[] = lim B [l@dl]  (21)

Then, in the limit, (20) becomes

_ BB [[Jul$] im0 hy [E [eg(i;]]] (22)

. DIPN
Jim Blea'(i)ea(d)] 3 Tmine ho B2 ()]
Now, let S denote the (asymptotic) value of the mean-
square error (MSE), i.e.

S = lim E[e2(i)]

i—00

(23)

which, assuming the filter is mean-square stable, exists
and is finite. Then,

lim he[B[e2())] = holS]
Jim hy[Bl2@)]) = huls]

and, accordingly, (22) can be written more compactly
as

(24)

timi-soo B [eZ(0ea(i)] = 4 [[luilly] 1209

This relation can now be used to calculate various
steady-state measures. In particular, to calculate the
MSE we employ (24) with X set to the identity matrix
to get

hy[S]
halS]

Or, since S = lim;_, E[e2], the MSE is the positive
solution of the equation

lim E[e2] = %Tr (R)

1—00

(25)

i.e., the MSE is a fized point of the function
ETr(R) Z;’g} For a given error nonlinearity, we can

evaluate hy and hg, as done in Tables 1 and 2, and
proceed to calculate the MSE. The mean-square devia-
tion (MSD)

MSD 2 lim E |:||"17i||2}
1—00
is calculated by setting ¥ = R~ in (24) and invoking
the independence assumption Al to write
A S 21 qs R™Y,. . _ﬂhu[S]
MSD = lim E [llw:]|*] = Jim F [ea (z)ea(z)] =3 held]

Upon comparing this relation with the corresponding
one for the MSE (25), we see that the MSD can also be
calculated from

MSD = —2__MSE

™R (26)

5. STABILITY CONDITIONS

Consider the energy relation (6) for ¥ = I,
E [|[@i+1]*] — B [l@il*] =
W E [|[ul|* *[e(3)] — 2uE [ea () fle(3)]
This shows that if we choose u such that
m S Hmax = 2 inf E [ea(zgf[e(l)]]
B (Il £2e()]]

(27)




then the sequence {E [||'&Jz||2] } would be decreasing and

(being bounded from below) also convergent. The dif-
ficulty is to calculate ppax, Or any nonnegative lower
bound for that matter. Using the Cauchy-Schwartz in-
equality, we can write

Elea)fle@) o 1 Elea()fle(i)]
Bl 2@ T [u)t]? Elfle@)?
1 he [ElEG)]

[E||ui||4]% he [Ele} ()]

]
ol (28)
where the second line is obtained by invoking the
Gaussian assumption on e,(i) to write hg [E[e2(i)] =
E[eq(i) fe(3)] (as defined in (9)) and h¢ [E[e2(:)]] =
E [f*[e(3)]] . Thus, a more conservative bound on 4 is

1 o ha [Ele3(0)]]

]% Bl ) he [Ele2 ()]

S (29)
Bl

<

Minimizing over E [eZ(i)] is difficult. Instead, we carry
out the minimization over a larger feasibility set. Notice
first that E [e2(i)] is lower bounded by the Cramer-
Rao bound 7 associated with the underlying estimation
process (estimating u;w° as w;w;):

Elel] >y (30)

To obtain an upper bound on E [e%(i)] , observe that if
u is chosen to satisfy (27) for all 4, then the sequence

E [||'[vz||2] will be monotonically decreasing. In other
words, E [val”z] < E [||wo]|?] . This fact together with

the Gaussian assumption on e, (i) produces the upper
bound

B[20)] = § Bllea)” < § ((BhlP) (2172

= LBl 1Bl i) = ;T (R) Bl

In other words,

a

E[e;(i)] < 3Tr (R) E[|j,||’] (31)

The bounds (30) and (31) suggest the feasibility set

1 _
0= {5 0 < B < @ E flaolf] ) G2
which leads to the following sufficient condition for sta-

bility

ha|E[e2
nfE[eE]sQ hi{E{eiH> (33)

p< —2— (i
[Bllw*]

Notice that no independence assumptions were used to
derive this bound. For a given error nonlinearity, we
can obtain explicit expressions for hg and hc and sub-
sequently calculate the bound (33).

6. CONCLUSION

In this paper we employed energy-conservation argu-
ments to perform mean-square analysis of adaptive fil-
ters with error nonlinearities. In particular, we have
constructed a state-space model that characterizes the
mean-square behavior of this class of algorithms. We
have also shown how to calculate the steady-state error
for an adaptive filter in this class by finding the fixed
point of some function. We finally provided a bound
on the step size for stability without invoking any in-
dependence arguments. Our results apply for any error
nonlinearity and for any input color and statistics.

Our study is centered around a weighted energy re-
lation. The relation was used in the first part of this
work [1] to carry out a parallel study of the class of
adaptive filters with data nonlinearities.
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