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Abstract

A fast matching pursuit method using a Bayesian approach is introduced for sparse signal recovery.

This method, referred to as nGpFBMP, performs Bayesian estimates of sparse signals even when the

signal prior is non-Gaussian or unknown. It is agnostic on signal statistics and utilizes a priori statistics

of additive noise and the sparsity rate of the signal, which are shown to be easily estimated from data

if not available. nGpFBMP utilizes a greedy approach and order-recursive updates of its metrics to find

the most dominant sparse supports to determine the approximate minimum mean square error (MMSE)

estimate of the sparse signal. Simulation results demonstrate the power and robustness of our proposed

estimator.

Index Terms

sparse reconstruction, compressed sensing, Bayesian, linear regression, matching pursuit, basis se-

lection, minimum mean-square error (MMSE) estimate, greedy algorithm

I. INTRODUCTION

Sparsity is a feature that is abundant in both natural and man-made signals. Some examples of sparse

signals include those from speech, images, videos, sensor arrays (e.g., temperature and light sensors),

seismic activity, galactic activities, biometric activity, radiology, and frequency hopping. Given the vast

existence of signals, their sparsity is an attractive property because the exploitation of this sparsity may

be useful in the development of simple signal processing systems. Some examples of systems in which a
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priori knowledge of signal sparsity is utilized include motion estimation [1], magnetic resonance imaging

(MRI) [2], impulse noise estimation and cancellation in DSL [3], network tomography [4], and peak-to-

average-power ratio reduction in OFDM [5]. All of these systems are based on sparsity-aware estimators

such as Lasso [6], basis pursuit [7], structure-based estimator [8], fast Bayesian matching pursuit [9],

and estimators related to the relatively new area of compressed sensing [10]–[12].

Compressed sensing (CS), otherwise known as compressive sampling, has found many applications in

the fields of communications, image processing, medical imaging, and networking. CS algorithms have

been shown to recover sparse signals from underdetermined systems of equations that take the form

y = Φx + n (1)

where x ∈ CN , and y ∈ CM are the unknown sparse signal and the observed signal, respectively.

Furthermore, Φ ∈ CM×N is the measurement matrix and n ∈ CM is the additive Gaussian noise vector.

Here, the number of unknown elements, N , is much larger than the number of observations, M . CS uses

linear projections of sparse signals that preserve structure of signals; furthermore, these projections are

used to reconstruct the sparse signal using l1-optimization with high probability.

x̂ = argmin ‖x‖1 such that Φx = y (2)

l1-optimization is a convex optimization problem that conveniently reduces to a linear program known

as basis pursuit, which has the computational complexity of O(N3). Since, usually, N is large, such

an approach rapidly becomes unrealistic. To tackle this problem, some efficient alternatives such as

orthogonal matching pursuit (OMP) [13] and the algorithm proposed by Haupt et al. [14] have been

proposed. These algorithms fall into the category of greedy algorithms that are relatively faster than basis

pursuit. However, an inherent problem in these systems is that the only a priori information utilized is

the sparsity information.

Another category of methods based on the Bayesian approach considers complete a priori statistical

information of sparse signals. A method called fast Bayesian matching pursuit (FBMP) [9], adopts such

an approach and assumes a Gaussian prior on the unknown sparse vector, x. This method performs sparse

signal estimation via model selection and model averaging. The sparse vector is described as a mixture

of several components, the selection of which is based on successive model expansion. FBMP obtains

an approximate MMSE estimate of the unknown signal with high accuracy and low complexity. It was

shown to outperform several sparse recovery algorithms, including OMP [13], StOMP [15], GPSR-Basic
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[16], Sparse Bayes [17], BCS [18] and a variational-Bayes implementation of BCS [19]. However, there

are several drawbacks associated with this method. The assumption that the signal prior is Gaussian is not

realistic, because, in most real-world scenarios, the signal distribution is not Gaussian, or it is unknown.

