
Compressed Sensing Techniques for Receiver based

Post-Compensation of Transmitter’s Nonlinear

Distortions in OFDM Systems✩

Damilola S. Owodunnia, Anum Alia, Ahmed A. Quadeerb,
Ebrahim B. Al-Safadic, Oualid Hammia,∗, Tareq Y. Al-Naffouria,d

aKing Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia.
bThe Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong.

cUniversity of Southern California, Los Angeles, CA.
dKing Abdullah University of Science & Technology, Thuwal, Saudi Arabia.

Abstract

In this paper, compressed sensing techniques are proposed to linearize com-

mercial power amplifiers driven by orthogonal frequency division multiplexing

signals. The nonlinear distortion is considered as a sparse phenomenon in the

time-domain, and three compressed sensing based algorithms are presented to

estimate and compensate for these distortions at the receiver using a few and,

at times, even no frequency-domain free carriers (i.e. pilot carriers). The first

technique is a conventional compressed sensing approach, while the second in-

corporates a priori information about the distortions to enhance the estimation.

Finally, the third technique involves an iterative data-aided algorithm that does

not require any pilot carriers and hence allows the system to work at maxi-

mum bandwidth efficiency. The performances of all the proposed techniques

are evaluated on a commercial power amplifier and compared. The error vector
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magnitude and symbol error rate results show the ability of compressed sensing

to compensate for the amplifier’s nonlinear distortions.

Keywords: compressed sensing, data-aided estimation, nonlinear distortion,

orthogonal frequency division multiplexing, power amplifier.

1. Introduction

Emerging communication systems intensively use orthogonal frequency di-

vision multiplexing (OFDM) due to its numerous advantages such as high spec-

tral efficiency, robustness to frequency selective fading, etc, which make it very

attractive for the majority of communication systems. Due to its wide applica-

bility, it remains one of the most explored topics in communication engineering

[1–3]. However, OFDM signals often result in time-domain waveforms that have

a high peak to average power ratio (PAPR) of up to 10 dB. These amplitude

modulated signals are sensitive to the nonlinear distortions caused by the radio

frequency (RF) power amplifier (PA) of the RF front-end. Indeed, the PA needs

to linearly amplify the amplitude-modulated signals to avoid a high error vec-

tor magnitude (EVM) and symbol error rate (SER) which will translate into a

loss of information. Simultaneously, the power efficiency of the PA needs to be

maximized since the amplifier consumes most of the power in the RF front-end.

However, power amplifiers have a low power efficiency when they are operated

in their linear region, and their efficiency increases as they are driven into the

nonlinear region close to saturation. Practically, power amplifiers are operated

in their nonlinear region for power efficiency considerations. Then, the linear-

ity is restored by means of system level architectures and mainly linearization

techniques such as digital predistortion and feedforward implemented at the

transmitter side [4–8].

Linearization techniques have been widely used to compensate for the PA’s

nonlinear distortions at the transmitter side. Among the various linearization
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techniques, digital predistortion is commonly used. It consists of applying a

complementary nonlinearity (predistorter) before the nonlinear PA such that the

cascade of the predistorter and the amplifier behaves as a linear amplification

system [4]. Such a technique requires an accurate knowledge of the amplifier’s

nonlinearity and thus its implementation calls for the use of extra circuitry

which makes it unattractive for low power transmitters (up to a few watts)

where power consumption and computational complexity are primary concerns.

Besides predistortion, there has been quite a number of other techniques

proposed to combat the PA distortions at the transmitter through crest factor

reduction, including, coding schemes [9–11], companding transforms [12, 13],

tone reservation [14, 15], and constellation expansion [16, 17]. However, like

predistortion, these methods add a varying degree of complexity to the trans-

mitter which makes them inappropriate for applications where the transmitter

needs to be kept quite simple.

One of the suggested solutions, clipping [18], is of relatively low complexity

but introduces clipping noise that leads to performance degradation. Accord-

ingly, some receiver based techniques to estimate and correct these distortions

have been proposed [19–22]. Further, some receiver based techniques to mitigate

undeliberate clipping caused by analog-to-digital converters were also proposed

recently [23, 24]. In this work, a commercial PA is considered to be the source

of nonlinear distortion in contrast to the self introduced clipping. Thus, not

only the amplitude of the resulting signal is considered distorted but also its

phase. As will be shown later in this paper, the power amplifier’s nonlinear dis-

tortions can be considered as a sparse phenomenon in the time-domain. Hence,

in this case, the sparsity of the resulting clips is not under the system designer’s

control, as was the case in previous correspondences on receiver based clipping

estimation.
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Recently, there has been an increased interest in the recovery of sparse sig-

nals using compressed sensing (CS) [26–28]. The significance of CS lies in the

fact that it can reconstruct a sparse signal by utilizing a few linear projec-

tions over a basis that is incoherent with the basis in which the signal is sparse

