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Abstract—Sparse signal reconstruction algorithms have at-
tracted research attention due to their wide applications in
various fields. In this paper, we present a simple Bayesian
approach that utilizes the sparsity constraint and a priori
statistical information (Gaussian or otherwise) to obtain near
optimal estimates. In addition, we make use of the rich structure
of the sensing matrix encountered in many signal processing
applications to develop a fast sparse recovery algorithm. The
computational complexity of the proposed algorithm is relatively
low compared with the widely used convex relaxation methods
as well as greedy matching pursuit techniques, especially at a
low sparsity rate.1

I. INTRODUCTION

Compressive Sensing/Compressed Sampling (CS) is a fairly

new field of research that is finding many applications in

statistics and signal processing [1]. As its name suggests,

CS attempts to acquire a signal (inherently sparse in some

subspace) at a compressed rate by randomly projecting it

onto a subspace that is much smaller than the dimension of

the signal itself. Provided that the sensing matrix satisfies

a few conditions, the sparsity pattern of such a signal can

be recovered non-combinatorially with high probability. This

is in direct contrast to the traditional approach of sampling

signals according to the Nyquist theorem and then discarding

the insignificant samples. Generally, most naturally occurring

signals are sparse in some basis/domain and CS can there-

fore be utilized for their reconstruction. CS has been used

successfully in, for example (but not limited to), peak-to-

average power ratio reduction in orthogonal frequency division

multiplexing (OFDM) [2], image processing (one-pixel camera

[4]), impulse noise estimation and cancellation in power-

line communication and digital subscriber lines (DSL) [5],

1This work was partially supported by SABIC through an internally funded
project from DSR, KFUPM (Project No. SB101006) and partially by King
Abdulaziz City for Science and Technology (KACST) through the Science
& Technology Unit at KFUPM (Project No. 09-ELE763-04) as part of the
National Science, Technology and Innovation Plan. The work of T. Y. Al-
Naffouri was also supported by the Fullbright Scholar Program. Part of this
work was presented at the Allerton Conference on Communications, Control
and Computing, USA.

magnetic resonance imaging (MRI) [6], channel estimation in

communications systems [7], ultra-wideband (UWB) channel

estimation [8], direction-of-arrival (DOA) estimation [9], and

radar design [10], to name a few.
The CS problem can be set up as follows. Let x ∈ C

N be
a P -sparse signal (i.e., a signal that consists of P non-zero
coefficients in an N -dimensional space with P << N ) in
some domain and let y ∈ C

M be the observation vector with
M << N given by

y = Ψx+ n (1)

where Ψ is an M × N measurement/sensing matrix that
is assumed to be incoherent with the domain in which x
is sparse and n is complex additive white Gaussian noise,
CN (0, σ2

nIM ). As M << N , this is an ill-posed problem as
there is an infinite number of solutions for x satisfying (1).
Now if it is known a priori that x is sparse, the theoretical way
to reconstruct the signal is to solve an �0-norm minimization
problem using only M = 2P measurements when the signal
and measurements are free of noise [11]

x̂ = min
x

‖x‖0 subject to y = Ψx. (2)

Unfortunately, solving the �0-norm minimization problem is
NP-hard [11] [12] and is therefore not practical. Thus, different
sub-optimal approaches, categorized as compressive sensing,
have been presented in the literature to solve this problem. In
[12] and [13], it has been shown that x can be reconstructed
with high probability in polynomial time by using convex
relaxation approaches at the cost of an increase in the required
number of measurements. This is done by solving a relaxed � 1-
norm minimization problem using linear programming instead
of �0-norm minimization [12], [13]

x̂ = min
x

‖x‖1 subject to ‖y −Ψx‖2 ≤ ε (3)

where ε =
√

σ2
n(M +

√
2M). For �1-norm minimization to

reconstruct the sparse signal accurately, the sensing matrix,

Ψ, should be sufficiently incoherent. In other words, the

coherence, defined as μ(Ψ)
�
= maxi�=j |〈ψiψj〉|, should be

as small as possible (with μ(Ψ) = 1 depicting the worst case)

[12]. In [14], it has been shown that these convex relaxation

approaches have a Bayesian rendition and may be viewed as

maximizing the maximum a posteriori estimate of x, given

that x has a Laplacian distribution. Although convex relaxation
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approaches are able to recover sparse signals by solving under-

determined systems of equations, they also suffer from a

number of drawbacks (some of which are common to other

sparse recovery algorithms including [16]-[19]) that we discuss

below.

A. Drawbacks of Convex Relaxation Approaches

1) Complexity: Convex relaxation relies on linear program-

ming to solve the convex �1-norm minimization problem,

which is computationally relatively complex (its complexity is

of the order O(M 2N3/2) when interior point methods are used

[37]). This approach can therefore not be used in problems

with very large dimensions. To overcome this drawback,

many greedy algorithms have been proposed that recover the

sparse signal iteratively. These include Orthogonal Matching

Pursuit (OMP) [15], [16], Regularized Orthogonal Match-

ing Pursuit (ROMP) [17], Stagewise Orthogonal Matching

Pursuit (StOMP) [18], and Compressive Sampling Matching

Pursuit (CoSamp) [19]. These greedy approaches are relatively

faster than their convex relaxation counterparts (approximately

O(MNR) where R is the number of iterations).

2) The need for randomness in the sensing matrix: Convex

relaxation methods cannot make use of the structure exhibited

by the sensing matrix (e.g., a structure that comes from a

Toeplitz sensing matrix or that of a partial discrete Fourier

transform (DFT) matrix). In fact, if anything, this structure is

harmful to these methods as the best results are obtained when

the sensing matrix is close to random. This comes in contrast

to current digital signal processing architectures that only deal

with uniform sampling. We would thus like to employ more

feasible and standard sub-sampling approaches.

3) Inability to harness a priori statistical information:

Convex relaxation methods are not able to take account

of any a priori statistical information (apart from sparsity

information) about the signal support and additive noise. Any

a priori statistical information can be used on the result

obtained from the convex relaxation method to refine both

the signal support obtained and the resulting estimate through

a hypothesis testing approach [20]. However, this is only

useful if these approaches are indeed able to recover the

signal support. In other words, performance is bottle-necked

by the support recovering capability of these approaches. We

note here that the use of a priori statistical information for

sparse signal recovery has been studied in a Bayesian context

in [14] and in algorithms based on belief propagation [21],

[22]. Both [23] and [24] use a priori statistical information

(assuming x to be mixed Bernoulli-Gaussian); only [23] uses

this information in a recursive manner to obtain a fast sparse

signal recovery algorithm. However, it is not clear how these

approaches can be extended to the non-Gaussian case.