In addition, its performance is dependent on the knowledge of signal statistics, which are usually difficult

to compute. Although, a signal statistics estimation process is proposed, it is dependent on knowledge

of the initial estimates of these signal parameters. The estimation process, in turn, has a negative impact

on the complexity of the method.

Another popular Bayesian method proposed by Larsson and Selén [20] computes the MMSE estimate

of the unknown vector, x. Its approach is similar to that of FBMP in the sense that the sparse vector is

described as a mixture of several components that are selected based on successive model reduction. It

also requires knowledge of the noise and signal statistics. However, it was found that the MMSE estimate

is insensitive to the a priori parameters and therefore an empirical-Bayesian variant that does not require

any a priori knowledge of the data was devised.

The Bayesian approaches mentioned above work successfully only for Gaussian priors. It is reasonable

to assume that any additive noise, generated at the sensing end, is Gaussian. However, assuming the signal

statistics to be Gaussian is inadequate, because the actual situation is not captured. Moreover, in situations

where the assumption of a Gaussian prior is valid, the parameters of that prior (mean and covariance)

need to be estimated, which is challenging, especially when the signal statistics are not i.i.d. In that

respect, one can appreciate convex relaxation approaches that are agnostic with regard to signal statistics.

In this paper, we pursue a Bayesian approach for sparse signal reconstruction that combines the

advantages of the two approaches. On one hand, the approach is Bayesian, acknowledging the noise

statistics and the signal sparsity rate, while on the other hand, the approach is agnostic on the signal

amplitude statistics. The approach can bootstrap itself and estimate the required statistics (sparsity rate

and noise variance) when they are unknown. The algorithm is implemented in a greedy manner and

pursues an order-recursive approach, helping it to enjoy low complexity. Specifically, the advantages of

our approach are as follows

1) The Bayesian estimate of the sparse signal is performed even when the signal prior is non-Gaussian

or unknown.

2) Signals whose statistics are unknown are dealt with. In fact, contrary to other methods, these

statistics need not be estimated, which is particularly useful when the signal statistics are not i.i.d.

Therefore, it is agnostic with regard to variations in signal statistics.

3) The a priori statistics of the additive noise and the sparsity rate of the signal, which can be easily
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estimated from the data if not available, are utilized.

4) The greedy nature of the approach and the order-recursive update of its metrics, make it simple.

The remainder of this paper is organized as follows. In Section II, we formulate the problem and

present the MMSE setup in the non-Gaussian/unknown statistics case. In Section III, we describe our

greedy algorithm that is able to obtain the approximate MMSE estimate of the sparse vector. Section IV

demonstrates how the greedy algorithm can be made faster by calculating various metrics in a recursive

manner. This is followed by Section V, which describes our hyperparameter estimation process. In Section

VI, we present our simulation results and in Section VII, we conclude the paper.

A. Notation

We denote scalars with small-case letters (e.g., x), vectors with small-case, bold-face letters (e.g., x),

matrices with upper-case, bold-face letters (e.g., X), and we reserve calligraphic notation (e.g., S) for

sets. We use xi to denote the ith column of matrix X, x(j) to denote the jth entry of vector x, and

Si to denote a subset of a set S. We also use XS to denote the sub-matrix formed by the columns

{xi : i ∈ S}, indexed by set S. Finally, we use x̂, x∗, xT, and xH to respectively denote the estimate,

conjugate, transpose, and conjugate transpose of the vector x.

II. PROBLEM FORMULATION AND MMSE SETUP

A. The Signal Model

The analysis in this paper considers obtaining an N × 1 sparse vector, x, from an M × 1 observations

vector, y. These observations obey the linear regression model

y = Φx + n (3)

where Φ is a known M×N regression matrix and n ∼ CN (0,Kn) is the additive Gaussian noise vector.