[29–32]. Thus, CS can be applied to recover and then compensate for these

distortions using a few frequency-domain data-free or pilot carriers. The use

of a data-aided technique along with CS can further improve the bandwidth

efficiency by alleviating the need for frequency-domain free carriers. In such a

case, the amplifier’s distortions can be mitigated without using any frequency-

domain free carriers. In this work, a CS based approach is used to develop a

novel linearization technique that compensates for the power amplifier’s nonlin-

ear distortions. It is worth mentioning that, in [22], a CS based technique was

employed at the receiver to compensate for the clipping of the transmitted signal

that occurred at the transmitter. The knowledge of the clipping level was used

in estimating the clips at the receiver. In contrast, the present work reports a

blind nonlinearity estimation and cancellation technique which does not require

any knowledge of the transmitter’s nonlinearity parameters. Furthermore, both

CS and weighted CS algorithms are used to estimate and compensate for the PA

nonlinearities. Also, a novel approach using data-aided CS is proposed. This

technique is shown to outperform conventional CS approaches as it can recover

the nonlinear distortions with no need for free carriers. This will circumvent

the bandwidth limitation of conventional CS techniques that require free carri-

ers in order to estimate the amplifier’s distortions. The employment of CS at

the receiver, distinguishes the proposed approach from the work that attempts

to linearize the PA at the receiver using an iterative procedure requiring the

estimate of the nonlinear model characterizing the PA [25].

In this paper, measurement derived model of a commercial handset power
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amplifier is used to validate the proposed CS based distortion mitigation tech-

nique at the receiver. It is worth mentioning that the nonlinear operation of

the PA also causes out-of band emissions (also known as spectrum regrowth).

This power leakage is a concern for transmitters which are required to abide to

spectrum emission mask requirements. However, this work focuses primarily on

the compensation of in-band distortions. Further, as this work solely focuses

on the effects of amplifier’s distortions, the additional impairments and imper-

fections of the transmitter/receiver such as carrier frequency offset (CFO) or

timing phase offset (TPO) are not considered, as they can be easily estimated

and compensated for using preamble signals.

1.1. Paper Organization

This paper is organized as follows. Section 2 describes the device under test

(i.e. the PA) and the experimental setup used to carry out the measurements

in characterizing the PA. In Section 3, the transceiver model is presented. The

CS-based algorithm developed for the post-compensation of the PA’s nonlin-

ear distortions is proposed in Section 4. An enhanced data-aided CS algorithm

is reported in Section 5 to further improve the linearization performance and

bandwidth efficiency. The problem of channel estimation in presence of ampli-

fier’s nonlinear distortions is addressed in Section 6. A comparison between the

various proposed algorithms appears in Section 7. Conclusions are presented in

Section 8 and finally an appendix comparing CS with another sparse recovery

algorithm comes in Section 9.

1.2. Notation

Scalars are represented by lower-case letters (e.g. x), vectors by bold-face

lower-case letters (e.g., x), and matrices by bold-face upper-case letters (e.g. F).

The ith entry of a vector x is denoted by x(i) while a hat over a variable (e.g., x̂)

is reserved for its estimate. The frequency-domain variables are represented in
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upper-case calligraphic font (e.g. X) to differentiate them from the time-domain

ones. The transpose and complex conjugate transpose are represented by T and

H (e.g. xT and xH), respectively.

2. Experimental Setup and Device Under Test

The device under test (DUT) used in this work is a commercial PA from

RF Micro Devices, Greensboro, NC. The amplifier is designed for handset ap-

plications in the 1920MHz to 1980MHz frequency band. First, the AM/AM

and AM/PM characteristics of the DUT were measured using the experimental

setup presented in Figure 1. A 5MHz wide OFDM based input signal waveform

is downloaded into the signal generator that feeds the PA with the correspond-

ing RF signal centered around the 1950MHz carrier frequency. The output of

the DUT is then attenuated, and demodulated using a vector signal analyzer.

The baseband complex input and output waveforms are then used to derive a

behavioral model of the device under test. Since the DUT exhibits a memo-

ryless behavior, a look-up table (LUT) behavioral model is adopted. Indeed,

the proposed technique is intended for handset PAs which commonly exhibit

a memoryless behavior due to the bandwidth of the signals being transmitted.

