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ABSTRACT
OFDM modulation combines the advantages of high achiev-
able rates and relatively easy implementation. In this paper,
we show how to perform blind maximum-likelihood data re-
covery in OFDM transmission from the output symbol and
cyclic pre x. Our approach relies on decomposing the OFDM
channel into two subchannels (cyclic and linear) that share the
same input and are characterized by the same channel para-
meters. This fact enables us to estimate the channel parame-
ters from one subchannel and substitute the estimate into the
other, thus obtaining a nonlinear relationship involving the
input and output data only. The relationship does not show
any channel dependence whatsoever and can be exhaustively
searched for the maximum likelihood estimate of the input.
This shows that OFDM systems are completely identi able
using output data only, irrespective of the channel zeros, as
long as the channel delay spread is less than the length of the
cyclic pre x.

Index Terms— OFDM, Blind channel estimation, Maxi-
mum likelihood detection.

1. INTRODUCTION

There has been increasing interest in OFDM as it combines
the advantages of high achievable rates and easy implementa-
tion. This is re ected by the many standards that considered
and adopted OFDM [1]. For proper operation of an OFDM
system, the receiver needs to estimate the channel and elim-
inate its effect. Many techniques have been proposed in the
literature for this purpose (see, e.g., [1], [2], [3], [4], [5], and
the references therein).

In this paper, we perform channel identi cation and equal-
ization from output data only (i.e. OFDM output symbol
and associated cyclic pre x (CP)), and without the need for
a training sequence or a priori channel information. The ad-
vantage of our approach is three fold:

1. It provides a blind estimate of the data from one out-
put symbol without the need for training or averaging
(contrary to the common practice where averaging over
several symbols is required). Thus, the method lends
itself to block fading channels.

2. Data detection is done without any restriction on the
channel (as long as the delay spread is shorter than the

(CP)). In fact, data detection can be performed even in
the presence of zeros on the FFT grid.1

3. The fact that we use two observations (the OFDM sym-
bol and CP) to recover the input symbol enhances the
diversity of the system as can be seen from simulations.

Our approach is based on the transformation of the lin-
ear OFDM channel into two parallel subachannels due to the
presence of a cyclic pre x at the input. One is a cyclic chan-
nel that relates the input and output OFDM symbols and thus
is free of any intersymbol interference (ISI) effects and is best
described in the frequency domain. The other one is a linear
channel that carries the burden of ISI and that relates the input
and output pre xes through linear convolution. This channel
is best studied in the time domain.

It can be shown that the two subchannels are character-
ized by the same set of parameters (or impulse response(IR))
and are driven by the same stream of data. They only differ
in the way in which they operate on the data (i.e. linear vs
circular convolution). This fact enables us to estimate the IR
from one subchannel and eliminate its effect from the other,
thus obtaining a nonlinear relationship that involves the in-
put and output data only. This relationship can in turn be
optimized for the ML data estimate; something that can be
achieved through exhaustive search (in the worst case sce-
nario).

2. NOTATION

We denote scalars with small-case letters, vectors with small-
case boldface letters, and matrices with uppercase boldface
letters. Calligraphic notation (e.g. X ) is reserved for vectors
in the frequency domain. The individual entries of a variable
like h are denoted by h(l). A hat over a variable indicates an
estimate of the variable (e.g., ĥ is an estimate of h). When
any of these variables become a function of time, the time
index i appears as a subscript.

Now consider a length-N vector xi. We deal with three
derivatives associated with this vector. The rst two are ob-
tained by partitioning xi into a lower (trailing) part xi (known

1This comes contrary to the common belief that OFDM using CP cannot
be equalized for channels with zeros on the FFT grid [1] and [6]
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as the cyclic pre x) and an upper vector x̃i. The third deriva-
tive, xi, is created by concatenating xi with a copy of CP i.e.
xi. Thus, we have

xi =
[

xi

xi

]
=

⎡
⎣ xi

x̃i

xi

⎤
⎦ (1)

This notational convention of underlined and overlined
variables will be extended to matrices as well and when it
is not clear, the number of rows will appear as a subscript.