We shall assume that x has a sparse structure and is modeled as x = xA ◦ xB where ◦ indicates

Hadamard (element-by-element) multiplication. The vector xA consists of elements that are drawn from

some unknown distribution and the entries of xB are drawn i.i.d. from a Bernoulli distribution with

success probability p. We observe that the sparsity of vector x is controlled by p and, therefore, we

call it the sparsity parameter/rate. Typically, in Bayesian estimation, the signal entries are assumed to be

drawn from a Gaussian distribution but here we would like to emphasize that the distribution and color
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of the entries of xA do not matter.1

B. MMSE Estimation of x

To determine x, we compute the MMSE estimate of x given observation y. This estimate is formally

defined by

x̂mmse , E[x|y] =
∑
S
p(S|y)E[x|y,S] (4)

where the sum is executed over all possible 2N support sets of x. In the following, we explain how the

expectation E[x|y,S], the posterior p(S|y) and the sum in (4) can be evaluated.

Given the support S, (3) becomes

y = ΦSxS + n (5)

where ΦS is a matrix formed by selecting columns of Φ indexed by support S. Similarly, xS is formed

by selecting entries of x indexed by S. Since the distribution of x is unknown, the best we can do is to

use the best linear unbiased estimate (BLUE) as an estimate of x, i.e.,

E[x|y,S] =
(
ΦH
SΦS

)−1
ΦH
Sy (6)

The posterior in (4) can be written using the Bayes rule as

p(S|y) =
p(y|S)p(S)

p(y)
(7)

The probability, p(y), is a factor common to all posterior probabilities that appear in 3 and hence can

be ignored. Since the elements of x are activated according to the Bernoulli distribution with success

probability p, we have

p(S) = p|S|(1− p)N−|S| (8)

It remains to evaluate the likelihood p(y|S). If xS is Gaussian, p(y|S) would also be Gaussian and that

is easy to evaluate. On the other hand, when the distribution of x is unknown or even when it is known

but non-Gaussian, determining p(y|S) is in general very difficult. To go around this, we note that y is

formed by a vector in the subspace spanned by the columns of ΦS plus a Gaussian noise vector, n. This

1The distribution may be unknown or known with unknown parameters or even Gaussian. Our developments are agnostic
with regard to signal statistics.
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motivates us to eliminate the non-Gaussian component by projecting y onto the orthogonal complement

space of ΦS . This is done by multiplying y by the projection matrix P⊥S = I−ΦS
(
ΦH
SΦS

)−1
ΦH
S . This

leaves us with P⊥Sy = P⊥Sn, which is Gaussian with a zero mean and covariance

K = E[(P⊥Sn)(P⊥Sn)H]

= P⊥SE[nnH]P⊥S
H

= P⊥SKnP⊥S
H

(9)

where Kn is the noise covariance matrix. Thus,

p(y|S) ' 1√
(2π)MdetK

exp

(
−1

2

(
P⊥Sy

)H
K−1

(
P⊥Sy

))
(10)

Dropping the pre-exponential factor yields

p(y|S) ∝ exp

(
−
∥∥∥P⊥Sy

∥∥∥2
K−1

)
(11)

In the white noise case, n ∼ N (0, σ2nI), which we will focus on for the remainder of the paper, we have

p(y|S) ' exp

(
− 1

σ2n

∥∥∥P⊥Sy
∥∥∥2) (12)

Substituting (8) and (12) into (7) finally yields an expression for the posterior probability. In this way, we

have all the ingredients to compute the sum in (4). Computing this sum is a challenging task when N is

large because the number of support sets can be extremely large and the computational complexity can

become unrealistic. To have a computationally feasible solution, this sum can be computed over a few

support sets corresponding to significant posteriors. Let Sd be the set of supports for which the posteriors

are significant. Hence, we arrive at the following approximation to the MMSE estimate

x̂ammse =
∑
Sd

p(Sd|y)E[x|y,Sd] (13)

