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Abstract 
The convergence properties of mixed-norm algorithms 

as i t  applies to echo cancelers under general error criteria 
is derived for correlated and identically distributed inputs. 
The convergence analysis of this class of algorithms i s  car- 
ried out using the linearization process of the error non- 
linearities. Necessary and suficient conditions for conver- 
gence are derived for the independent input case. 

where f ( e ( k ) )  and g ( e ( k ) )  are the error nonlinearities, 
W N ~  and W F ~  are the true impulse responses of the near- 
end and far-end sections, respectively, and where P N  and 
P F  are the step sizes of the near-end and far-end sections, 
respectively. The error is &fined by 

e ( k )  = n ( k )  - v L ( k ) x N ( k )  - v > ( k ) x F ( k ) ,  ( 3 )  

where n ( k )  is the additive noise. 

1 Introduction 

This work presents the convergence properties of the 
class of least-mean mixed-norms (LMMN) algorithms. 
The LMMN algorithm was first introduced in [ 1 ]  as an 
application to data echo cancelers with two sections. The 
motivation behind using two norms for the two sections 
is that echoes in telephone circuits consist of two distinct 
components, a near echo and a far one, with completely 
different characteristics. I t  thus seems reasonable to use 
different norm criteria to cancel each echo. The LMMN 
algorithm is depicted in Fig. 1. 

This work will summarize the convergence characteris- 
tics of this class of algorithms for both correlated and iid 
inputs. I t  will give the conditions under which these al- 
gorithms will be well-behaved (i.e. nondivergent). These 
conditions also serve as a measure of the performance of 
this class of algorithms. 

2 The LMMN algorithm 

3 Convergence analysis of the LMMN 
algorithm 

The convergence properties of the LMMN algorithm is 
carried out using the linearization concept. This lineariza- 
tion idea was first used in [a] in studying the (single-norm) 
class of algorithms, although a similar idea appeared in (31. 
With this linearization, the adaptation equations (1) and 
(2) become: 

The LMMN algorithm is described by two sets of 
the weight-error vectors v N ( k )  = w N ( k )  - W N o  and 
V F ( ~ )  = W F ( ~ )  - WF,, defined by 

The convergence analysis now boils down to studying 
the convergence of (4) and ( 5 )  in the mean and in the 
mean-square sense. Table 1 summarizes the main param- 
eters in the convergence analysis of the LMMN algorithm 

v N ( k +  l) = v N ( k )  P N f ( e ( k ) ) X N ( k )  (l) for a correlated input [4]. Similarly, Table 2 summarizes 
V F ( ~  + 1) = V F ( ~ )  + p F g ( e ( k ) ) X F ( k ) ,  ( 2 )  the main parameters in the convergence analysis of the 
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Figure 1: Echo canceler with two sections. 

LMMN algorithm for an i.i.d input [4]. Due to space lim- 
itations we shall focus on the mean-square convergence of 
the LMMN algorithm for an iid input. Detailed conver- 
gence analysis for the correlated input case can be found 
in [4]. 

4 Analysis of the LMMN algorithm in 
the mean-square sense (iid input) 

The mean-square behavior is completely determined 
by the behavior of the weight-error variances q ~ ( k )  = 
E[Vk(k)V~(lc)] and q ~ ( k )  = E[v$(k)V~(k)]. They in 
turn satisfy the following recursion: [4] 

where 

where the expectation is done with respect to the addi- 
tive noise n( IC). a2 ,b2, and cz are also defined by (7), (8),  
and(9), respectively, with f replaced by g and N replaced 
by F .  Finally, m s , 4  is the fourth moment of 2 and LN is 
the length of the near-end section. The mean-square be- 
havior of the LMMN algorithm is completely determined 
by (6) as the illustrated in the following remarks: 

1. The necessary and sufficient condition for the conver- 
gence of the matrix recursion (6) and hence for the 
mean-convergence convergence of the LMMN algo- 
rithm is that the eigenvalues of A be absolutely less 
than one. This will be the case if and only if 

( P N  - ~ 2(bia;c1)) 

a f ( b z + c z ) + a z ( b l + c l )  + a ~ ( b z + c z ) + a ~ ( b l + c l )  ‘ (lo) 
( p F  - &) 

4 ( b i + ~ i ) ~ ( b z + c z )  4 ( b l  + c i ) ( b z + ~ z ) ~  

and 

2. Conditions (10) and (11) bear an interesting geo- 
metrical interpretation. Clearly, the first inequality 
means that ,UN and p~ should be inside the ellipse 
with center 

shown that the second inequality (11) restricts 
and p~ to be within the hyperbola with axes along 
the lines p~ = + F ,  center 

and ( b i  bz + b i  Cz+bzCi )’ 
4% a m  c z  

cult to check since p~ and p~ are coupled in these 
conditions. The inequalities 

’ 3. The convergence conditions (10) and (11) are diffi- I A = [ 1 -alPh’+ (bl f c l ) P $  C1P% 

C 2 P $  - 
+ (b2 -k c2)PL2F 

and 

PRdl 

(12) 