4) Evaluating performance in statistically familiar terms: It

is difficult to quantify the performance of convex relaxation es-

timates analytically in terms of the mean squared error (MSE)

or bias or to relate these estimates to those obtained through

more conventional approaches, e.g., maximum a posteriori

probability (MAP), minimum mean-square error (MMSE), or

maximum likelihood (ML).2

5) Trading performance for computational complexity: In

general, convex relaxation approaches do not exhibit the cus-

tomary tradeoff between increased computational complexity

and improved recovery as is the case for, say, iterative decod-

ing or joint channel and data detection. Rather, they solve

some �1 problem using (second-order cone programming)

with a set complexity. A number of works have attempted

to derive sharp thresholds for support recovery [25], [26].

In other words, the only degree of freedom available for the

designer to improve performance is to increase the number of

measurements. Several iterative implementations [27], [28] of

convex relaxation approaches provide some sort of flexibility

by trading performance for complexity.

B. Motivation and Paper Organization

In this paper, we present a Bayesian approach to sparse

signal recovery that has low complexity and makes a collective

use of 1) a priori statistical properties of the signal and noise,

2) sparsity information, and 3) the rich structure of the sensing

matrix, Ψ. Although there have been some works that use

the structure of the sensing matrix (e.g., [29]), it has not yet

been rigorously exploited to aid in algorithm development and

complexity reduction. We also show how our approach is able

to deal with both Gaussian and non-Gaussian (or unknown)

priors, and how we can compute performance measures of

our estimates. In essence, we demonstrate how our technique

enables us to tackle all the drawbacks of convex relaxation

approaches.

This remainder of this paper is organized as follows. We

start by describing the signal model in the next section.

In Section III, we derive the MMSE/MAP estimates and

introduce the various terms that need to be evaluated. In

Section IV, we demonstrate how the structure of the sensing

matrix can be used to recover the sparse signal in a divide-

and-conquer manner. Section V details the proposed sparse

reconstruction algorithm that we call Orthogonal Clustering.

2It is worth noting that convex relaxation approaches have their merit in
that they are agnostic to the signal distribution and thus can be quite useful
when worst-case analysis is desired as opposed to average-case analysis.
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Section VI presents the different structural properties of the

sensing matrix that are exploited by the proposed algorithm

to reduce the computational complexity. The performance

of the proposed algorithm is compared with various sparse

reconstruction algorithms presented in the literature by nu-

merical simulations in Section VII, which is followed by our

conclusions in Section VIII.

C. Notation

We denote scalars with lower-case letters (e.g., x), vectors

with lower-case bold-faced letters (e.g., x), matrices with

upper-case, bold-faced letters (e.g., X), and sets with script

notation (e.g. S). We use xi to denote the ith column of matrix

X, x(j) to denote the j th entry of vector x, and Si to denote

a subset of a set S. We also use XS to denote the sub-matrix

formed by the columns {xi : i ∈ S}, indexed by the set S.

Finally, we use x̂, x∗, xT, and xH to respectively denote the

estimate, conjugate, transpose, and conjugate transpose of a

vector x.

II. SIGNAL MODEL

We adopt the signal model in (1). Here, the vector x is
modelled as x = xB � xG, where � denotes the Hadamard
(element-by-element) multiplication. The entries of xB are
independent and identically distributed (i.i.d) Bernoulli ran-
dom variables and the entries of xG are drawn identically and
independently from some zero mean distribution. 3 In other
words, we assume that xB(i)s are Bernoulli with success
probability p and similarly that the xG(i)s are i.i.d variables
with marginal probability distribution function f(x). The noise
n is assumed to be complex circularly symmetric Gaussian,
i.e., n ∼ CN (0, σ2

nIM ). When the support set S of x is known,
we can equivalently write (1) as

y = ΨSxS + n. (4)

III. OPTIMUM ESTIMATION OF x

Our task is to obtain the optimum estimate of x given the

observation y. We can pursue either an MMSE or a MAP

approach to achieve this goal. In the following, we elaborate

on how we can obtain these two estimates.

A. MMSE Estimation of x

The MMSE estimate of x given the observation y can be
expressed as

x̂MMSE = E[x|y] =
∑
S

p(S|y)E[x|y,S ] (5)

3Most of the results presented in this paper also apply to the case when
the entries are independent but not necessarily identically distributed.

where the sum is over all the possible support sets S of x.

The likelihood and expectation involved in (5) are evaluated

below.
1) Evaluation of E[x|y,S ]: Recall that the relationship

between y and x is linear (see (1)). Thus, in the case when
x conditioned on its support is Gaussian, E[x|y,S] is nothing
but the linear MMSE estimate of x given y (and S), i.e.,

E[xS |y] �
= E[x|y,S ] = σ2

xΨ
H
SΣ

−1
S y (6)

where

ΣS =
1

σ2
n

E[yyH|S ] = IM +
σ2
x

σ2
n

ΨSΨ
H
S . (7)

When x|S is non-Gaussian or when its statistics are unknown,
the expectation E[x|y,S] is difficult or even impossible to
calculate. Thus, we replace it by the best linear unbiased
estimate (BLUE), i.e.,

E[xS |y] = (ΨH
SΨS)

−1ΨH
Sy. (8)

2) Evaluation of p(S|y): Using Bayes’ rule, we can rewrite
p(S|y) as

p(S|y) = p(y|S)p(S)∑
S p(y|S)p(S) . (9)

As the denominator
∑

S p(y|S)p(S) is common to all posterior
likelihoods, p(S|y), it is a normalizing constant that can be ig-
nored. To evaluate p(S), note that the elements of x are active
according to a Bernoulli process with success probability p.
Thus, p(S) is given by

p(S) = p|S|(1− p)N−|S|. (10)

It remains to evaluate p(y|S). Here, we distinguish between

the cases of whether or not x|S is Gaussian.
1. x|S is Gaussian: When x|S is Gaussian, y is Gaussian

too with zero mean and covariance ΣS and we can write the
likelihood function as4

p(y|S) =
exp

(
− 1

σ2
n
‖y‖2

Σ−1
S

)
det (ΣS)

(11)

up to an irrelevant constant multiplicative factor, ( 1
πM ).

2. x|S is non-Gaussian or unknown: Alternatively, we
can treat x as a random vector of unknown (non-Gaussian)
distribution, with support S. Therefore, given the support S,
all we can say about y is that it is formed by a vector
in the subspace spanned by the columns of ΨS , plus a
white Gaussian noise vector, n. It is difficult to quantify
the distribution of y even if we know the distribution of
(the non-Gaussian) x. One way around this is to annihilate
the non-Gaussian component and retain the Gaussian one.
We do so by projecting y onto the orthogonal complement
of the span of the columns of ΨS , i.e., multiplying y by
P⊥

S = I−ΨS
(
ΨH

SΨS
)−1

ΨH
S . This leaves us with P⊥

S y = P⊥
Sn,

which is zero mean and with covariance P⊥
S σ

2
nP

⊥H

S = σ2
nP

⊥
S .