In the next section, we propose a greedy algorithm to find Sd. Before proceeding, for ease of representation

and convenience, we represent the posteriors in the log domain. In this regard, we define a dominant
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support selection metric, ν(S), to be used by the greedy algorithm as follows:

ν(S) , ln p(y|S)p(S)

= ln exp

(
− 1

σ2n

∥∥∥P⊥Sy
∥∥∥2)+ ln

(
p|S|(1− p)N−|S|

)
=

1

σ2n

∥∥∥ΦS(ΦH
SΦS)−1ΦH

Sy
∥∥∥2 − 1

σ2n
‖y‖2 + |S| ln p+ (N − |S|) ln(1− p) (14)

III. A GREEDY ALGORITHM

We now present a greedy algorithm to determine the set of dominant supports, Sd, required to evaluate

x̂ammse (13). We search for the optimal support in a greedy manner. We first start by finding the best

support of size 1, which involves evaluating ν(S) for S = {1}, . . . , {N}, i.e., a total of
(
N
1

)
search

points. Let S1 = {i?1} be the optimal support. Now, we look for the optimal support of size 2, which

involves a search of size
(
N
2

)
. To reduce the search space, we pursue a greedy approach and look for the

point i?2 6= i?1 such that S2 = {i?1, i?2} maximizes ν(S2). This involves
(
N−1
1

)
search points (as opposed

to the optimal search over
(
N
2

)
points). We continue in this manner by forming S3 = {i?1, i?2, i?3} and

searching for i?3 in the remaining N − 2 points and so on until we reach SP = {i?1, . . . , i?P }. The value

of P is selected to be slightly larger than the expected number of nonzero elements in the constructed

signal such that Pr(|S| > P ) is sufficiently small2. A formal algorithmic description is presented in Table

I and an example run of this algorithm for N = 7 and P = 4 is presented in Fig. 1.

One point to note here is that in our greedy move from Sj to Sj+1, we need to evaluate ν(Sj ∪{ij+1})

around N times, which can be done in an order-recursive manner starting from that of ν(Sj). Specifically,

we note that every expansion, Sj ∪ {ij+1}, from Sj requires a calculation of ν(Sj ∪ {ij+1}) from (14).

This translates to appending a column, φj+1, to ΦSj in the calculations of (14), which can be done in an

order-recursive manner. We summarize these calculations in Section IV. This order-recursive approach

reduces the calculation in each search step to an order of O(MN) operations down from O(MN2) in

the direct approach. Therefore, the complexity we incur is of the order O(PMN) in our greedy search

for the best P support.

A. A Repeated Greedy Search

It is obvious that to achieve the best signal estimate, Sd should contain all 2N possibilities of supports.

However, our greedy algorithm would result in an approximation of the signal estimate because it selects

2|S|, i.e., support of the constructed signal, follows the binomial distribution B(N, p), which can be approximated by the
Gaussian distribution N (Np,Np(1− p)) if Np > 5. For this case, Pr(|S| > P ) = 1

2
erfc P−Np√

2Np(1−p)
.
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TABLE I: The Greedy Algorithm

1) Initialize L = {1, 2, . . . , N}, Smax = {}, Sd = {}, i = 1, Li = L.
2) If i > P , then stop.
3) Generate Ω = {Smax ∪ {α1},Smax ∪ {α2}, · · · ,Smax ∪ {α|Li|} | αk ∈ Li}
4) Compute {ν(Sk) | Sk ∈ Ω}.
5) Find S? ∈ Ω, such that ν(S?) ≥ maxj ν(Sj).
6) Update, Sd = {Sd,S?}, Smax = S?, Li+1 = L \ S?.
7) Set i← i+ 1 and repeat steps 2 - 7.

