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Abstract—This paper presents a novel approach for evaluating
the mean behavior of the well known normalized least mean
squares (NLMS) adaptive algorithm for a circularly correlated
Gaussian input. The mean analysis of the NLMS algorithm
requires the calculation of some normalized moments of the
input. This is done by first expressing these moments in terms
of ratios of quadratic forms of spherically symmetric random
variables and finding the cumulative density function (CDF) of
these variables. The CDF is then used to calculate the required
moments. As a result, we obtain explicit expressions for the mean
behavior of the NLMS algorithm.

Index Terms—Adaptive algorithms, mean behavior, spherically
symmetric random variables, indefinite quadratic forms.

I. INTRODUCTION

T is well known that the NLMS algorithm demonstrates

its value as compared to the LMS algorithm for correlated
inputs. This has been mainly observed by simulation [1],
[2]. While the performance of LMS is well understood for
a correlated input [3], [4], the same cannot be said about
the NLMS algorithm. Thus, several works have attempted
to study the performance of NLMS for correlated Gaussian
input. However, the corresponding analyses either do not result
in closed-form performance expressions [5]-[7] or rely on
strong assumptions. Examples of such assumptions include
the separation principle [8], [9], approximations [10], white
input [5], [10], [11], specific structure of input regressor’s
distribution [2], [9], [12], small step size [9], long filters [10]
and approximate solutions using Abelian integrals [8], [13].

In this paper, we solve this problem in part by evaluating
the mean performance of NLMS in closed form for circularly
symmetric correlated Gaussian input. Mean analysis requires
evaluating some normalized moments of the input. We evaluate
these moments by rewriting each as a ratio of the weighted
norms of spherically symmetric random variables and finding
its CDF. This is done in turn by rewriting this variable in
indefinite quadratic form and using complex integration to
obtain the CDF. This CDF can then be used to evaluate
the multidimensional moments involved in closed form. The
mean and mean square analysis of the e-NLMS algorithm was
considered in [14]. Unfortunately the results obtained cannot
be specialized to the NLMS case by setting ¢ = 0, as that
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results in indefinite expansions' of the form oo — oo which are
difficult to resolve. As pointed out by one of the reviewers, this
moment has been derived in [15] based on a technique first
introduced by [16]. Nevertheless, the derivation we present
here is still significant as [15] derives it in a different context.
Moreover, the approach we pursue here is drastically different
from that of [15], [16] and we claim, is much simpler. In
addition, our approach can be extended to derive second-order
moments that are needed for mean-square analysis of NLMS.

The main contributions of this paper are:

a) The analysis presented is generalized in that it is not
restricted to a specific input correlation matrix and
does not rely on any assumptions” such as small step-
size, white input or independence between regressor
elements.

b) Closed form transient analysis of the mean behavior
of the NLMS algorithm is carried out in a transparent
manner.

¢) The analysis allows us to evaluate the optimum step size
in closed form for faster convergence in the mean.

The paper is organized as follows. Section II presents the
system model. Section III derives the moments needed to
evaluate the mean behavior and derives the optimal step size in
terms of these moments. Section IV shows how these moments
can be derived from the CDF of spherically symmetric random
variables. Simulation results investigating the performance and
validating the analytical model are presented in Section V.
Finally, Section VI presents concluding remarks.

II. SYSTEM MODEL
3The weight update equation of the NLMS algorithm is given
as ()
[lu(@)[|?
where w (i) is an estimate of the desired weight column vector
w© (starting from some w(0) usually set to zero), u(z) is the

input regression row vector and e(i) is the estimation error
defined as

e(i) =d(i) —u())w(i) = u(i)w° —u(i)w(i) + v(i) (2)

where v(%) is a zero-mean i.i.d noise independent of the input
sequence with variance o2. It is more convenient to express

w(ii+1)=w()+p e(i), i>0 (D)

'In fact, the expressions obtained in the NLMS case are completely different
in form from those of e-NLMS, indicating the need for a different approach
for the € = 0 case.

2Qur analysis is exact up to the independence assumption that is usually
used in adaptive filters.

3(.)H denotes conjugate transpose.



the adaptation equation (1) in terms of the weight error vector
w(i) = w°® — w(i) as

o e out@) .
w(i+1)=w(s) 'uHu(i)HQe(Z)’ i>0 3)
and the estimation error as
e(i) = u(i)w(i) + v(i). 4)

The analysis assumes that the independence assumption is
valid. We will restrict our attention to circularly symmetric
Gaussian inputs, i.e. u(i) ~ CN (0,R). Here we do
not assume any specific structure for R. Now, consider the
eigenvalue decomposition of R = QYAQ and define the
rotated variables w(i) = Qw(i) and w(i) = u(i)Q". Then
by premultiplying both the sides of (1) by Q, we get

yy y (i)™

WD = w0 = r g
where in arriving at (5), we have used the fact that ||u()

|[t(i)QH||? = ||(7)||>. Note that e(4) in (5) can be expressed
in terms of the rotated vectors as

e(i) = u()Q"QwW(i) + v(i) = u(i)Ww(i) + v(i). (6)

