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Abstract: This paper formulates and solves a parameter estimation problem that
shows how to combine, in a certain optimal and robust manner, measurements that
arise from a finite collection of uncertain models. This scenario occurs, for example,
in data fusion applications and in cases that involve systems that can operate under
different failure conditions. An example in the context of macroscopic diversity in
wireless cellular systems is considered. (©2000 IFAC.
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1. INTRODUCTION

Modeling errors in the data are common in prac-
tice and they can be due to several factors in-
cluding the approximation of complex models by
simpler ones, the introduction of experimental er-
rors while collecting data, or even the presence of
unmodeled or unknown effects. Regardless of their
source, modeling errors can adversely affect the
performance of otherwise optimal estimators. This
fact has motivated recent works on robust least-
squares methods, especially in Chandrasekaran et
al. (1997,1998), Ghaoui and Lebret (1997), and
Sayed et al. (1998,1999,2000).

1 Published in System Identification, R. Smith, edi-
tor, vol. 3, pp. 899-904, Pergamon, UK, May 2001.
[Proceedings of the 12th IFAC Symposium on Sys-
tem Identification, Santa Barbara, CA, June 2000.]
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In the works by Sayed et al. (1998,1999,2000), gen-
eral cost functions that allow for different levels
and sources of bounded parametric uncertainties
in the data have been proposed. These cost func-
tions are based on constrained game-type formu-
lations and they have been shown to lead to reg-
ularized least-squares solutions; albeit ones where
the regularization parameters are constructed op-
timally from the nominal data and from the avail-
able information about the uncertainties. In par-
ticular, the work by Sayed and Nascimento (1999)
developed a framework that can handle different
classes of uncertainties in the data, as well as
allow for data weighting. In the current paper, it is
shown how to extend this framework to situations
that involve a multitude of uncertain models; both
cases of a data fusion scenario and a probabilistic
(operation under failure) scenario are considered.

1.1 Data Fusion Formulation

Consider vector measurements {b1, b, ..., by} that
arise from L uncertain models of the form



bi = (Ai + 64z +v;, i=1,2,...,L,

where, for each i, v; accounts for measurement
noise and §A; accounts for discrepancies between
the given nominal matrix A; and its actual value.
Constraints on 6 A4; are described in the sequel.

The n-dimensional unknown parameter vector z
is the same for all measurements {b;}. This de-
scription corresponds to a situation where several
distorted measurements of a single unknown vec-
tor z arise from different sources with different un-
certainty models, as depicted in Fig. 1 for L = 4.
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Fig. 1. Measurements {b;} arising from different
uncertain sources.

Given the {b;}, one can then pose the problem of
estimating = optimally by minimizing the follow-
ing worst-case criterion over all uncertainties:

L
min {1312}(} ||a:||?2+ E ||(Ai+6Ai)1‘*(bi+6bi)||%Vi (1)
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where {@ > 0,W; > 0} are weighting matrices
and the notation ||z||% stands for the weighted
norm 27¥z. Also, for generality, uncertainties
{6b;} are included in the problem statement in
order to account for possible additional distortion
sources in the measurements {b;}. In this way,
each triple {A;,04;,0b;}, with the {§A4;,db;} be-
longing to a certain set, describes an uncertain
model for the data.

The above formulation amounts to a constrained
game-type problem where the designer attempts
to minimize the cost by picking z while the
opponent attempts to maximize the cost through
the selection of {§A;,db;}. The game problem is
constrained since bounds will be imposed on the
sizes of the {§A4;,b;}, as explained further ahead.
It is also worth remarking that problem (1) can
be rewritten as

by
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Ai + 84, b1 + by
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where W = (W1 & ... ® W). This indicates

that problem (1) can be further interpreted as
corresponding to solving an optimization problem
with uncertainties in the rows of the data matrix
col{4,...,Ar}.

1.2 Probabilistic Formulation

A related problem is one in which a single mea-
surement b is available that could have risen from
a selection of L models, say

b=(A;+064)x+v;, i=1,2,...,L,

with a probability p; for each possible nominal
model {A4;, As,..., AL}, as depicted in Fig. 2 for
L = 4. This formulation corresponds, for example,
to a situation where failures can occur and the
uncertain model giving rise to the measurement
is therefore subject to changes according to a
probability distribution.
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Fig. 2. A single measurement b that could have
risen from any of the models according to a
certain probability distribution.