Fig. 1: An example run of the greedy algorithm for N = 7 and P = 4

only a handful of supports. The accuracy of the reconstructed signal is dependent on the number of

support vectors in Sd and may be increased by repeating the greedy algorithm a number of times (e.g.,

D). This would result in Sd with D number of support vectors for each of the P sparsity levels (i.e., a

total of PD supports). The selection of supports in subsequent repetitions of the algorithm is performed

by making sure not to select an element at a particular sparsity level that has been selected at the same

sparsity level in any of the previous repetitions. We note that a repeated greedy search in this manner

would incur a complexity of order O(DPMN). For a detailed description of the steps followed by the

method, the pseudocode is provided in the Appendix and the nGpFBMP code is provided on the author’s

website3.

3The MATLAB code of the nGpFBMP algorithm and the results from various experiments discussed in this paper are provided
at http://faculty.kfupm.edu.sa/ee/naffouri/publications.html
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Remark

Let S(1)j and S(2)j be two different support vectors at the jth sparsity level. Note from (14) that if

ν(S(1)j ) > ν(S(2)j ) for some σ2n and p, then that inequality remains valid regardless of how σ2n and p

change. In other words, the selection of dominant supports at each sparsity level is independent of these

quantities. This observation helps the algorithm to bootstrap itself and to estimate the unknown sparsity

rate and noise variance, as demonstrated ahead.

IV. EFFICIENT COMPUTATION OF THE DOMINANT SUPPORT SELECTION METRIC

As explained in Section III, ν(S) requires extensive computation to determine the dominant supports.

The computational complexity of the proposed algorithm is therefore largely dependent upon the way

ν(S) is computed. In this section, a computationally efficient procedure to calculate this quantity is

presented.

We note that the efficient computation of ν(S) depends mainly on the efficient computation of the

term ξS =
∥∥(ΦS(ΦH

SΦS)−1ΦH
Sy
)∥∥2 = ‖ΦSE[x|y,S]‖2. Our focus is therefore on computing E[x|y,S]

efficiently.

Consider the general support S = {s1, s2, s3, . . . , sk} with s1 < s2 < · · · < sk and let S and S denote

the following subset and superset, respectively:

S = {s1, s2, s3, . . . , sk−1} S = {s1, s2, s3, . . . , sk+1} (15)

where sk < sk+1. In the following, we demonstrate how to update ey,k−1(S) , E[xS |y] to obtain4

ey,k(S) = E[xS |y]. Here, we use S to designate the supports and thus E[xS |y] refers to E[x|y,S]. We

note that

ey,k(S) =
(
ΦH
SΦS

)−1
ΦH
Sy =




ΦH
S

φH
sk

 [ΦSφsk

]

−1 

ΦH
Sy

φH
sky

 (16)

By using the block inversion formula to express the inverse of the above and simplifying, we get

4We explicitly indicate the size k of S in this notation as it elucidates the recursive nature of the developed algorithms.
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ey,k(S) =


1
fS

(
qH
φ,k(S)ey,k−1(S)− ey,1(sk)

)
eφ,k(S) + ey,k−1(S)

−1
fS

(
qH
φ,k(S)ey,k−1(S)− ey,1(sk)

)
 (17)

This recursion is initialized by ey,1(i) =
(
φH
s φs

)−1
φH
s y for i = 1, 2, . . . , N . The recursion also depends

on qφ,k(S) , ΦH
Sφsk , eφ,k(S) , (ΦH

SΦS)−1ΦH
Sφsk and fS , 1− qH

φ,k(S)eφ,k(S). The recursions for

qφ,k(S), and eφ,k(S) may be determined in a similar fashion as

eφ,k+1(S) =


1
fS

(
qH
φ,k(S)eφ,k(S; sk+1)− eφ,2(sk; sk+1)

)
eφ,k(S) + eφ,k(S; sk+1)

−1
fS

(
qH
φ,k(S)eφ,k(S; sk+1)− eφ,2(sk; sk+1)