4‖b‖2A
Δ
= bHAb
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Thus, the conditional density of y given S is approximately
given by

p(y|S) � exp

(
− 1

σ2
n

∥∥∥P⊥
S y

∥∥∥2
)
. (12)

B. MAP Estimation of x

To obtain the MAP estimate of x, we first determine the
MAP estimate of S, which is given by

ŜMAP = argmax
S

p(y|S)p(S). (13)

The prior likelihood p(y|S), is given by (11) when x|S is
Gaussian and by (12) when x|S is non-Gaussian or unknown,
whereas p(S) is evaluated using (10). The maximization is
performed over all possible 2N support sets. The correspond-
ing MAP estimate of x is given by

x̂MAP = E[x|y, ŜMAP]. (14)

One can easily see that the MAP estimate is a special case of

the MMSE estimate in which the sum (5) is reduced to one

term. As a result, we confine the discussion in the rest of the

paper to MMSE estimation.

C. Evaluation over S
Having evaluated the posterior probability and expectation,

it remains to evaluate this over 2N possible supports (see (5)

and (13)) which is a computationally daunting task. This is

compounded by the fact that the calculations required for each

support set in S are relatively expensive, requiring some form

of matrix multiplication/inversion as can be seen from (6)-(12).

One way around this exhaustive approach is somehow to guess

at a superset Sr consisting of the most probable support and

limit the sum in (5) to the superset Sr and its subsets, reducing

the evaluation space to 2|Sr| points. There are two techniques

that help us guess at such a set Sr.

1. Convex Relaxation: Starting from (1), we can use the

standard convex relaxation tools [12], [13] to find the most

probable support set, Sr, of the sparse vector x. This is done

by solving (3) and retaining some largest P non-zero values

where P is selected such that P(‖S‖0 > P ) is very small.5

2. Fast Bayesian Matching Pursuit (FBMP): A fast

Bayesian recursive algorithm is presented in [23] that deter-

mines the dominant support and the corresponding MMSE

estimate of the sparse vector.6 It uses a greedy tree search

over all combinations in pursuit of the dominant supports. The

5As ‖S‖0 is a binomial distribution ∼ B(N, p), it can be ap-
proximated by a Gaussian distribution ∼ N (Np,Np(1 − p)), when
Np > 5 (the DeMoivre-Laplace approximation [30]). In this case,
p(‖S‖0>P )= 1

2
erfc

(
P−N(1−p)√
(2Np(1−p))

)
.

6FBMP applies to the Bernoulli Gaussian case only.

algorithm starts with zero active element support set. At each

step, an active element is added that maximizes the Gaussian

log-likelihood function similar to (11). This procedure is

repeated until we reach P active elements in a branch. The

procedure creates D such branches, which represent a tradeoff

between performance and complexity. 7

The discussion in this section applies irrespective of the type

of the sensing matrix, Ψ. However, in many applications in

signal processing and communications, the sensing matrix is

highly structured. This fact, which has been largely overlooked

in the CS literature, is utilized in the following to evaluate the

MMSE (MAP) estimate at a much lower complexity than is

currently available.

IV. A STRUCTURE-BASED BAYESIAN RECOVERY

APPROACH

Whereas in most CS literature, the sensing matrix, Ψ, is

assumed to be drawn from a random constellation [12], [13],

in many signal processing and communications applications,

this matrix is highly structured. Thus, Ψ could be a partial

DFT matrix [5] or a Toeplitz matrix (encountered in many

convolution applications [7]). Table I lists various possibilities

of structured Ψ.

TABLE I: Applications involving structured sensing matrices

Matrix Ψ Application

Partial DFT OFDM applications including peak-to-average power ratio

reduction [2], narrow-band interference cancelation [3],

and impulsive noise estimation and mitigation in DSL [5]

Toeplitz Channel estimation [7], UWB [8], and DOA estimation [9]

Hankel Wide-band spectrum sensing [31]

DCT Image compression [32]

Structured Binary Multi-user detection and contention resolution [33], [34] and

feedback reduction [35], [36]

Since Ψ is a fat matrix (M << N), its columns are not

orthogonal (in fact not even linearly independent). However,

in the aforementioned applications, one can usually find an

orthogonal subset of the columns of Ψ that span the column

space of Ψ. We can collect these columns into a square matrix,

ΨM . The remaining N − M columns of Ψ group around

these orthogonal columns to form semi-orthogonal clusters.

In general, the columns of Ψ can be rearranged such that

the farther two columns are from each other, the lower their

correlation is. In this section, we demonstrate how semi-

orthogonality helps to evaluate the MMSE estimate in a divide-

7Though other greedy algorithms [16]-[19] can also be used, we focus here
on FBMP as it utilizes a priori statistical information along with sparsity
information.
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and-conquer manner. Before we do so, we present two sensing

matrices that exhibit semi-orthogonality.

A. Examples of Sensing Matrices with Semi-Orthogonality

1) DFT Matrices: We focus here on the case when the
sensing matrix is a partial DFT matrix, i.e., Ψ = SFN ,
where FN denotes the N ×N unitary DFT matrix, [FN ]a,b =
1√
N
e−j2πab/N with a, b ∈ {0, 1, . . . , N − 1} and S is an

M × N selection matrix consisting of zeros with exactly
one entry equal to 1 per row. To enforce the desired semi-
orthogonal structure, the matrix S usually takes the form
S =

[
OM×Z IM×M OM×(N−Z−M)

]
, for some integer Z .

In other words, the sensing matrix consists of a continuous
band of sensing frequencies. This is not unusual since in
many OFDM problems, the band of interest (or the one free
of transmission) is continuous. In this case, the correlation
between two columns can be shown to be

ψH
kψk′ =

⎧⎨
⎩

1, (k = k′)∣∣∣∣ sin(π(k−k′)M/N)
M sin(π(k−k′)/N)

∣∣∣∣ , (k �= k′)
(15)

which is a function of the difference, (k − k ′)mod N . It

thus suffices to consider the correlation of one column with

the remaining ones. Figure 1 illustrates this correlation for

N = 1024 and M = 256. It is worth noting that the matrix

Ψ exhibits other structural properties (e.g., the fact that it is a

Vandermonde matrix), which helps us reduce the complexity

of the MMSE estimation (see Section VI for further details).

2) Toeplitz/Hankel Matrices: We focus here on the Toeplitz

case. The discussion can be easily extended to the Hankel case.

A sub-sampled convolutional linear system can be written in

the following matrix form, y = Ψx + n, where y is a vector

of length M , x is a vector of length N and Ψ is the M ×N

block Toeplitz/diagonal matrix

Ψ =

⎡
⎢⎢⎢⎢⎣

Θ O · · · O

O Θ · · · O
...

. . .
. . .

...

O O · · · Θ

⎤
⎥⎥⎥⎥⎦

where the size of Θ depends on the sub-sampling ratio. Here,

ψH
kψk′ = 0 for |k − k′| > L, and thus the columns of Ψ

can easily be grouped into truly orthogonal clusters. Note also

that the individual columns of Θ are related to each other

by a shift property, which we explore for further reduction in

complexity in Section VI.