The adaptive filter is thus solely a function of @(4), which has
a diagonal correlation matrix A.

e(i), 1 >0 (5)

I? =

III. MEAN BEHAVIOR OF THE NLMS ALGORITHM

Substituting the value of estimation error from (6), the
recursion for the transformed mean weight error vector of the
NLMS algorithm, given in (5), can be rewritten as

T ﬁH(i)ﬁ(i)ﬂ o w(i)u(i)

i+ = |- (e )| %60 - g
Taking the expectation of both sides and assuming that the
sequence {u(i)} is i.i.d% it is easy to see that the mean be-
havior of the weight error vector is governed by the following
recursion

- (D

Efw(i+1)] = [ - pEy] E[w(i)] ®)
with ﬁH()ﬁ()
Bi=F [Hm} ©

We need to evaluate the matrix of moments E;. The off-
diagonal entries, given by E,» = E [ux (i), (i)/||a(i)]?]
(k=1,2,---, M), are zero because £, is an odd function
of 4 (i), which has a symmetric probability density function
(pdf) and is independent of the rest of the elements of
u(¢). Thus, the moment matrix E; is a diagonal matrix. Let
pr = E [|ax(i)]?/[|u()] } denote its kth diagonal value, then
the kth entry of w(i) is given by

Elwy(i)] = (1 — ppp) T Elwg(-1)],

The term (1 — ppy) is referred to as the mode associated
with E[wy(7)]. Thus, a necessary and sufficient condition for
convergence is |1 — upg| < 1, for all k, or equivalently

i>0  (10)

O0<pu<

(1)

Pmax

4This is one possible form of the independence assumption.

We can also determine the step size that guarantees fastest
convergence (by minimizing the largest mode [6])

u® = mﬂin max |1 — ppk| = (12)

Pmax + Pmin '
IV. OUR APPROACH

It is clear that the mean performance of the NLMS algorithm
is completely characterized by the moment matrix E;. Here
onwards, we will drop the dependence of variables on the time
index ¢ for notational convenience. Now the entries of the
moment matrix E; can be determined from the expectation of
the following random variable

x|

Sk = T =719 k:132a"'aM
|l |?

13)
The key to determining this expectation is to first define s in
terms of spherically symmetric random variables. To do this,
let @, be the normalized version of @y, i.e. U; = /Arils,
where )i is the kth eigenvalue of the autocorrelation matrix
of the input sequence, then we can rewrite s; as

Ak|ﬁk|2
e VA —
Zj:l Ajli[?
In Appendix A, we show that the CDF of s; can be written
as

Sk = (14)

% mx - O—m,k)Milh()\mx - Um,k’)
gk m= J 1 ];ém[(o—Jk - o-m7k) - ()\] - )\m)x] .
(15)

The parameter o,, 5 and function h(.) are defined in Ap-
pendix A. We now use this CDF to determine the first moment
of si. From (14), it is easy to see that s; has support over the
interval (0, 1). Thus, the first moment of sy, can be expressed
using integration by parts as

E[sk]:/o - F, (2)]de = 1—

M 1 M—1

Am —Um
>, / A = o) da.(16)
m=1 U;’;n] Hg 1 j;ém[(gj;k? - O-m;k?) - (AJ - )\m)LL’]

Applying partial fraction expansion to solve the above integral,
we get

Az — O'm7k)M71

HJle,j;ém[(Uj k= Omgk) = (Aj — Am)2] a
)\M—l j
m 17
M, (Am bt Z Tim {7
j=1,j#m j=1 j;ém
where G, = (01 — am}k)/()\m — ;) and
(=Gjm — )Mt (18)
C' = — m — .
! H%Ll#j’m(gl’m - Ujm)
Ultimately, the first moment of s is found to be
i AM-1
Elsg)] = 1- 7 1-—
m=1 ijl jmAm = Aj)
JWL k 1+ Ojm
+ 1 o 19
Z ¢; < M)] 19)
j=1,j#m J
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Fig. 1. Learning curve of the real and imaginary parts of first three taps of
the mean weight error vector (popt = 0.7627).

V. SIMULATION RESULTS

The system noise is assumed to be a zero-mean i.i.d.
sequence with variance 0.01. The length of both the unknown
system and the adaptive filter used is assumed to be 5. The
input to the adaptive filter and unknown system is correlated
complex Gaussian noise with correlation matrix

2 M-1
1 Qe o o

O 1 O aé\/[_2

R - a? Qe 1 aM-3
aM-1 M-2 M-3 1

C C

where 0 < a. < 1 is the factor that controls the correlation
between the regressor elements. All simulation results are
obtained for a. = 0.5. The analytical result for the transient
behavior of the mean weight error vector of the NLMS
algorithm is investigated. Figure 1 depicts the analytical and
simulation results for the learning curves of real and imaginary
parts of the first three taps of the mean weight error vector,
averaged over 200 runs. The results show excellent analytical
tracking of the transient behavior of the taps, thereby vali-
dating the theoretical model proposed in the paper. Figure 2
shows the mean performance of the NLMS when employing
the optimum step size, averaged over 5000 runs, demonstrating
the value of choosing the step size optimally.