)
 (18)

and5

qφ,k+1(S) =

ΦH
S

φH
sk

φsk+1
=

qφ,k(S; sk+1)

qφ,2(sk; sk+1)

 (19)

The two recursions (18) and (19) start at k = 2 and are thus initialized by eφ,2(s1; s2) and qφ,2(s1; s2) for

s1, s2 = 1, 2, . . . , N . This completes the recursion of ey,k(S) which we utilize for recursive evaluation

of ν(S) as

νk(S) =
1

σ2n
‖ΦSey,k(S)‖2 − 1

σ2n
‖y‖2 + |S| ln p+ (N − |S|) ln(1− p) (20)

V. ESTIMATION OF THE HYPERPARAMETERS p AND σ2n

One of the advantages of the proposed nGpFBMP is that it is agnostic with regard to signal statistics;

the only parameters required are the noise variance, σ2n, and the sparsity rate, p. In Section III, we pointed

out that the dominant support selection process is independent of parameters p and σ2n. We are therefore

able to determine the supports irrespective of the initial estimates of these parameters. The independence

of the dominant support selection process from p and σ2n allows accurate and rapid estimation of these

parameters. We note that although p and σ2n are not needed for support calculations, they are required

for computing the posteriors used in the calculation of x̂ammse in (13). To determine these estimates, we

might opt for finding the maximum-likelihood (ML) or maximum a posteriori (MAP) estimates using the

5Notation such as eφ,k(S; sk+1) is a short hand for eφ,k(S ∪ {sk+1}).
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expectation maximization (EM) algorithm. However, this will add to the computational complexity and

is unnecessary as a fairly accurate estimation could be performed in a very simple manner as follows.

The maximum a posteriori (MAP) estimate of support S is given by Ŝmap = arg maxSp(S|y). We

use this to get the MAP estimate of x, i.e., x̂map = E[x|y, Ŝmap]. This x̂map is in turn used to estimate

p, iteratively, as follows:

p̂(i+1) =
∥∥∥x̂(i)

map

∥∥∥
0
/N (21)

Here, the superscripts refer to a particular iteration. The estimate is computed iteratively where in the

first iteration of nGpFBMP, p̂(1) is initialized by pinit, the given initial estimate, to compute x̂
(1)
map. This is

used to find the new estimate, p̂(2), using (21) which is then supplied to nGpFBMP in the next iteration

to compute x̂
(2)
map. This process is repeated until the estimate of p changes by less than 2% or until a

predetermined maximum number of iterations has been performed. Simulation results show that, in most

cases, p̂ converges rapidly. At this stage, the estimate of the noise variance can be computed as follows:

σ̂2n = var(y −Φx̂map) (22)

We note that we do not need any iteration for estimating the noise variance. We use the x̂map corre-

sponding to the final estimate, p̂, to find σ̂2n.

VI. RESULTS

To demonstrate the performance of the proposed nGpFBMP, we compare it here with Fast Bayesian

Matching Pursuit (FBMP) [9] and the convex relaxation-based (l1) approach. The reason FBMP was

selected is that it was shown to outperform a number of the contemporary sparse signal recovery

algorithms, including OMP [13], StOMP [15], GPSR-Basic [16], and BCS [18]. Comparison with FBMP

shows that nGpFBMP performs where FBMP fails for various signal settings which are discussed in

detail in the following.

Signal Setup

Experiments were conducted for signals drawn from Gaussian as well as non-Gaussian distributions.

The following signal configurations were used for the experiments:

1) Gaussian (i.i.d. (µx = 10, σ2x = 2)).

2) Non-Gaussian (Uniform, non-i.i.d. (5 ≤ µx ≤ 10, 1 ≤ σ2x ≤ 2)).

3) Unknown distribution (for this example, different images with unknown statistics were used),
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where µx and σ2x refer to the mean and variance of the corresponding distributions, respectively.