B. Using Orthogonality for MMSE Estimation

Let S be a possible support of x. The columns of ΨS in
(4) can be grouped into a maximum of C semi-orthogonal
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Fig. 1: The 500th column has high correlation with its neighbors

clusters, i.e., ΨS = [ΨS1 ΨS2 · · · ΨSC ], where Si is the sup-
port set corresponding to the ith cluster (with i = 1, 2, · · ·C).8

Based on this fact, (4) can be written as

y =
[
ΨS1 ΨS2 · · · ΨSC

]
⎡
⎢⎢⎢⎢⎣
x1

x2

...
xC

⎤
⎥⎥⎥⎥⎦+ n. (16)

Columns indexed by these sets should be semi-orthogonal,
i.e., ΨH

Si
ΨSj � 0; otherwise, Si and Sj are merged into a

bigger superset. Now, the MMSE estimate of x simplifies to9

x̂MMSE =
∑

Z⊂⋃Si

p(Z|y)E[x|y,Z]. (17)

In the following, we show that x̂MMSE can be evaluated in a

divide-and-conquer manner by treating each cluster indepen-

dently. To do so, we present in the following how orthogonality

manifests itself in the calculation of the expectation and

likelihood.

8Here, we denote the maximum number of clusters formed by C to
distinguish it from P , that refers to the estimate of the number of active
supports as in [23] (see footnote 5). In our approach, C is random and
depends on a threshold. This threshold is obtained using the a priori statistical
information of the noise signal, n. The procedure of forming semi-orthogonal
clusters is presented in Section V.

9In writing an expression like the one in (17), it is understood that estimates
of elements of x that do not belong to

⋃Si are identically zero.
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1) The effect of orthogonality on the likelihood calculation:
Recall that up to a constant factor, the likelihood can be written
as p(Z|y) = p(y|Z)p(Z). Now,

p(Z) = p(
⋃

Zi)

= p|
⋃Zi|(1− p)N−|⋃Zi|

= p|Z1|+|Z2|+ ··· +|ZC |(1− p)N−(|Z1|+|Z2|+ ··· +|ZC |)

= p(Z1)p(Z2) · · · p(ZC) (18)

where the equality in (18) is true up to some constant factor.
Now, to evaluate p(y|Z), we distinguish between the Gaussian
and non-Gaussian cases. For brevity, we focus here on the
Gaussian case and extrapolate the results to the non-Gaussian
case. Recall that

p(y|Z) =
exp

(
− 1

σ2
n
‖y‖2

Σ−1
Z

)
det (ΣZ)

(19)

with ΣZ = IM +
σ2
x

σ2
n
ΨZΨH

Z . Here, ΨZ=[ΨZ1
ΨZ′ ] , where

ΨZ′=[ΨZ2
ΨZ3

··· ΨZC
] . Using the matrix inversion lemma,

we can write Σ−1
Z as

Σ−1
Z = (IM +

σ2
x

σ2
n

ΨZΨ
H
Z)

−1

= (IM +
σ2
x

σ2
n

ΨZ1Ψ
H
Z1

+
σ2
x

σ2
n

ΨZ′ΨH
Z′)−1

= Σ−1
Z1

− σ2
x

σ2
n

Σ−1
Z1

ΨZ′

(IZ′ +
σ2
x

σ2
n

ΨH
Z′Σ−1

Z1
ΨZ′)−1ΨH

Z′Σ−1
Z1

(20)

where ΣZ1 = IM +
σ2
x

σ2
n
ΨZ1Ψ

H
Z1

. As ΨZ1 and ΨZ′ are almost
orthogonal (i.e., ΨH

Z1
ΨZ′ = ΨH

Z′ΨZ1 � 0), (20) becomes

Σ−1
Z = IM − σ2

x

σ2
n

ΨZ1(IZ1 +
σ2
x

σ2
n

ΨH
Z1

ΨZ1)
−1ΨH

Z1

−σ2
x

σ2
n

ΨZ′(IZ′ +
σ2
x

σ2
n

ΨH
Z′ΨZ′)−1ΨH

Z′

= −IM +

(
IM − σ2

x

σ2
n

ΨZ1(IZ1 +
σ2
x

σ2
n

ΨH
Z1

ΨZ1)
−1ΨH

Z1

)

+

(
IM − σ2

x

σ2
n

ΨZ′(IZ′ +
σ2
x

σ2
n

ΨH
Z′ΨZ′)−1ΨH

Z′

)

� −IM +

(
IM +

σ2
x

σ2
n

ΨZ1Ψ
H
Z1

)−1

+

(
IM +

σ2
x

σ2
n

ΨZ′ΨH
Z′

)−1

. (21)

Continuing in the same manner, it is easy to show that

Σ−1
Z � −(C − 1)IM +

C∑
i=1

(
IM +

σ2
x

σ2
n

ΨZiΨ
H
Zi

)−1

. (22)

As such, we can write

exp

(
− 1

σ2
n

‖y‖2Σ−1
Z

)
�

exp

(
C − 1

σ2
n

‖y‖2
) C∏

i=1

exp

(
− 1

σ2
n

‖y‖2Σ−1
Zi

) (23)

where ΣZi = IM +
σ2
x

σ2
n
ΨZiΨ

H
Zi

. Using a similar procedure,
we can decompose det(ΣZ) as

det(ΣZ) = det(IM +
σ2
x

σ2
n

ΨZ1Ψ
H
Z1

+
σ2
x

σ2
n

ΨZ′ΨH
Z′)

= det(IM +
σ2
x

σ2
n

ΨZ1Ψ
H
Z1

)det(IM +
σ2
x

σ2
n

ΨH
Z′Σ−1

Z1
ΨZ′)

� det(IM +
σ2
x

σ2
n

ΨZ1Ψ
H
Z1

)det(IM +
σ2
x

σ2
n

ΨZ′ΨH
Z′) (24)

= det(ΣZ1)det(ΣZ′) (25)

where to obtain (24), we used the fact that ΨZ1 and ΨZ′ are
almost orthogonal. Continuing in the same way, we can show
that

det(ΣZ) �
C∏

i=1

det(ΣZi). (26)

Combining (23) and (26), we obtain (up to an irrelevant
multiplicative factor)

p(y|Z) �
C∏

i=1

p(y|Zi). (27)

Orthogonality allows us to reach the same conclusion (27)
for the non-Gaussian case. Now, combining (18) and (27), we
can finally write

p(Z|y) �
C∏

i=1

p(Zi|y) (28)

which applies equally to the Gaussian and non-Gaussian

cases.
2) The effect of orthogonality on the expectation calcula-

tion: In evaluating the expectation, we again distinguish be-
tween the Gaussian and non-Gaussian cases. We focus here on
the non-Gaussian case for which E[xZ |y] = (ΨH

ZΨZ)−1ΨH
Zy.