The LUT model is derived from the measured AM/AM and AM/PM charac-

teristics using the exponential weighted moving average algorithm proposed in

[33]. The LUT model structure and its equations are described in [4]. This

model will be used for the simulations that will be discussed in the next sec-

tions. The measured AM/AM and AM/PM characteristics as well as the model

characteristics are reported in Figure 2. The low dispersion of the AM/AM and

AM/PM characteristics confirms the memoryless behavior of the DUT and the

suitability of the LUT behavioral model.
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3. Transceiver Model

In this section, the details of the transmitter, the PA, and the receiver models

used in the paper are presented.

3.1. Transmitter

In OFDM, the serial stream of data d to be transmitted is divided into N

parallel streams that are modulated using either phase-shift keying (PSK) or

quadrature amplitude modulation (QAM) to obtain a set of N data symbols,

X = [X(0) X(1) · · ·X(N−1)]. The time-domain signal that serves as an input to

the PA is obtained by performing an inverse discrete Fourier transform (IDFT)

operation on X

x = FHX (1)

where F denotes the unitary discrete Fourier transform (DFT) matrix with

(a, b)th element

Fa,b =
1√
N

e−j2πab/N , a, b ∈ {0, 1, · · · , N − 1},

Furthermore in OFDM systems, a cyclic prefix is appended to x to avoid inter-

symbol interference. This signal then passes through the PA before transmis-

sion.

3.2. Power Amplifier

The model used for the PA has been described in Section 2.

Based on Bussgang’s theorem [34], a generic formula relating the power

amplifier’s output signal to its input is given by:

xp = αx+ xc (2)

where α is a constant amplification value that corresponds to the PA’s small

signal gain (which can be obtained from the measured AM/AM and AM/PM
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characteristics of the amplifier) and xc represents the distortion added to the

amplified signal. The input-output relationship presented in equation (2) is ap-

plicable to any amplifier and can be easily derived from the standard equation

typically used to describe the LUT model. However, the generic relation pre-

sented by equation (2) was preferred since it is more suitable for the calculations

required by the compressive sensing technique.

Figure 3(a) shows a sample snapshot of the amplifier’s scaled input, αx, and

output, xp, while the distortion, xc = xp − αx is shown in Figure 3(b). From

both figures, the largest and hence, most problematic distortions are observed

at instances when the input signal is of high amplitude but some small nonlin-

earities also appear even at low amplitudes of the input signal thus making the

added distortion signal, xc only approximately sparse — or, in proper terms,

compressible. This is one difference between the simple clipping model and the

more general PA distortion. In the former, hard-clipping is involved and the

signal is clipped at a particular threshold value such that the resulting distor-

tion (i.e. the clipped signal) is sparse (i.e. only relatively very few non-zero

values occur at the clipping locations). Due to this, the location of the clipping

could be estimated, with high accuracy, from the clipped signal. However, in

the case of amplifier distortions, nonlinearities of varying degrees are introduced

at all signal levels due the amplitude-variant distortion caused by the amplifier

itself. The work in [22] shows that CS performs well for the simpler case of

hard-clipping. Looking at the amplifier characteristics plotted in Figure 2, it

is expected that only the highest amplitudes of input signals will be severely

distorted.

A block diagram showing fundamental building blocks of the transmitter is

presented in Figure 4. Free Carriers are inserted and data is modulated before

performing the IDFT operation, which results in the time domain signal x. This

8



time domain signal is then passed through the PA to obtain the signal ready

for transmission.

3.3. Receiver

The time-domain received signal is modeled as

yh = Hxp + zh (3)

where yh ∈ C
N

is the time-domain received OFDM symbol (after removing

the cyclic prefix) and zh is the circular complex additive white Gaussian noise

(AWGN), zh ∼ CN(0, σ2
zhI), where σ2

zh is the variance of noise samples. In

OFDM systems, the linear convolution between the transmitted data, xp, and

the channel impulse response (CIR), h = [h(0), h(1), · · · , h(L− 1)]T, is con-

verted into a cyclic convolution due to the presence of the cyclic prefix. The

cyclic prefix length is assumed to be greater than L to avoid inter-symbol in-

terference. Thus, H denotes the circulant channel matrix in (3) that can be

decomposed as, H = FHΛF,where Λ = diag(H), and H =
√
NFh is the DFT

of the CIR. Using this fact and taking the DFT of both sides of (3) yields

Yh = ΛFxp + Zh (4)

where Yh and Zh are the DFT’s of yh and zh respectively.