Entries of M ×N sensing/measurement matrix Φ were i.i.d., with zero means and complex Gaussian

distribution where the columns were normalized to the unit norm. The size of Φ selected for the

experiments was M = 256, N = 1024. The noise had a zero mean and was white and Gaussian,

CN (0, σ2nIM ), with σ2n determined according to the desired signal-to-noise ratio (SNR). Initial estimates

of the hyperparameters used for the simulations were µx est = 0, σ2x est = 1
10 × σ

2
x, σ2n est = 10× σ2n, and

pest = 0.003, where estimates of the signal mean and variance were needed for FBMP.

In all of the experiments, parameter refinement was performed for both nGpFBMP and FBMP. For

FBMP, the surrogate EM method proposed by its authors was used to refine the hyperparameters. The

refinements were allowed to perform for a maximum of Emax = 10 iterations. For fairness, support and

amplitude refinement [3] procedures were performed on the results of the CS algorithm6. Finally, the

normalized mean-squared error (NMSE) between the original signal, x, and its MMSE estimate, x̂ammse,

was used as the performance measure:

NMSE = 10 log10

(
1

K

K∑
k=1

‖x̂k − xk‖2

‖xk‖2

)
(23)

where K was the number of trials performed to compute NMSE between x and its estimate.

Experiment 1 (Signal estimation performance comparison for varying SNR)

In the first set of experiments, NMSEs were measured for values of SNR between 0 dB and 30 dB

and plotted to compare the performance of nGpFBMP with FBMP and the CS algorithm. The signal

sparsity rate selected for these experiments was p = 0.005.

Figs. 2a and 2b show that the proposed method has better NMSE performance than both FBMP and

CS for all considered signals. Only at very high values of SNR does the NMSE performance of FBMP

approach that of nGpFBMP.

Experiment 2 (Signal estimation performance comparison for varying sparsity parameter p)

In a similar set of experiments, NMSE and mean runtime were measured for different values of sparsity

parameter p. The value of SNR selected for these experiments was 20 dB.

Figs. 3 and 4 demonstrate the superiority of nGpFBMP over FBMP and CS. Runtime graphs of Figs.

3 and 4 depict that the runtime of nGpFBMP increases for higher values of p. This occurs because the

6Actual parameter values were provided to the CS algorithm instead of estimates; furthermore, support and amplitude
refinement was also performed to demonstrate that, despite these measures, its performance was inferior to that of nGpFBMP.
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(a) NMSE vs SNR for uniform non-i.i.d. input (b) NMSE vs SNR for Gaussian i.i.d. input

Fig. 2: NMSE vs SNR graphs for uniform non-i.i.d. and Gaussian i.i.d. inputs

initial estimate of p was 0.003, and as the sparsity rate of x increased, more iterations were required

to estimate the value of p. With higher values of p, the difference in runtime is insignificant given the

excellent NMSE performance of our method. We also observe that performance of nGpFBMP is relatively

insensitive to changes in p as the corresponding changes in NMSE are very small, thus demonstrating

the strength of the proposed algorithm.

(a) NMSE vs p (b) Runtime vs p

Fig. 3: NMSE and average runtime vs p graphs for uniform non-i.i.d. input
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(a) NMSE vs p (b) Runtime vs p

Fig. 4: NMSE and average runtime vs p graphs for Gaussian i.i.d. input

TABLE II: Average NMSE (dB) comparison between FBMP and nGpFBMP when the initial estimates
of the hyperparameters are close to the actual values

Signal type FBMP nGpFBMP
Gaussian −20.55 −31.103

Uniform (i.i.d.) −24.2 −30.98

Uniform (non-i.i.d.) −23.87 −30

Experiment 3 (Comparison of signal estimates when the initial statistics of signal and noise are very

close to the actual values)

Table II compares the average NMSEs of FBMP and nGpFBMP for different types of signals when the

initial estimates (µx, σ2x, and σ2n) were chosen to be very near to their actual values. Since nGpFBMP

is independent of these initial estimates its performance did not change. On the other hand, performance

of FBMP improved, although it did not outperform nGpFBMP. The results show the robustness of our

algorithm as it is not dependent on the initial estimates of µx, σ2x, and σ2n. We note that each value in

Table II has been computed by averaging the results of 500 independent experiments.