In this case, one can seek to estimate z by mini-
mizing the worst-case expected residual energy,
min max E [|lz]|3, + [I(A+d4)z — (b+0)|°] (2)
z {§A;}
{6bi}

where the expectation is over the nominal data
{Ai,...,AL}; each having probability p;. In other
words, the quantities {A4,04,b} appearing in
the above cost refer to each uncertainty model



{A;,04;,0b;} with probability p;. The maxi-
mization is performed over any specified (de-
terministic) characterization of the uncertainties
{64;,8b;}, so that problem (2) reduces to

L
. 2 A; +8A)x — (b+6b;)|12 3
gnﬁ:}nﬂb+§:mz+ )z = (b+b)llp, 1| (3)

i=1
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1.3 Conditions on the Uncertainties

Of course, there are several ways to describe the
uncertainty sets {§A4;,8b;}. Two convenient ones
are the following (more general ones are described
below):

(1) Bounded uncertainties. In this case one as-
sumes that the uncertainties lie within balls
of known radii, say

[0 A:]] < Nasy [[0b3]] < b, (4)

for some known scalars {7q,i, 7,; }. Here, the
notation || - || denotes the Euclidean norm of
its vector argument or the maximum singular
value of its matrix argument.

(2) Factored form. In this case one assumes that
the uncertainties satisfy a model of the form

[(SAZ (Sb,] = st [Ea,z' Eb,i]a (5)

where the {H;, E, ;, Ey;} are known matri-
ces and S is an arbitrary contraction. The
above form allows the designer to impose
some structure on the uncertainty set. For
example, (5) forces [6A4; 0b;] to lie in the
column span of H;.

1.4 A General Formulation

The optimization problems (1) and (3), with un-
certainties of either forms (4) or (5), can be
regarded as special cases of the following more
general formulation (see Sayed and Nascimento
(1999)). Given data {A;,b;, H;, W;,Q}, and non-
negative functions ¢;(z), solve

L
o . )
X = arg min max T + R. T, y; 6
& z Ally:ll<¢i(z)} [” ”Q ; i ( yz)]( )

where the residual energy terms R;(z,y;) are
defined by

Ri(z,yi) = || Aiz — b; + Hyyill3y, (7)

In this formulation, the vectors {y;} play the
role of uncertainties whose norms are bounded
by the {¢i(z)}. For example, problem (3) with
constraints (4) corresponds to the choices W; =
pil, Hi = I, and ¢i(z) = nq,illz|| + np,i- Using
the constraints (5) instead, problem (3) would
correspond to the choice ¢;(z) = || Eqix — Epl|.
Other choices for ¢;(z) are of course possible. It
is assumed in the sequel that none of the ¢;(z) is
identically zero so that none of the maximizations
in (6) is trivialized.

2. SOLVING THE OPTIMIZATION
PROBLEM

Since each R;(z,y;) is dependent only on a single
s, the maximization in (6) over the various y;s
can be done independently and (6) is therefore
equivalent to

L
3 =argrrgn{||x||z + Zci(a:)} (8)

i=1

where the functions C;(z) are defined by

S @) ®)
Now since for any y;, each residual cost R;(z,y;)
is convex in z, one concludes that each C;(x)
is convex in z. Moreover, since 27 Qz is strictly
convex in z when @ > 0, it follows that the cost
in (8) is strictly convex in z. This shows that
problem (6) has a unique global minimum Z.

2.1 The Mazimization Step

The first step towards computing & involves deter-
mining the Cj(z). Now since R;(z,y;) is convex
in y;, the maximum over y; is achieved at the
boundary, i.e., when ||y;|| = ¢;(z). This means
that the constrained problem (9) can be replaced
by the unconstrained problem

Ci(z) = (10)

max [l iz = b + Hiillyy, = Milllwsl” - ¢7(@)]

where ); denotes a nonnegative Lagrange mul-
tiplier. This expression was used in Sayed and
Nascimento (1999) to show that the dimensional-
ity of the optimization problem (8) can be reduced



by determining C;(z) through the following alter-
native construction.

For any nonnegative number \; > ||HIW,H;||,
define the modified weighting matrix

A 1
Wi(\i) S Wi + WiH; (NI — HY WiH;) HIW; (1)

where the notation X' denotes the pseudo-inverse
of its argument. Introduce also the two-variable
function

A
Ci(z, X)) = [[Asz = billfy, (r) + Nidi (2)  (12)

where z and )\; are now treated as independent
variables. Then it can be shown that the desired
Ci(z) in (10) can also be obtained via

Ci(z) = min

Xi>|[HI W, H, ||

In other words, C;(z) can be determined by min-
imizing C;(z, A;) over the single scalar parameter
A; in the interval [||[HIW,;H;||,c0). With this in
hand, problem (8) then reduces to the following
(n + L)-dimensional minimization problem:

min _ min l||x||g+20,-(m,x,-)]. (14)