Let us focus on the development of the proposed scheme with the assumption

that the CIR is perfectly known at the receiver. How this information can be

obtained is addressed in Section 6. The frequency-domain received signal (after

equalization) is given by

Y = Fxp + Z (5)

where Y = Λ−1
Yh and Z = Λ−1

Zh. It is worth mentioning that the minimum

mean square error (MMSE) equalization may yield better results than zero

forcing (ZF) or least square (LS) but in this work LS equalizer is implemented.
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Substituting the value of xp from (2) in (5) yields

Y = αFx+ Fxc + Z (6)

The time-domain equivalent of the received signal can thus be written as

y = αx + xc + z (7)

where y is the IDFT of Y and z is the IDFT of Z and has the same distribution

of Z since F is unitary.

4. Post-Compensation using Compressed Sensing

In this paper, the PA nonlinear distortions, xc, are estimated using CS based

techniques by exploiting the free carriers inserted in the OFDM symbol. Let ω

of cardinality |ω| = N be the set of all carriers available in the OFDM symbol

and ωP ⊂ ω of cardinality |ωP | = P with P < N denote the set of free or

pilot carriers that will be used to estimate xc. As we use CS-based techniques

to estimate xc, it is desirable for the P free carriers to be randomly placed [29]

and known to the receiver. Let D be the number of active tones used for data

transmission with D = N − P and define SD as a binary selection matrix (of

size N ×D) with only one non-zero element equal to 1 per row and column that

selects the data carriers and all zero rows with indices belonging to ωP . Then,

the time-domain OFDM signal in (1) can be re-defined as

x = FHSDXD (8)

whereXD is theD×1 frequency-domain modulated data vector. The frequency-

domain received signal (6) is thus modified as

Y = αSDXD + Fxc + Z (9)
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Let us denote by SP the selection matrix (of size N × P ) that spans the or-

thogonal complement of the columns of SD (i.e. SP is a binary matrix of size

N × P with only one non-zero element equal to 1 per row and column and all

zero rows with indices belonging to (ω − ωP ). The distortion xc is estimated

by projecting Y on ST

P as follows

YP = ST

PY = ST

PFxc + ZP (10)

where ZP = ST

PZ is a Gaussian vector of length P . For notational convenience,

we re-write the above equation as

YP = ΨPxc + ZP (11)

where ΨP
∆
= ST

PF is a measurement matrix of size P ×N .

4.1. Compressive Sensing (CS)

Note that (11) forms an under-determined system of linear equations as

xc ∈ C
N

and YP ∈ C
P

with P < N and hence cannot be solved by using the

conventional linear techniques. This is in fact a typical CS problem when it is

known a priori that the signal of interest xc is sparse [29–32]. This problem

can be solved by using the convex relaxation approach that solves an ℓ1-norm

minimization problem using linear programming [29]. Following the notation

used in the paper, the problem can be casted as

minimize ‖xc‖1,

subject to ‖YP −ΨPxc‖2 ≤ ǫ (12)

where ǫ =

√

σ2
z(P +

√
2P ) [35]. It is important to mention here that the above

convex relaxation approach is used to estimate xc from (11) in this paper but

any other CS-based technique (for example, Bayesian methods [36–38], and

matching pursuits [39–41]) can be utilized.
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After obtaining an estimate of the distortion, x̂c, using CS, an estimate of

the distortion-free signal can be obtained as follows

αx̂ = y − x̂c (13)

The signal, αx̂ is then scaled down by a factor of α and then transformed

by a DFT operation to the frequency-domain data signal, X̂. Finally, this is

demodulated to obtain an estimate of the transmitted data, d̂. A block diagram

of a typical receiver based on CS for nonlinear distortion estimation is shown in

Figure 5.

4.2. Weighted CS (WCS)

If one has some a priori information related to the sparse signal xc, an

alternative approach to (12) can be pursued by penalizing the less probable

locations of xc as follows [42]

minimize ‖wTxc‖1,

subject to ‖YP −ΨPxc‖2 ≤ ǫ (14)

where w is a vector consisting of weights for each location in xc.

As discussed in Section 3.2, the nonlinearity of any PA increases with an

increase in amplitudes of its input signal. Thus the major distortions caused by

the PA occur at the locations where the input amplitude is large. Accordingly,

we can define w to be the inverse of the magnitude of the received signal y, i.e.

w(n) =











1
|y(n)| , y(n) 6= 0,

∞, y(n) = 0.
(15)

where n = 1, 2, ..., N . This way, the small entries in w correspond to the most

probable locations where the PA might have distorted the signal and thus, this

forces (14) to concentrate on them.
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4.3. Simulation Setup and Results

In all the simulations presented in the paper, the number of subcarriers

is fixed at N = 256 and a 64QAM modulation scheme is employed. Unless

otherwise stated, the number of free carriers P is set to 10% of N . The PA is

represented by its measured LUT based model as described in Section 2.