Experiment 4 (Comparison of multiscale image recovery performance)

In another experiment, we carried out multiscale recovery of different images that were 128 × 128

pixels. These images are shown in the first row of Fig. 5. One-level Haar wavelet decomposition of

these images was performed, resulting in one ‘approximation’ (low-frequency) and three ‘detail’ (high-
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Fig. 5: Row 1: Original images used in the multiscale recovery experiment. Row 2: Reconstructed
images (inverse wavelet transform) once the wavelet-decomposed detail components were subjected to
the threshold. Rows 3 & 4: Reconstructed from random measurements using nGpFBMP and FBMP
respectively.

frequency) images. Unlike the approximation component, the detail components are compressible in

nature. We, therefore, generated their sparse versions by applying a suitable threshold; the noisy random

measurements were acquired later from the threshold versions. The detail components were reconstructed

from these measurements through nGpFBMP. Finally, inverse wavelet transform was applied to reconstruct

the images from the recovered details and the original approximations. Reconstruction errors and times

were recorded and, for comparison, recoveries were obtained using FBMP. The resulting reconstructed

images are shown in Fig. 5. Numerical details of the results for these experiments are given in Table III,

from which it is obvious that images reconstructed using nGpFBMP have lower NMSEs and require a

significantly shorter reconstruction time than does FBMP.

VII. CONCLUSION

In this paper, we presented a robust Bayesian matching pursuit algorithm based on a fast recursive

method. Compared with other robust algorithms, our algorithm does not require signals to be derived

from some known distribution. This is useful when we can not estimate the parameters of the signal

distributions. Application of the proposed method on several different signal types demonstrated its
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TABLE III: NMSE and Reconstruction time comparisons between FBMP and nGpFBMP for the test
images shown in Fig. 5

Image FBMP nGpFBMP
NMSE (dB) Time (s) NMSE (dB) Time (s)

Mondrian −16.68 19.36 −18.84 6.8

Fingerprint −9.97 19.24 −13.92 6.75

Facets −14.75 19.56 −19.30 7.01

superiority and robustness.
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APPENDIX

Algorithm: Non-Gaussian prior fast Bayesian matching pursuit

1) The following quantities are calculated one time and used in the following iterations
a) inner products of y with columns of Φ.
b) inner products of columns of Φ with each other.
c) ey,1(i) =

(
φH
i φi

)−1
φH
i y for i = 1, 2, . . . , N i.e. E[x|y,S] for each of the one-length support

vector. Note that the components of these calculations are available from steps 1a and 1b.
2) Calculate N one-element metrics, ν(S1), using ey,1 from the previous step for each of the possible

support elements αi, i ∈ [1, N ] as explained in Section III.
3) Perform the following search D times (each search has p = 1 : P stages)

a) At each pth stage:
i) Find the p-element metric, ν(Sp), with the maximum value and note down the correspond-

ing αi.
ii) If this αi has been selected in any of the previous pth stages, mark it and discard it and

go to step 3(a)i again.
iii) else update eφ,p using (18) for this newly selected position, αi, and add the corresponding
Sp as a new member of Sd.

iv) Save eφ,p to update its value in the next iteration.
v) Use eφ,p and ey,p to compute the update ey,p+1 (17) for all Sp+1 = [Sp αi], ∀i | αi /∈ Sp.

vi) Compute the dominant support selection metrics for all these combinations Sp+1 using
the computed ey,p+1. This yields (p+ 1)-element metrics ν(Sp+1) to be used in the next
iteration.

b) end p
4) Sd contains the dominant supports that will be used to find the sum in (13).
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