(13) 

a1 

2(bl + c1) 
a2 

‘4b2 + C Z )  

= [ &d2 1 .  O < P N <  

The constants al ,bl ,  and c1 are defined by 
o < p F <  

a1 = 2&[f ’I 7 (7) 
bl = ( m 2 , 4  - m2)E[ft2 + ff”], (8)  represent uncoupled sufficient conditions for conver- 
c1 = U2LNE[ft2 + ff”], (9) gence. 
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4. Assuming the convergence conditions (10) and (11) 
to be satisfied, we see from (6) that the vector 
[q,v(k) 7p(k)lt will decay to its steady state 

(14) 
1 

= -DB A 
where 

where A is the determinant of A. This in turn yields 
the misadjustment of the algorithm which is given by 

5 Concluding remarks 
1. Table 1 summarizes the convergence analysis results 

of the LMMN algorithm for the correlated input case. 
These results encompass the results of the LMMN 
algorithm considered in [l] for which f ( e ( k ) )  = e ( k )  
and g ( e ( k ) )  = e 3 ( k ) ,  that is the LMS and the LMF 
algorithms, respectively [3]. 

2. When the two nonlinearities f and g coincide, the 
LMMN algorithm reduces to single-norm adaptation. 
In this special case, the results of Table 1 also en- 
compass the results of [2] in which adaptation with a 
single and general error nonlinearity was considered. 
It is interesting to note that the single-norm results 
of [a] in turn describe to the first order many results 
under a specific choice of the (single) error nonlinear- 
ity. 

3. The difficulty brought about by the correlated input 
assumption hindered our ability to see the natural 
coupling that exists between the near- and far-end 
sections. This coupling was preserved, however, un- 
der the simpler independent input assumption. This 
can be seen from Table 2 which summarizes the con- 
vergence analysis results for an independent input. 

4. Notice that the correlated input analysis applies for 
an independent input as well. We can thus compare 
the correlated input analysis, as it applies to an inde- 
pendent input, with the independent input analysis. 
From Tables 1 and 2, it turns out that the correlated 
input results describe, to the first order and for suffi- 
ciently small step sizes, the results of the independent 
input case. 

5. As remarked earlier, when the nonlinearities f and 
g coincide, the LMMN algorithm reduces to single- 
norm adaptation. If, in addition, the input is taken to 

be independent and Gaussian, then our independent 
input analysis is in agreement with the conditional 
analysis of [2]. In particular, the mean and mean- 
square recursions and represent the steady state re- 
cursions of those derived in [2]. Thus, the indepen- 
dent input analysis can be thought of as a generaliza- 
tion of the conditional analysis of [2] which is limited 
to Gaussian inputs. 

6. The convergence analysis that is carried out here can 
be used to arrive at the optimum choice of the non- 
linearities f and g ;  a choice that guarantees fastest 
convergence for a given steady-state error. Details 
can be found in [4]. 

6 Conclusion 
The least-mean mixed norm (LMMN) algorithm has 

recently been proposed for long data echo canceler. This 
work summarizes the convergence behavior of the LMMN 
algorithm with a pair of general error nonlinearities and 
for correlated as well as iid inputs. This convergence study 
sets up the stage for obtaining the optimum error nonlin- 
earity, a step that is carried out in [4]. 
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Conditions for 
convergence of the mean 

Time constants 

Conditions for conver- 
gence in the mean-square 

Misadjustment 

Table 1: Summary of the convergence analysis results for 
the LMMN algorithm with a correlated input. 

Near-end Far-end 
section section 

2 2 
o < , U N <  o < , U F <  

X N , m a z E [ f ’ ( n ( k ) ) ]  AF ,mazE[g’ (n (k ) ) ]  

N N,tE [f’ (n( IC))] 

A N , m a z  E If’(n( k ) ) ]  A F , m a z E [ g ’ ( n ( k ) ) ]  

T N > i  = T F J  = 
pFAF,,E[g’(n(k)) l  

1 1 
o < , U F <  < p N  < 

MN = , U N -  

Near-end Far-end 

Conditions for 
convergence of the mean 

Table 2: Summary of the convergence analysis results for 
the LMMN algorithm with an independent input. 

section section 
2 2 

O < ,UN < a$T[f’(n(k))l O < llF < a S E [ g ‘ ( n ( k ) ) ]  
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Time constants 

Conditions for conver- 
gence in the mean-square 
(necessary & sufficient) 
Conditions for conver- 

(only sufficient) 
gence in the mean-square 

Misadjustment 

1 1 
TN T F  = 

,UN U2 E [ f’ ( n ( k )  ) 1 , U F 0 2 E [ g ’ ( ? Z ( k ) ) ]  
alpN - (bl  + C l ) , U K  + a2pF - (b2  + c2)& 1 0 

(a ipN - ( 6 1  + cl)&) ( a z p F  - (62 + cz)&) - c i c z p & p $  2 0 

a1 a2 

2(b2 + ~ 2 )  
o < , U F I  

2 ( 6 1  + c 1 )  
o < P N I  

a l P N  - (bl  f cl)P% C l &  
a 2 P F  - (b2 + c2)P$ 