The following two performance measures are used for comparing the pro-

posed techniques:

• Error Vector Magnitude (EVM) [43, 44]:

EVM =

√

√

√

√

1
N

∑N
r=1

∣

∣X(r)− X̂(r)
∣

∣

2

1
N

∑N
r=1

∣

∣X(r)
∣

∣

2 (16)

where X(r) and X̂(r) are the original and estimated data symbols respec-

tively.

• Symbol Error Rate (SER):

SER =

∑

symbol errors (comparing d and d̂)

total number of symbols in d
(17)

Both performance measures are plotted as functions of the SNR ranging from

15 dB to 35 dB. The SNR is given by:

SNR =
σ2
z

σ2
xp

(18)

where σ2
z and σ2

xp
are the variances of the noise and PA output signal,

respectively. In all cases, the performance is upper bounded by the case when

no nonlinear distortion estimation procedure is used at the receiver and is lower

bounded by the case when the PA is assumed to be perfectly linear, i.e. when

xp = αx. It is worth mentioning that, the performance in the case of linear PA

is limited by the presence of the AWGN noise.
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The EVM and SER performances of CS (12) and WCS (14) are compared in

Figure 6 for free carriers ranging from 10% to 20% of N . As expected, it can be

observed that increasing the number of free carriers enhances the performance

of both CS and WCS. It can also be easily seen that WCS outperforms CS

for the same number of free carriers. In fact, the performance of WCS with

15% free carriers is even better than CS with 20% free carriers. This shows

the advantage of incorporating the a priori information of the power amplifier’s

behavior in estimating the nonlinear distortions1.

5. Data-Aided CS Algorithm

One disadvantage of the previous algorithm is that a few carriers need to be

reserved and be used for estimating the distortion. This causes a reduction in

the available bandwidth. In this section, a data-aided algorithm is presented.

This algorithm utilizes reliable data to aid in CS estimation. The advantages of

the proposed iterative approach, labelled “Data-Aided CS (DACS) algorithm”,

are twofold:

• It enhances the performance of the CS/WCS algorithms (presented in the

previous section).

• It helps increase the bandwidth efficiency of the system (by reducing the

number of free or pilot carriers required) with a nominal increase in the

receiver complexity.

5.1. Algorithm Description

This algorithm is based on the assumption that even after the nonlinear

distortions caused by the PA, a part of the data samples still remains within its

corresponding decision regions. Let ωR ⊂ ω of cardinality |ωR| = R denote the

1The advantage of using CS algorithm (especially in the case of WCS) over other sparse
signal reconstruction schemes is highlighted in Appendix.
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set of these carriers in which the perturbations are not severe i.e. the carriers are

reliable. In other words, the noisy and perturbed data samples would remain in

the decision regions of their respective constellation points, so that the following

would hold with high probability

X̂R = XR (19)

where X̂R is the estimated data at the reliable carriers. The equation of the

received signal given in (6) can be written as

Y = αX+ Fxc + Z (20)

where X is the FFT of x.

Let SR be a binary selection matrix (of size N ×R) with only one non-zero

element equal to 1 per column that selects the reliable carriers. Multiplying

both sides of (20) by ST

R yields

ST

RY = αST

RX+ ST

RFxc + ST

RZ (21)

which, following the convention used in equations (10) and (11), can be written

as

YR = αXR +ΨRxc + ZR (22)

where YR = ST

RY, XR = ST

RX, and ZR = ST

RZ.

The perturbations, ΨRxc+ZR, at the reliable carriers do not push the data

outside the reliable regions. In other words, if we divide YR by α and round to

the nearest decision region, we get XR, i.e.

⌊

1

α
YR

⌋

= XR

or α

⌊

1

α
YR

⌋

= αXR (23)

where the ⌊·⌋ operator denotes rounding to the nearest neighbor. Thus, we can
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write (22) as

YR − αXR = ΨRxc + ZR

or

UR = ΨRxc + ZR (24)

where UR = YR − α⌊ 1
αYR⌋. It is important to note that it is not needed to

determine all reliable carriers, ωR, rather, it is sufficient to determine a subset of

these carriers, ωR′ ⊂ ωR and use them (Here onwards, R′ is used to distinguish

the variables corresponding to the subset ωR′ , from the variables corresponding

to the set ωR). The system of equations (24) can be solved using a CS-based

approach similar to (12) as follows

minimize ‖xc‖1,

subject to ‖UR′ −ΨR′xc‖2 ≤ ǫ (25)

The above procedure can be repeated jmax times to further enhance the perfor-

mance as follows.