Using the decomposition into semi-orthogonal clusters
ΨZ=[ΨZ1

ΨZ2
··· ΨZC

] , we can show that (see equations (30)-
(32) on the next page)

E[xZ |y] �

⎡
⎢⎢⎣
E[xZ1 |y]

...
E[xZC |y]

⎤
⎥⎥⎦ . (29)

Orthogonality allows us to write an identical expression to

(29) in the Gaussian case.
3) The effect of orthogonality on the MMSE estimation: We

are now ready to show how (semi)orthogonality helps with the
MMSE evaluation. To do this, we substitute the decomposed
expressions (28) and (29) into (17) to get

x̂MMSE =
∑

Z⊂⋃Si

p(Z|y)E[x|y,Z]

�
∑

Zi⊂Si, i=1,...,C

∏
i

p(Zi|y)

⎡
⎢⎢⎢⎢⎣
E[x|y,Z1]

E[x|y,Z2]
...

E[x|y,ZC ]

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

∑
Z1⊂S1

p(Z1|y)E[x|y,Z1]∑
Z2⊂S2

p(Z2|y)E[x|y,Z2]
...∑

ZC⊂SC
p(ZC |y)E[x|y,ZC ]

⎤
⎥⎥⎥⎥⎦ (33)
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(ΨH
ZΨZ )−1ΨH

Zy =

⎡
⎢⎢⎣
ΨH

Z1
ΨZ1 ΨH

Z1
ΨZ2 · · · ΨH

Z1
ΨZC

...
...

. . .
...

ΨH
ZC

ΨZ1 ΨH
ZC

ΨZ2 · · · ΨH
ZC

ΨZC

⎤
⎥⎥⎦

−1 ⎡⎢⎢⎣
ΨH

Z1
y

...
ΨH

ZC
y

⎤
⎥⎥⎦ (30)

�

⎡
⎢⎢⎣

(ΨH
Z1

ΨZ1)
−1ΨH

Z1
y

...
(ΨH

ZC
ΨZC )−1ΨH

ZC
y

⎤
⎥⎥⎦ (31)

i.e., E[xZ |y] �

⎡
⎢⎢⎣
E[xZ1 |y]

...
E[xZC |y]

⎤
⎥⎥⎦ . (32)

where the last line follows from the fact that
∑

Zi
p(Zi|y)=1 .

Thus, the semi-orthogonality of the columns in the sensing

matrix allows us to obtain the MMSE estimate of x in a

divide-and-conquer manner by estimating the non-overlapping

sections of x independently from each other. Other structural

properties of Ψ can be utilized to reduce further the com-

plexity of the MMSE estimation. For example, the orthogonal

clusters exhibit some form of similarity and the columns

within a particular cluster are also related to each other. We

explore these properties for complexity reduction in Section

VI. However, before doing so, we devote the following section

to a full description of our Bayesian orthogonal clustering

algorithm.

V. AN ORTHOGONAL CLUSTERING (OC) ALGORITHM FOR

SPARSE RECONSTRUCTION

In this section, we present our sparse reconstruction algo-

rithm, which is based on orthogonal clustering. The main steps

of the algorithm are detailed in the following and summarized

in Figure 2.

A. Determine dominant positions

Consider the model given in (1) reproduced here for conve-

nience, y = Ψx+n. By correlating the observation vector, y,

with the columns of the sensing matrix, Ψ, and by retaining

correlations that exceed a certain threshold, we can determine

the dominant positions/regions where the support of the sparse

vector, x, is located. The performance of our orthogonal

clustering algorithm is dependent on this initial correlation-

based guess.10

10We can also apply a convex relaxation approach, retain the P largest
values, and form clusters around them. This allows us to incorporate a priori
statistical information and obtain MMSE estimates but the algorithm in this
case is bottle-necked by the performance of the convex relaxation approach
and also loses the appeal of low complexity.

Begin

Correlate observation vector, y, with the sensing matrix, Ψ

Form semi-orthogonal clusters around the positions with
correlation values greater than the threshold, κ

Process each cluster independently and in each cluster,
calculate the likelihoods for supports of size,

|S| = 1, |S| = 2, · · · , |S| = Pc

Find the dominant supports of size,
|S| = 1, |S| = 2, · · · , |S| = Pc , for each cluster

Find E[x|y,S] for dominant support of each size

Evaluate x̂MMSE or x̂MAP

End

Fig. 2: Flowchart of the OC algorithm

B. Form semi-orthogonal clusters

Define a threshold κ such that p(n > κ)
�
= pn is very

small.11 The previous correlation step creates a vector of N

correlations. From these correlations, obtain the indices with

the correlation greater than the threshold, κ. Let i1 denote

the index with the largest correlation above κ and form a

cluster of size L centered around i1.12 Now, let i2 denote the

corresponding index of the second largest correlation above κ

11As n ∼ N (0, σ2
n), the threshold can be easily evaluated as,

κ =
√

2σ2
nerfc

−1(2pn).
12Given a fat sensing matrix, we consider two columns to be orthogonal (or

semi-orthogonal) when their correlation is below some value, ε. The cluster
size L is thus the minimum separation between two columns that makes
these two columns semi-orthogonal. Obviously, the distance, L, is a function
of the correlation tolerance, ε. The lower is the value of ε, the larger the
cluster size, L.
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and form another cluster of size L around i2. If the two clusters

thus formed are overlapping, merge them into one big cluster.

Continue this procedure until all the correlations greater than

κ are exhausted.

C. Find the dominant supports and their likelihoods

Let Li be the length of cluster i and let Pc denote the

maximum possible support size in a cluster.13 Let C be

the total number of semi-orthogonal clusters formed in the

previous step. For each of them, find the most probable support

of size, |S| = 1, |S| = 2, · · · , |S| = Pc, by calculating the

likelihoods for all supports of size |S| (using either (11) or

(12)). Each cluster is processed independently by capitalizing

on the semi-orthogonality between the clusters. The expected

value of the sparse vector x given y and the most probable

support for each size can also be evaluated using either (6) or

(8) depending on the a priori statistical information.

D. Evaluate the estimate of x

Once we have the dominant supports for each cluster, their

likelihoods, the expected value of x given y and the dominant

supports, the MMSE (or MAP) estimates of x̂ can be evaluated

as discussed in Section IV (see (33)). Note that these estimates

are approximate as they are evaluated using only the dominant

supports instead of using all supports.

VI. REDUCING THE COMPUTATIONAL COMPLEXITY

In this paper, we explore three structures of the sensing

matrix that help us to reduce the complexity of MMSE

estimation.

1) Orthogonality (independence) of clusters: In Section IV,

the orthogonality of clusters allowed us to calculate the

MMSE estimate independently over clusters in a divide-

and-conquer manner.