VI. CONCLUSION

We have presented a novel approach for mean analysis of
the NLMS algorithm for correlated complex Gaussian input.
Our approach reduces the mean analysis to determining the
first multidimensional moment. Our approach shows that this
moment can be determined from the CDF of a variable of the
form [||®||A]/[l|#||%]. The advantage of this approach is its
transparency and its ability to evaluate performance in closed
form. Our theoretical findings of the transient performance are
corroborated by simulation results. This approach can also be
extended to mean-square analysis of the NLMS algorithm.

Mgy = 07627 1
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Fig. 2. Comparision of mean absolute error for various .

APPENDIX

We define the random vector
T

Uy o s
¢ = | 7=
a

TP R TP T (20)
[all” ol [a

and rewrite (14) as a ratio of weighted norms of ¢, ies

2
_ lolls,
= 55
llla
where ¥ is an M x M matrix with all elements equal to
zero except the kth element in the main diagonal, which is

set to Ag. The random vector (20) is known as a spherically
symmetric random vector [17] and has the pdf

Sk 21

M!
p(@) = 77\45(”4’”2 -1) (22)
where 4(.) is the delta function. We will now show how (21) in
conjunction with (22) can be used to determine the distribution
of s. The CDF of s, denoted by Fj, (x), is defined as

Fo.(z) = P(skp <) (23)
_ P(nwzk <z> o
lolla —
= P(l¢lia-5, =0) (25)
thus
= [ o 26)

This is an M -dimensional integral over the region defined by
the ineguality ol A—5,>0 which i§ difficult to eyaluate. We
can write (26) as an unconstrained integral by using the unit
step function as

F

o (1) = / p(D)h([D]2a_5,)d @7)

where h(.) is the step function. This integral is still difficult to
solve due to the presence of the delta and step functions. To

SThe weighted norm is defined by ||ar||3 2 aHAa.



get around this, we replace them with the following equivalent
integral representation (see [17], [18] for details)

1 : _
s(lel2—1) = ig/gmﬂmwwﬁlmw 28)
1 o ew(jw+5)
hz) = — [ S—a 2
(2) 277/—00 R w (29)

which are valid for any «, 8 > 0, where « and 3 are free
parameters that we can choose conveniently. After replacing
delta and step functions with their equivalent integral repre-
sentations, the CDF of s; can be set up as

M! o [ 1 i
Fo(2) = Az © /;oo Jwi + ﬁdWI [oo ¢ e
/e—¢H[aI+(Ek—xA)(jw1+,8)—jw21]¢d¢_ (30)
By inspecting the inner integral, we note that it is similar to

the Gaussian density integral. Intuition suggests that (see [18]
where we give a rigorous derivation for a similar integral)

1 H . )
—¢ oI+ (B —xzA)(Jwi1+8)—jw21I]¢p _
;ﬁ/e (L (B A) o1 +5) a9 1 gy —

1

. (31
‘aI + (B — zA)(Jwr + B) — jwsI
This leads to a 2-D integral in w; and wo
M! > 1
F = — e° —d
(@) = g € /,m jor 8
e~ Jw2

dws. (32)

[m ‘aI + (B — 2A)(jwr + B) — jwol

To evaluate the above integral w.r.t. wy, we use partial fraction
expansion to represent the determinant in (32) as

M
Im

1
(jowr + B)Mfl mZ:1 o+ (Um,k — Am) (Jwr + B) — jwa

(33)

where o,  and \,, represent the mth diagonal elements of
the matrices 3, and A, respectively, and the constant

1
Hlﬂil,z;&m[(al,k - Um,k) — (N = Am)z]

We can now use residue theory to determine the integral with
respect to wq as

(34)

Nm =

efjw2

1 /OO
= dwy =
21 J o ‘O{I + (B — 2A)(jwr + B) — jwal

M
e Z nme—am,k(x)(jw1+/3)h[a + Um’k(x)]

m=1

(35)

where
Om. k() = (Om e — AmT). (36)
The CDF of s; can then be set up as

FSk(x)iM!/OO 1

B % —o0 (jwl +B)M

M
> e Tk @D bl 4 oy, ()] des (37)
m=1

The above integral is then integrated with respect to w;, again
using residue theory. The detailed algebraic manipulations are
omitted due to lack of space. Finally, the CDF of s is given
by

F, (@) f Mm@ = Te) M (A — O )

sp\L) = .

g AL (0 = omp) — (A = Am)a]
(38)
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