1. Let X̂
j
be the jth estimated modulated data vector (obtained by taking

the DFT of x̂).

2. Compare X̂
j
with the P size constellation points and obtain the R′ reliable

carriers.

3. Find SR′ , UR′ and ΨR′ based on R′.

4. Evaluate (25) to obtain x̂j
c.

5. Obtain x̂j+1 = x̂j − x̂j
c.

6. Repeat step 2-5 till j = jmax.

Figure 7 illustrates the receiver design based on DACS algorithm. Note that

the above procedure can also be applied to the case when no free carriers are
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used for CS estimation in the first iteration. In this case, the algorithm will

highly rely on the set of reliable carriers available.

5.2. Constructing ωR′

In the following, we pursue a geometrical approach to select the most reliable

set of carriers from the observed data.

In order to explain the adopted approach, we consider as a motivating exam-

ple the constellation shown in Figure 8. Here X̂1 and X̂2 are two equalized data

samples which are equidistant from the closest constellation point, X. However,

in spite of being equidistant from X, X̂1 and X̂2 have different reliability values.

This is because the distances of these two points from their respective next near-

est neighbors are different. Specifically, note that Xa is next nearest neighbor

of X̂1 and Xc is next nearest neighbor of X̂2 respectively. Note also that, given

that X̂1 and X̂2 are equidistant from X, it is clear that X̂2 is more reliable than

X̂1 and in relative terms we have

|X̂2 − X|
|X̂2 − Xc|

<
|X̂1 − X|
|X̂1 − Xa|

(26)

This motivates the following reliability matrix R(n),

R(n) = − log

(

|X̂− ⌊X̂⌋|
|X̂− ⌊X̂⌋NN |

)

(27)

where, as defined before, ⌊X̂⌋ denotes rounding to the nearest constellation point

while ⌊X̂⌋NN denotes rounding to the next nearest constellation point.

Thus, it is possible to calculate the reliability of all N − P carriers (or N

carriers in the case when no free/pilot carriers are used), sort the reliabilities in

descending order R(n1) ≥ R(n2) ≥ · · · ≥ R(nN−P ) and choose the R′ carriers

with the highest reliability ωR′ = {n1, n2, . . . , nR}.
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5.3. Simulation results

Figure 9 compares the performance of DACS algorithm with WCS for vary-

ing number of free carriers, reliable carriers, and iterations. In the cases studied,

whenever free carriers are reserved, WCS (14) instead of plain CS is used for

distortion estimation before implementing the DACS algorithm. The number

of reliable carriers R′ for DACS is either 30% or 40% of N − P and a maxi-

mum of j = 2 DACS iterations is used. Here also, the performance is lower

bounded by the linear PA case, in which AWGN is the limiting factor. It can

be observed that DACS with 2 iterations easily outperforms WCS. Moreover,

the performance of DACS with 40% reliable carriers is better than the one with

30% reliable carriers. It is important to note here that the performance can

be improved further by using more reliable carriers at the expense of increased

receiver complexity. The performance of the bandwidth efficient case (when no

free carriers are used, i.e., P = 0) is also presented in Figure 9. Thus in this case,

the estimate in the first iteration also depends on the credibility of the reliable

carriers. It can be observed from the EVM plot that with 2 iterations, DACS

with 40% reliable carriers outperforms both WCS and DACS (with 10% free

carriers and 1 iteration). This shows the trade-off between bandwidth efficiency

and computational complexity at the receiver end.

In Figure 10, the EVM performances of all the algorithms presented in the

paper are compared as a function of the number of free carriers. The target

EVM requirement is set to 8%. Indeed, this value is consistent with the standard

requirements for the same modulation type (64QAM) in LTE standard [45].

The SNR is fixed at 25 dB (Note that all the algorithms meet the minimum

EVM requirement if the SNR is increased to 30 dB). It can be observed that

CS and WCS do not meet the minimum EVM requirement even with 20% free

carriers. In Figure 10, there are no data points for 0 carriers for CS and WCS as
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these two algorithms cannot work without free carriers. The trend of the plot

indicates that they can meet the requirement if more free carriers are utilized.

It also demonstrates that DACS algorithms with 40% reliable carriers meet the

minimum EVM requirement even when no free carriers are used.