2) Similarity of clusters: While the columns of the clusters

are (semi)orthogonal, allowing us to treat them inde-

pendently, these columns could exhibit some form of

similarity making some MMSE calculations invariant

over these clusters. For example, the columns of a

DFT matrix can be obtained from each other through

a modulation operation while those of the Toeplitz

matrix can be obtained through a shift operation. The

correlation calculations that repeatedly appear in the

MMSE estimation are invariant to the modulation and

shift operations.

13Pc is calculated in a way similar to P as the support in a clus-
ter is also a Binomial distribution ∼ B(Li, p). Thus, we set Pc =

�erfc−1(10−2)
√

2Lip(1− p) + Lip� (see footnote 5).

3) Order within a cluster: MMSE estimation in a cluster

involves calculating the likelihoods and expectations for

all supports of size i = 1, 2, · · · , Pc. Several quanti-

ties involved in these evaluations can be obtained in

an order-recursive manner, incrementally moving from

calculations for supports of size i to similar calculations

for supports of size i+ 1.

We explore the last two properties in the following subsections.

A. Similarity of Clusters

As evident from the previous sections, calculating the

likelihood can be done in a divide-and-conquer manner by

calculating the likelihood for each cluster independently. This

is a direct consequence of the semi-orthogonality structure

of the columns of the sensing matrix. Moreover, due to the

rich structure of the sensing matrix, the clusters formed are

quite similar. In the following subsections, we use the structure

present in DFT and Toeplitz sensing matrices to show that the

likelihood and expectation expressions in each cluster (for both

the Gaussian and non-Gaussian cases) are strongly related,

allowing many calculations across clusters to be shared.
1) Discrete Fourier Transform (DFT) Matrices: Let

ψ1, ψ2, · · · , ψL denote the sensing columns associated with
the first cluster. Then, it is easy to see that the corresponding
columns for the ith cluster of equal length that are 	i columns
away are, ψ1 � ψ�i

, ψ2 � ψ�i
, · · · , ψL � ψ�i

, where
ψ�i

is some constant vector that depends on the sensing
columns.14 Assume that we evaluate the likelihood, p(Z1|y),
and expectation, E[x|y,Z1], for a set of columns, Z1, in the
first cluster. For this set, we make the assumption that

y = ΨZ1x+ n. (34)

Now, let Zi denote the same set of columns chosen from
the ith cluster that is 	i columns away (in other words Zi =
Z1 +	i). For this set, we assume that

y = ΨZix+ n. (35)

Now (Hadamard) multiply both sides of the above equation
by ψ∗

�i
to get

y �ψ∗
�i

= ΨZ1x+ n�ψ∗
�i

. (36)

Note that (34) and (36) have the same sensing matrix and the
same noise statistics (n is white circularly symmetric Gaussian
and hence is invariant to multiplication by ψ ∗

�i
). The only

difference is that y is modulated by the vector ψ ∗
�i

in moving
from the first to the ith cluster. This allows us to write

p(Zi|y) = p(Z1|y �ψ∗
�i

)

and E[x|y,Zi] = E[x|y �ψ∗
�i

,Z1]
(37)

14For example, if we use the last M rows of the DFT
matrix to construct the sensing matrix, then ψ�i

=[
exp
(
− j2π(N−M)

N
�i

)
exp
(
− j2π(N−(M−1))

N
�i

)
··· exp

(
− j2π(N−1)

N
�i

) ]T
.
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y

Modulator
y � ψ∗

�i

Calculate
p(Zi|y) and E[x|y,Zi]

ψ�i

det
(
ΣZ1

)
& Σ−1

Z1

(or P⊥
Z1

)

Fig. 3: Block diagram of the reduced complexity algorithm for the
DFT matrix

which is valid for both the Gaussian and non-Gaussian cases.
In other words, if Zi is obtained from Z1 by a constant shift,
then any y-independent calculations remain the same while
any calculations involving y are obtained by modulating y
by the vector ψ∗

�i
as shown in Figure 3. For example, the

likelihood in the Gaussian case reads

p(y|Zi) =

exp

(
−‖y‖2

Σ−1
Zi

)
det(ΣZi)

=

exp

(
−‖y �ψ∗

�i
‖2
Σ−1

Z1

)
det(ΣZ1)

(38)

and, in the non-Gaussian case, it reads

p(y|Zi) � exp

(
−‖y‖2P⊥

Zi

)
= exp

(
−‖y �ψ∗

�i
‖2P⊥

Z1

)
. (39)

We observe similar behavior in calculating the expectation.
Thus, in the Gaussian case, we have

E[x|y,Zi] = σ2
xΨ

H
Zi
Σ−1

Zi
y = σ2

xΨ
H
Z1

Σ−1
Z1

(y �ψ∗
�i

) (40)

and in the non-Gaussian case, we have

E[x|y,Zi] =
(
ΨH

Zi
ΨZi

)−1

ΨH
Zi
y

=
(
ΨH

Z1
ΨZ1

)−1

ΨH
Z1

(y�ψ∗
�i

).
(41)

2) Toeplitz/Hankel Matrices: In the Toeplitz
or block Toeplitz case, the sensing matrix reads
Ψ=[ΨS1 ΨS2 ··· ΨSC

] . Now, the clusters can be
modified to make sure that they are identical (by
stretching their end points if necessary) such that
ΨSi = [O · · · O ΘT O · · · O]T. In other words,
the ΨSis are simply shifted versions of each other. We now
calculate the quantities det(ΣZ1), ‖y‖2Σ−1

Z1

, and ‖y‖2P⊥
Z1

for a

set Z1 of columns of the first cluster. We then choose an
identical set of columns, Zi, in the ith cluster. Then, it is
intuitively clear that

det(ΣZi) = det(ΣZ1),

‖y‖2Σ−1
Zi

= ‖y �wi‖2Σ−1
Z1

,

and ‖y‖2P⊥
Zi

= ‖y �wi‖2P⊥
Z1

(42)

where wi is a rectangular window corresponding to the

location of the non-zero rows of ΨSi .

B. Order within a cluster

To evaluate the likelihood for supports of size i =

1, 2, ..., Pc in a single cluster, we pursue an order-recursive

approach, calculating the likelihood and expectation for sup-

ports of size i+1 by updating calculations made for supports of

size i. In the following, we assume that we have calculated the

likelihood and expectation involving the columns, ΨS , which

we would like to update to ΨS′=[ΨS ψi] .
1) x|S is Gaussian: To calculate the likelihood

LS′ =

exp

(
− 1

σ2
n

‖y‖2
Σ−1

S′

)

det(ΣS′ )
with ΣS′ = IM +

σ2
x

σ2
n
ΨS′ΨH

S′ , note

that ΣS′ = ΣS +
σ2
x

σ2
n
ψiψ

H
i , or by the matrix inversion lemma,

Σ−1
S′ = Σ−1

S − σ2
x

σ2
n

ξiωiω
H
i (43)

where

ωi
�
= Σ−1

S ψi (44)

ξi
�
=

(
1 +

σ2
x

σ2
n

ψH
i Σ

−1
S ψi

)−1

=

(
1 +

σ2
x

σ2
n

ψH
i ωi

)−1

.(45)

As we are actually interested in computing

exp

(
− 1

σ2
n
‖y‖2

Σ−1

S′

)
, using (43) we obtain

exp

(
− 1

σ2
n

‖y‖2Σ−1

S′

)
=

exp

(
− 1

σ2
n

‖y‖2Σ−1
S

)
exp

(
σ2
xξi
σ4
n

‖ωH
i y‖2

)
.