Ai>||HT W Hy| =1

A key property of this equivalent characterization
of (8) is that the variables {\;, z} are independent
of each other. In addition, by performing the inner
minimization with respect to z first, the above
procedure can be further reduced to an equiva-
lent L-dimensional minimization problem. Indeed,
setting the gradient of the objective function with
respect to z equal to zero leads to the equality

L L L
<Z Mi()\i)) T+ % ZM v ¢7(z) = Zdi()‘i) (15)

where {M;(A;),d;i(\;)} are defined by

A A
M;(N) = =Q+ ATWi(\)Ai,  di(\) = ATWi()bs.

=

Also, the notation 7 ¢?(z) denotes the gradient of
#?(x) with respect to z. Observe that the M;()\;)
are positive-definite matrices. When (15) has a
unique solution, say z° (which is dependent on
the {\;}), then substituting its expression into
the cost function in (14) leads to a minimization
problem over the {\;} alone.

3. A SPECIAL CASE

In order to illustrate the above solution, consider
the case of uncertainties {0 A4;, 0b; } that satisfy the
constraints (5). Then, in this case,

#i(x) = || Eq i — Ep | (16)

so that V@7 (z) = 2E7; (Eaix — Ep ;). Substitut-
ing into (15) shows that there is a unique solution
z°, dependent on the {\;}, and is given by

L -1
z° = [Z[MZ()\,) + )\iEg:iEa,i] .
i=1
L
Z [A;TWZ ()\,)bz + /\zEg:zEb,z] . (17)

i=1

By substituting this expression for z° into the
cost function in (14), one determines the minimum
value of the innermost minimization over z. Let
G denote the resulting minimum value, i.e.,

L
G(Ala'-'a)‘L)z ||"EO||2Q+ZCi($OaAi) - (18)

i=1

Then problem (14) is reduced to the equivalent
problem of minimizing this cost function over
the {A1,..., A} in the respective intervals \; >
||[HIW;H;||. In summary, one arrives at the fol-
lowing conclusion.

Theorem 1. Consider problem (6) and assume
the uncertainties satisfy the constraints (5) (or,
equivalently, that ¢;(xz) is given by (16)). The
unique global minimum % can be determined as
follows. Determine first the scalars {\i,..., 0}
that minimize the function G in (18) over the
intervals \; > ||HIW;H;||, where z° is defined
by (17). Then set
L -1z
= la-}— Z A;I"X/ZA,‘| Z [A;'Tv/[}ib,; =+ X@E’ar’iEb’i]
i=1

i=1

where the modified weighting matrices {@, W,} are
computed from the given {Q,W;} in terms of the
{Ai} as follows:

L
Q=Q+ Z;\iE;I:,;Ea,i
i=1

I//I}i =W; + WiHi(j\,iI — H;TW,'HL')TH?WZ'



4. REGULARIZED LEAST-SQUARES

It is worth comparing the above solution to the
one that would be obtained had the presence
of the data uncertainties been ignored, which
corresponds to assuming all the y; or the H; to
be zero in (6). In this case, problem (6) reduces
to the standard regularized least-squares problem

L
& = arg min [l|$||2Q +> 1Az - bi“%v,-] (19)

i=1

whose unique solution is easily seen to be
L “1reo
&= [Q +3 A;FWL-A,;‘| lz A;"'Wib,-]
i=1 =1

Comparing this expression with the one for Z in
the statement of Theorem 1, it is seen that the
solution to the constrained game problem essen-
tially amounts to correcting the given weighting
matrices {Q, W;} to new matrices {Q, W;} that
account for the uncertainty model. The additional
terms {\;E];Fj;} that appear in the expression
for & in the theorem are typical of regularized
least-squares problems with coupling.

5. AN APPLICATION: DIVERSITY IN A
WIRELESS CELLULAR SYSTEM

An interesting application for the framework de-
veloped in this article arises in the context of
cellular wireless systems. Fig. 3 shows a typical
(hexagonal) cell in this system with multiple mo-
bile units and antennas. One of the main difficul-
ties in this application is that of fading in which
the strength of the received signal changes as the
mobile unit moves in the cell (see Stuber (1996)).
Two mechanisms contribute to this variation and
they are called slow and fast fading.

Microdiversity is used to combat fast fading. Here,
multiple antennas are employed at both the mo-
bile unit and the base station to receive uncorre-
lated copies of the signal.? The signals are then
combined constructively enhancing the overall sig-
nal strength.