6. Channel Estimation in Presence of PA’s Nonlinear Distortions

In OFDM communication systems, the channel can be estimated at the

receiver with the help of pilot signals. As the equi-spaced formulation of the

pilot carriers is found to be optimal, uniformly spaced pilot sub-carriers are

chosen for channel estimation [46–48]. Based on transmitted pilot sequence LS

or MMSE estimation is utilized to estimate the channel at the receiver [49].

However, the use of simple pilot based MMSE for channel estimation yields

sub-optimal results when the transmitted signal contains nonlinear distortions.

This is because the pilots used as a reference for LS or MMSE estimation are

all corrupted by the nonlinear distortions.

The problem of channel estimation in the presence of deliberate clipping is

addressed in [50]. The idea is to utilize the knowledge of clipping threshold at

the receiver to reconstruct the clipped transmitted signal and use clipped pilots

as a reference for MMSE to improve the channel estimation. However, doing so

for the nonlinear distortion problem on hand will require the exact knowledge of

the characteristics of the PA (i.e. the LUT of the PA) at the receiver, which is

generally not available. In this situation the following strategy based on MMSE

estimation using the reliable carriers can be used to improve channel estimation.

In the proposed channel estimation scheme, initially the MMSE channel

estimate ĥmmse is obtained based on the transmitted pilot sequence. Ignoring

the nonlinear distortions in equation (4), we can write the received signal as

Yh = αΛFx+ Zh (28)
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We can reduce this system of equation to the one containing only the pilot

sub-carriers, and hence we write

Yp,h = αΛpFpxp + Zp,h (29)

Here onwards for notational simplicity, we drop the subscript h and write equa-

tion (31) simply as Yp = ΛpFpxp + Zp. For MMSE estimation, we need to

know the autocorrelation RYpYp
and the cross-correlation RYph

. These can be

found if we rewrite Yp as

Yp = XpHp + Zp (30)

The last equation results when we replace the channel diagonal matrix Λp with

a column vector Hp (Λp contained Hp on its diagonal). We also replaced

the column vector Fpxp with a diagonal matrix Xp (Xp contains Fpxp on its

diagonal). Further we can write Hp =
√
NFph to finally get

Yp = α
√
NXpFph+ Zp (31)

Now the autocorrelation RYpYp
is found to be

RYpYp
= α2Nσ2

hXpFpF
H

pX
H

p + σ2
zI (32)

here the noise z and the channel h are assumed uncorrelated. Further, all taps

of the channel vector h are assumed independent and identically distributed

(i.i.d) with variance σ2
h. The cross correlation is found as

RYph
= α

√
Nσ2

hXpFp (33)

Here, using the MMSE estimate, we can find the ĥmmse as given below

ĥmmse = α
√
NRYphR

−1
YpYp

Yp (34)

The received data Yh can now be equalized using ĥmmse, and reliable carriers
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are found based on the procedure given in Section 5. The maximum likelihood

decisions, as given in equation (23), on the reliable sub-carriers can now be

used as additional pilots for MMSE estimation. Using the additional pilots will

result in improved MMSE estimate of the channel which can again be utilized

for equalization, and this procedure can be iterated. It is worth mentioning that

the reliable carriers are playing a dual role, as they are used both for enhancing

the channel estimation as well as enhancing the recovery of nonlinear distortions.

The proposed channel estimation scheme is summarized below:

1. Obtain the MMSE channel estimate ĥmmse based on transmitted pilots as

given in equation (34).

2. Equalize the received data using ĥmmse.

3. Find reliable carriers by the procedure given in Section 5.

4. Obtain the improved MMSE estimate based on the transmitted pilots and

the reliable data carriers as additional measurements.

5. Repeat 2-4.

Note that the proposed channel estimation scheme does not rely on iterative

channel estimation and distortion mitigation. Rather, the improved channel

estimation accuracy by the proposed scheme is expected due to the increased

number of measurements by virtue of reliable carriers.

For the experiments, a 4-tap rayleigh fading channel is used, where all taps

are complex i.i.d and come from a Gaussian distribution. To estimate the chan-

nel 16 equi-spaced sub-carriers are pre-allocated as pilot signals. The channel

estimation results for the proposed scheme are presented in Figure 11. The

mean square error (MSE) results for the simple MMSE and the MMSE aided

by the reliable carriers are compared in Figure 11(a). It can be observed from

the results that the proposed scheme improves the channel estimation accuracy

by more than 3dB throughout the range of interest. Further the SER results
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are shown in Figure 11(b). It can be observed that the first iteration of the

proposed scheme significantly enhances the performance of the channel estima-

tion in comparison with MMSE estimation based on the pilots. However, in the

current scenario the channel estimation accuracy of the proposed scheme satu-

rates on the second iteration and no further enhancement is achieved. Also, it

is observed that the proposed distortion cancellation scheme based on CS works

effectively even when the channel is estimated in the presence of inband non-

linear distortions. However, there is some loss in performance due to channel

estimation error.