(46)

The determinant of ΣS′ can be evaluated as follows:

det(ΣS′) = det

(
ΣS +

σ2
x

σ2
n

ψiψ
H
i

)

= det

(
1 +

σ2
x

σ2
n

ψH
i Σ

−1
S ψi

)
det (ΣS)

= ξ−1
i det (ΣS) . (47)

Thus, the likelihood for the support of size S ′ can be written
as (using (46) and (47)),

LS′ =
exp

(
− 1

σ2
n
‖y‖2

Σ−1
S

)
exp

(
σ2
xξi
σ4
n

‖ωH
i y‖2

)
det (ΣS) ξ−1

i

= LS ξi exp

(
σ2
xξi
σ4
n

‖ωH
i y‖2

)
︸ ︷︷ ︸. (48)

δi

This shows that to calculate LS′ , we need to compute only

ωi and ξi, which constitute δi. To calculate ωi for a cluster of

length, L, O(LM 2) operations is required if standard matrix

multiplication is used. This complexity can be reduced to

O(LM) by storing all the past computed values of ω and

ξ and using the structure of ΣS [23].
Similarly, E[xS′ |y] can be calculated in an order-recursive

manner as follows:

E[xS′ |y] =
[

E[xS |y]
σ2
xω

H
i y

]
. (49)
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TABLE II: Cluster independent and cluster-wise evaluations involved in the recursive procedure for complexity reduction within a cluster

Cluster Independent Evaluations Cluster-wise Evaluations

Evaluate ωi and ξi using (44) and (45) Evaluate ‖ωH
i y‖2

x|S is Gaussian Update Σ−1
S using (43) Update LS using equation (48)

Update det(ΣS) using (47) Update E[xS′ |y] using equation (49)
Initialize: Calculate ψH

i ψj ∀ i, j Initialize: Evaluate yHψi ∀ i
x|S is unknown Evaluate ωi using equation (51) Update LS using equation (53)

Update ΣS using equations (50) and (52) Update E[xS′ |y] using equation (56)

2) x|S is unknown: To calculate the likelihood in the non-
Gaussian case, we need to evaluate the norm, ‖y‖2

P⊥
S′

=

‖y‖2−yHΨS′
(
ΨH

S′ΨS′
)−1

ΨH
S′y. Our approach mainly hinges

on calculating the inverse ΛS′
�
=
(
ΨH

S′ΨS′
)−1 recursively. We

do this by invoking the block inversion formula

ΛS′ =

[
ΛS + 1

ξi
ωiω

H
i − 1

ξi
ωi

− 1
ξi
ωH

i
1
ξi

]
(50)

where

ωi
�
= ΛS(Ψ

H
Sψi) (51)

ξi
�
= ‖ψi‖2 − (ψH

i ΨS)ΛS(Ψ
H
Sψi) = ‖ψi‖2 − ωH

i ηi (52)

with the elements of ηi
�
= ΨH

Sψi all available (i.e., they are

calculated initially and can be reused afterwards). Using this

recursion, we can construct (following some straightforward

manipulation) a recursion for the projected norm LS′ as shown

in equations (53)-(55) on the next page.
Similarly, we can show that

E[xS′ |y] = ΛS′(ΨH
S′y)

=

[
E[xS |y] + 1

ξi
ωiη

H
i E[xS |y]− 1

ξi
ωiψ

H
i y

− 1
ξi
ηH

i E[xS |y] + 1
ξi
ψH

i y

]
.(56)

The cluster independent and cluster-wise evaluations in

our recursive procedure for both the cases (x|S Gaussian or

unknown) are summarized in Table II.

VII. SIMULATION RESULTS

In this section, we compare the performance of the OC

algorithm with popular sparse reconstruction methods avail-

able in the literature including the convex relaxation (CR)

method [12], OMP [15], and FBMP [23]. The parameters

of these algorithms are set according to the specifications

provided by the authors to achieve the best results. 15 The

parameters that we use in all the simulations are N = 800,

M = N
4 = 200, p = 10−2, and SNR = 30dB (unless stated

otherwise). Specifically, we demonstrate the performance of

our algorithm for the case when the sensing matrix is a DFT

or a Toeplitz matrix. We start by first investigating the effect

of cluster length on the performance of OC.

15For a fair comparison, we perform the MMSE refinement on the output
of CR and OMP.

A. The effect of the cluster length, L

Figure 4 compares the normalized mean-square error

(NMSE) of OC as the cluster length, L, is varied. The NMSE

is defined as NMSE = 1
R

∑R
r=1

‖x̂(r)−x(r)‖2

‖x(r)‖2 , where x̂ stands

for the estimated sparse signal for realization r, and R is the

total number of runs. For this case, the DFT matrix is used

as the sensing matrix with x|S Gaussian. Note that while

implementing OC with fixed-length clusters, overlapping of

clusters is not allowed to maintain orthogonality. This results

in an increase in the probability of missing the correct support

if two supports are close to each other. Thus, the smaller

the cluster, the greater the probability of missing the correct

supports. This is evident from Figure 4 as performance of

OC improves by increasing L. Obviously, this improvement

in performance is obtained at the expense of speed. Figure 5

shows that the smaller the length of clusters, the faster the

algorithm. Note that for larger values of L (e.g., L > 32), it

might not be possible to form the required number of non-

overlapping clusters. To overcome this problem, we present

the performance of OC implemented with variable length

clusters (labeled as “OC” in Figure 4). In this case, the

overlapping clusters are joined together to form larger clusters.

It can be observed from Figure 4 that the performance of

OC with variable-length clusters is better than the case when

it is implemented with fixed-length clusters. Moreover, this

performance is achieved with a reasonable run-time16 as shown

in Figure 5.