3. ESSENTIAL ELEMENTS OF OFDM
TRANSMISSION

In an OFDM system, data is transmitted in symbols X i of
length N each. The symbol undergoes an IFFT operation to
produce the time domain symbol x i, i.e. xi =

√
NQX i,

where Q is the N × N IFFT matrix.
When juxtaposed, these symbols result in the sequence

{xk}. 2 We assume a non-ideal channel h of maximum
length L + 1. To avoid ISI caused by passing through the
channel, a cyclic pre x (CP) xi (of length L) is appended to
xi, resulting nally in super-symbol xi as de ned in (1). The
concatenation of these symbols produces the underlying se-
quence {xk}.

When passed through the channel h, the sequence {xk}
produces the output sequence {yk} i.e.

yk = hk ∗ xk + nk (2)

where nk is the additive white Gaussian noise and ∗ stands
for linear convolution.

Motivated by the symbol structure of the input, it is con-
venient to partition the output into symbols of length M =
N + L, i.e.

yi =
[

y
i

yi

]
(3)

This is a natural way to partition the output because the
pre x y

i
actually absorbs all ISI that takes place between the

adjacent symbols xi−1 and xi. Moreover, the remaining part
yi of the symbol depends on the ith input OFDM symbol x i

only. These facts allow us to partition the total OFDM chan-
nel described by (2) into two subchannels that we describe
next.

3.1. Circular Convolution (Subchannel)

Due to the presence of the cyclic pre x, the input and output
OFDM symbols xi and yi are related by circular convolution

2The time indices in the sequence xi and the underlying sequence {xk}
are dummy variables. Nevertheless, we chose to index the two sequences
differently to avoid any confusion that might arise from choosing identical
indicies.

(denoted by ◦∗), i.e.

yi = hi◦∗xi + ni (4)

where hi is a length-N zero-padded version of hi . In the
frequency domain, the cyclic convolution (4) reduces to the
element-by-element operation

Yi = H � X i + N i (5)

where H, X i, N i, and Y i, are the DFT’s of h, xi, ni, and
yi respectively

H = Q∗h, X i =
1√
N

Q∗xi,

N i =
1√
N

Q∗ni, and Y i =
1√
N

Q∗yi

(6)

Since h corresponds to the rst L + 1 elements of h, we can
show that

H = Q∗
L+1h and h = QL+1H (7)

where Q∗
L+1 consists of the rst L + 1 columns of Q∗ and

QL+1 consists of rst L + 1 rows of Q . This allows us to
rewrite (5) as

Yi = diag(X i)Q∗
L+1h + N i (8)

3.2. Linear Convolution (Subchannel)

From (2), we can also deduce that the cyclic pre xes at the
input and output are related by linear convolution. Speci -
cally, if we concatenate all cyclic pre xes at the input into a
sequence {xk} and the cyclic pre xes at the output into the
corresponding sequence {y

k
}, then we can show that the two

sequences are related by linear convolution [7]

y
k

= hk ∗ xk + ni (9)

From this we deduce that the cyclic pre x of OFDM sym-
bol yi is related to the input cyclic pre xes xi−1 and xi by

y
i
= X ih + ni (10)

where X i is constructed from xi−1 and xi according to

X i =

�
����

xi(0) xi−1(L− 1) · · · xi−1(0)
xi(1) xi(0) · · · xi−1(1)

...
. . .