7. Algorithms Benchmarking

In Table 1, the performance expressed in terms of EVM values are compared,

at an SNR of 35dB, for the various algorithms presented in the paper alongside

the cost, in terms of execution time and bandwidth, of each. The EVM values

were calculated as described in Section IV.B, while the bandwidth efficiencies

and execution times of the algorithms were calculated with respect to those of

the DACS with 40% reliable carriers.

In Table 1, it is worth mentioning that using WCS with 20% pilot carriers

performs better than WCS with just 10% carriers. This is because the more

free pilots are available, the more measurements will be available for use in the

CS/WCS algorithm and thus, the better the estimate of the distortion becomes.

However, this also implies a reduction in the bandwidth left for the actual data

transmission and an increase in the time needed to run the algorithm as reported

in Table I. To improve bandwidth efficiency, DACS was used, which, unlike

WCS, does not require free carriers and thus allows a full use of the system

bandwidth. But in order to achieve a reasonable performance improvement

using DACS, about 40% of the data carriers needed to be used for measurements

and this leads to an increase in the execution time as it can be noticed in rows 3
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and 4 of Table 1. Also, it is important to note that the performance of the first

iteration of the DACS algorithm (without a previous implementation of WCS)

is relatively poor. This is a result of the low amplitude of the measurements

in the first set of data carriers selected. However, the second iteration gives a

significant performance improvement since the second set of data carriers used

offer measurements of larger amplitudes. From a designer’s point of view, it is

important to highlight that looking at Table 1 and choosing the most suitable

algorithm from the proposed schemes, depends on the limitations imposed by

the system on hand and the design requirements. If bandwidth efficiency is of

utmost importance, DACS with 2 iterations provides the best possible results.

However, if computational costs are to be kept to the minimum WCS with 20%

free pilots is a good choice.

8. Conclusion

In this paper, the nonlinear distortion caused by the PA, considered as one

of the main problems in any OFDM-based system, has been addressed. As the

nonlinear distortion is a sparse signal in time-domain, it has been shown that

CS-based techniques can be employed to estimate it at the receiver. Specifically,

three algorithms have been presented to mitigate the nonlinear distortions. The

paper started with the basic CS approach that utilizes frequency-domain free

carriers which was followed by weighted CS method that uses the a priori in-

formation according to which the high amplitude signals are more probable to

be distorted by the PA. An iterative data-aided CS-based method that utilizes

the reliable data carriers to improve the estimation process has also been pro-

posed. It has been shown that this approach can provide good estimation of the

nonlinear distortion without even wasting any bandwidth for free carriers. The

results demonstrate the favorable performance of the proposed algorithms for

commercial power amplifiers. The benchmarking of proposed schemes investi-
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gated in this work, provides valuable guidelines to the designer on choosing the

most suitable algorithm depending on requirement.

9. Appendix

In order to justify the use of CS instead of other sparse-recovery algorithms,

we compare in this section the performance of WCS against that of the Fast

Bayesian Matching Pursuit (FBMP) algorithm [38] using the EVM performance

criterion.

As it can be seen in Figure 12, WCS performs better than FBMP at both

high and low SNR values. As a matter of fact, FBMP does worse when the SNR

is low.
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Figure 1: Experimental setup for DUT characterization.
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Figure 2: Measured and fitted characteristics of the amplifier. (a) AM/AM
characteristics. (b) AM/PM characteristics.32
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Figure 3: Sample snapshots. (a) PA input (scaled) and output, showing nonlin-
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Figure 4: Simplified block diagram of the transmitter.
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Figure 5: Compressive sensing implementation at the receiver.
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Figure 7: Data-aided compressive sensing implementation at the receiver.
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Figure 8: Graphical explanation of the adopted reliability criterion.
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Table 1: Comparison of CS algorithms

Algorithm
Implemented

Bandwidth
Efficiency (%)

Execution
Time (%)

EVM (%)

WCS (10% pilots) 90 32.0 7.3014

WCS (20% pilots) 80 53.5 5.9608

WCS (10% pilots)
+ DACS (40% carriers)

90 74.0 6.9705

DACS (1 iter. 40% carr.)
[No WCS]

100 74.0 8.2075

DACS (2 iter. 40% carr.)
[No WCS]

100 100 5.3392
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