B. The effect of the signal-to-noise ratio (SNR)

Figure 6 compares the performance of the algorithms for

the case when the sensing matrix is a DFT matrix and x|S is

Gaussian. In the FBMP implementation, the number of greedy

branches to explore (D) is set to 10. Note that OC outperforms

all other algorithms at low SNR while FBMP performs quite

close to it at SNR ≥ 25 dB. It outperforms both OMP and

CR at all SNR values. Specifically, at SNR = 25 dB, OC has

a gain of approximately 2 dB and 3 dB over CR and OMP,

16Thus, the following simulation results are presented with OC implemented
using variable length clusters.
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LS′ = exp

(
− 1

σ2
n

[
‖y‖2 − yHΨS′ΛS′ΨH

S′y
])

(53)

= exp

(
− 1

σ2
n

[
‖y‖2 − yHΨSΛSΨH

Sy
])

exp

(
− 1

σ2
n

[
− 1

ξi
|(yHΨS)ωi|2 + 2

ξi
Re{(yHψi)ω

H
i (Ψ

H
Sy)} − 1

ξi
|yHψi|2

])
(54)

= LS exp

(
1

σ2
nξi

[
|(yHΨS)ωi|2 − 2Re{(yHψi)ω

H
i (Ψ

H
Sy)}+ |yHψi|2

])
︸ ︷︷ ︸ . (55)

δi
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Fig. 4: NMSE vs p for the OC algorithm with the length of the
cluster varied.
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Fig. 5: Mean run-time for the OC algorithm with the length of cluster
varied.

respectively. The performance of the algorithms for the case

when the sensing matrix is a DFT matrix and x|S is unknown

is presented in Figure 7. In this case, the entries of xG are

drawn from a uniform distribution. Here, FBMP is allowed

to estimate the hyper-parameters using its approximate ML

algorithm (with E set to 10)[23]. It can be seen that OC easily

outperforms OMP and FBMP while CR performs similar to

OC. Specifically, at SNR = 25 dB, OC outperforms OMP

and FBMP by approximately 5 dB. Figure 8 compares the

performance of the algorithms for the case when the sensing
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Fig. 6: NMSE vs SNR for the DFT matrix and x|S Gaussian.
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Fig. 7: NMSE vs SNR for the DFT matrix and x|S unknown.

matrix is Toeplitz. To do so, we first generate a Toeplitz

matrix from a column having 20 non-zero consecutive samples

drawn from a Gaussian distribution. The sensing matrix is

then extracted by uniformly sub-sampling this full matrix at

a rate less than the duration of the signal.17 Note that the

performance of OC and FBMP is almost the same at low SNR

but OC outperforms FBMP in the high SNR region. OMP and

CR do not perform well in this case as the sensing matrix does

not exhibit the requisite incoherence conditions (in this case,

μ(Ψ) � 0.9) on which much of the CS theory is based.

17In this case, the sub-sampling rate is 4 times less making M = 200.
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M

) for the DFT matrix
and x|S Gaussian.

C. The effect of the under-sampling ratio ( N
M )

Figure 9 shows the performance of the algorithms (for the

case when the sensing matrix is DFT and x|S is Gaussian)

when the under-sampling ratio ( N
M ) is varied. It can be ob-

served that the performance of all the algorithms deteriorates

as N
M increases. OC and FBMP perform quite close to each

other with OC performing slightly better at high ( N
M ) ratios.

D. The effect of the sparsity rate, p

Figure 10 compares the performance of the algorithms when

the sparsity rate, p, is varied (for the case when the sensing

matrix is DFT and x|S is Gaussian). It can be seen that

the performance of OC is quite close to CR and FBMP at

low sparsity rate while it outperforms OMP by approximately

3 dB for the studied range of p. The performance of OC

deteriorates at the high sparsity rate because the number of

clusters increases as p increases and the probability of clusters

to be near or overlapping each other increases. Thus, in this

case, the orthogonality assumption of OC becomes weak.

Figure 11 compares the mean run-time of all the algorithms.
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Fig. 10: NMSE vs p for the DFT matrix and x|S Gaussian.
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Fig. 11: Mean run-time for the DFT matrix and x|S Gaussian.

It can be seen that OC is faster than all other algorithms. As

sparsity rate increases, the length of the clusters increases,

and thus the complexity of OC. Figure 12 shows that OC

performs quite well at the low sparsity rate in the case when

the sensing matrix is DFT and x|S is unknown. FBMP does

not perform well at the low sparsity rate in this case even

with its approximate ML algorithm. The run-time of FBMP is

also higher as compared to Figure 10 due to the time taken to

estimate the hyper-parameters using the ML algorithm. In the

case of the Toeplitz matrix (see Figure 14), the performance

of OC and FBMP is almost the same while the performance

of CR and OMP is quite poor due to the weak incoherence

of the sensing matrix. It can also be observed from Figure 15

that OC is quite fast compared to the other algorithms.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we present the Orthogonal Clustering algo-

rithm for fast Bayesian sparse reconstruction. This algorithm

makes collective use of the underlying structure (sparsity, a

priori statistical information, structure of the sensing matrix)

to achieve superior performance at much lower complexity
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Fig. 12: NMSE vs p for the DFT matrix and x|S unknown.
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Fig. 13: Mean run-time for the DFT matrix and x|S unknown.

compared with other algorithms especially at low sparsity

rates. The proposed algorithm has the following distinctive

features.

1) It is able to deal with Gaussian priors as well as with

priors that are non-Gaussian or unknown.

2) It utilizes the structure of the sensing matrix, including

orthogonality, modularity, and order-recursive calcula-

tions.

3) In the Gaussian case, OC beats all other algorithms in

terms of complexity and performance for low sparsity

rates. In the non-Gaussian case, it outperforms all other

algorithms (most notably FBMP) for both low and high

sparsity rates. Hence, the only disadvantage of OC is

its performance at high sparsity rates. In this case,

the clusters are no longer orthogonal, which results in

large clusters and the orthogonality assumption becomes

invalid. Fortunately, this drawback is only observed in

the Gaussian case while in the non-Gaussian case, OC

maintains a relative advantage over the other algorithms

for all sparsity rates.

4) It is able to provide computable measures of perfor-
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Fig. 14: NMSE vs p for the Toeplitz matrix and x|S Gaussian.
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Fig. 15: Mean run-time for the Toeplitz matrix and x|S Gaussian.

mance (See [5] for details on how to calculate the error

covariance matrix using orthogonality).

Our future work includes

1) The OC algorithm assumes that various clusters do

not interact. We guarantee this by lumping any two

clusters that are too close into a single larger cluster.

This prevents us from implementing a fixed-size cluster

algorithm and gives our algorithm the advantage of

being computationally cleaner and more efficient. A

prerequisite to do so however is to implement an OC that

takes into account the interaction between neighboring

clusters.

2) The OC algorithm utilizes various levels of structure

in the sensing matrix but falls short of utilizing one

additional structure. Specifically, the various columns

of any cluster are not random but are actually related

(e.g., adjacent columns in the Toeplitz case exhibit a

shift structure).18 This additional structure can be used

18This structure is for example used in the lattice implementation of
recursive least squares for drastic reduction in complexity [38].
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to reduce further the complexity of our algorithm.

3) The OC algorithm does not use any dependence between

the active sparse elements (e.g., block sparsity). It can

be specialized to deal with such cases.

4) The divide-and-conquer approach that we are able to

pursue due to the structure of the sensing matrix can be

utilized in the existing algorithms like OMP.
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