While we can use the same mechanism to com-
bat slow fading, the various antennas have to
be placed in geographically different locations in

2 The copies are said to be uncorrelated in the sense that
they experience independent channel gains.
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Fig. 3. A hexagonal cell with multiple mobile units
and antennas for macrodiversity processing.

this case to ensure that the received signals are
uncorrelated; hence the name macrodiversity (see
Stuber (1996)). While such distributed processing
is possible for the mobile-to-network link (uplink),
it is obviously impossible to implement on the
reverse link (downlink). In what follows we shall
discuss in more detail how macrodiversity mani-
fests itself in a CDMA cellular system (see Weiss
(1999)).

5.1 Macrodiversity on the Uplink

To enhance reception on the uplink (mobile to
base station), several antennas are deployed in
geographically different locations in the cell. In
the work of Turkmani (1992), it is argued that
three antennas are enough. In a CDMA system,
the signal b; that is received at the ith antenna has
the form?3 b; = A;xz + v;, where A; is the channel
matrix (channel gains) from the various mobiles in
the cell to the ith antenna, and v; is additive noise.
Here, z is a vector of transmitted signals from
the mobile units. The matrix A; is usually known
up to an uncertainty §4; due to synchronization
errors and multipath propagation. The measure-
ment vectors {b;} at the antennas are relayed to
a central base station whose task is to fuse this
information and to come up with an estimate for
z, thus giving rise to problem (1).

3 The receiver actually receives a scalar signal. It is only
after passing this signal through a bank of matched filters
(one for each user) that we get the vector b;.



5.2 Macrodiversity on the Downlink

The mobile unit cannot have antennas at geo-
graphically different locations. Thus, at a first
glance, one would suggest that all antennas of the
cell transmit the same signal to the mobile unit.
While this might enhance operation at a particu-
lar mobile unit, it will overwhelm other units in a
CDMA system due to multiuser interference.

Instead, as suggested in Weiss (1999), the central
base station decides on one antenna for downlink
transmission; the one that guarantees strongest
reception at the mobile unit. The most that the
mobile station knows is that the signal b; that it
has received arrives from antenna i with probabil-
ity p;, i-e. by = (A; +0A;)z+v; where §A; is again
some uncertainty due to synchronization errors
and multipath propagation. Thus, the problem
that we have to solve now has a probabilistic
formulation similar to (3). The probabilities p;
can be calculated using the direction of arrival
information for example.

5.3 A Numerical Example

In this example we assume that z is 2-dimensional,
which corresponds to the case of 2 mobile units
in the cell. Each unit transmits data that is
chosen uniformly from the PAM distribution
{-3,—1,1,3} and, hence, the data from each unit
has variance 02 = 5. The noise vector v; is as-
sumed to have a correlation matrix of the form
021, for some noise variance o2 that is chosen to
enforce desired SNR levels.

Two antennas are assumed to exist in the cell
and the nominal channels from the users to each
antenna are given by

1.0 —0.5 —0.32 0.76
A= [0.2 0.1] A= [ 0.08 0.024]'

The uncertainties ¢;(z) in (16) are chosen such
that Ea,l = 0171]2, Ea,2 = 02072]2 and Eb,i =
0, which correspond to the maximal relative error
bounds of approximately 15% and 25% for A;
and A, respectively (i.e., ||[6A41||/||A1]| is at most
15%).

The simulation was run for several values of the
SNR between —30 and 35 dBs. For each value
of the SNR, 100 data points z were generated,
in addition to random {6A;,6A2} within the
specified bounds. The estimate Z was obtained
by the method outlined in Theorem 1 and also
by the regularized least-squares method of Sec. 4.
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Fig. 4. MSE curves for 4PAM modulation in a
cellular wireless system scenario.

The comparison between both methods is done in
terms of the relative mean-square error:

1 100 o
155 2 oy Il — wjnz)

Relative MSE = 10log;, ( >
a$

where z; stands for the data at iteration j, and &;
denotes the corresponding estimate. The resulting
MSE curves are shown in Fig. 4. A point to stress
here is that the uncertainties {64,642} were
generated randomly during the experiments; by
design, a more robust performance would result
when these uncertainties are close to their worst-
case values.

6. CONCLUDING REMARKS

This paper formulates a robust estimation prob-
lem for data fusion applications. The solution
turns out to be in regularized form, albeit one that
is applied to modified weighting matrices rather
than the original weighting matrices (cf. the state-
ment of Theorem 1). An example in the context
of macrodiversity design in a wireless cellular net-
work was considered. Further studies are required
to better understand the statistical properties of
the proposed estimator; as well as to suggest al-
ternative computational methods and approxima-
tions.
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