. . .
...

xi(L− 1) · · · xi(0) xi−1(L− 1)

�
���� (11)

This fact together with the FFT relationship (7) yields the
desired time-frequency form

y
i
= XiQL+1H + ni (12)
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4. MAXIMUM-LIKELIHOOD ESTIMATION

Consider the frequency domain description of the cyclic sub-
channel (5). To obtain the ML estimate of H, we assume that
the sequence X i is deterministic and perform an element-by-
element division of (5) by X i to get

D−1
X Yi = H + N ′

i (13)

where
DX = diag(X i) (14)

and N ′
i is Gaussian distributed with zero mean and autocor-

relation matrix

Rn′ = σ2
nD−1

X D−∗
X = σ2

n|DX |−2 (15)

The maximum-likelihood estimate of H can now be obtained
by solving the system of equations (13) in the least-squares
(LS) sense subject to the constraint

Q̃N−L−1H Δ= Q̃H = 0 (16)

We can show that the ML estimate is given by [8]

ĤML
=

�
I −Rn

′ Q̃
∗ �

Q̃Rn
′ Q̃

∗�−1

Q̃

�
D−1

X Y i

=

�
I − |DX |−2Q̃

∗ �
Q̃|DX |−2Q̃

∗�−1

Q̃

�
D−1

X Y i

(17)

The ML estimate (17) was obtained solely from the circu-
lar convolution subchannel. Upon replacing H that appears
in the time-frequency form (12) (corresponding to the linear
subchannel) with its ML estimate (17), we obtain

y
i
= X iQL+1

�
I − |DX |−2Q̃

∗ �
Q̃|DX |−2Q̃

∗�−1

Q̃

�

D−1

X Y i + ni

(18)

This is an input/output relationship that does not depend on
any channel information whatsoever. Since the data is as-
sumed deterministic, maximum-likelihood estimation is the
optimum way to detect it, i.e. we minimize

X̂ ML

i =arg minX i

����y
i
−X iQL+1

�
I − |DX |−2

Q̃
∗ �

Q̃|DX |−2Q̃
∗�−1

Q̃

�
D−1

X Y i

����
2

(19)

This is a nonlinear least-squares problem in the data. In the
worst case scenario, it can be solved by an exhaustive search
over all possible sequences X i. To gain more insight into this
problem, we now treat the case of constant modulus data, in
which we have

|DX |−2 =
1

EX
I and D−1

X =
1

EX
D∗

X (20)

Thus, the ML estimate of X i (19) simpli es to

X̂ ML

i = arg minX i

����y
i
− 1

EX
X iQL+1

�
I − Q̃

∗
Q̃
�
Y i �X ∗

i

����
2

(21)

where in (21), we used the fact that Q̃ is a left-inverse of Q̃
∗

- a consequence of the unitary nature of Q

I = QQ∗ =

�
QL+1

Q̃N−L−1

� �
Q∗

L+1 Q̃
∗
N−L−1

	
(22)

From (22), we can also deduce that

QL+1Q̃ = QL+1Q̃N−L−1 = 0

So, the ML estimate of X i, for the constant modulus case,
is now obtained by performing the minimization

X̂ ML

i = arg minX i

����y
i
− 1

EX
X iQL+1Y i �X ∗

i

����
2

(23)

Notice that the only unknowns in this minimization are
Xi and X i, i.e. the input data sequence. This minimization
is nothing but a nonlinear least-squares problem in the data.
In the worst case scenario, we can obtain the ML estimate
through an exhaustive search.

4.1. Reducing computational complexity

(19) and (23) are computationally very complex but the ma-
trices involved in them are very sparse. So the computational
complexity can be reduced by relying on the sparsity of these
matrices. It is not discussed here as it is out of scope of this
paper and is a subject of future research.

5. SIMULATIONS AND RESULTS

We consider an OFDM system with N = 16 and cyclic pre x
of length L = 4. The OFDM symbol consists of BPSK or
4-QAM symbols. The channel IR consists of 5 iid Rayleigh
fading taps. We compare the BER performance of three meth-
ods: (i) Perfectly known channel, (ii) Channel estimated us-
ing L + 1 pilots and (iii) Blind based estimation.

In Figure 1, we compare the three mentioned approaches
of signal estimation for BPSK modulated data over a Rayleigh
fading channel. As expected, the best performance is achieved
by the perfectly known channel, followed by that obtained by
training based estimated channel.

The same conclusion can be made for the 4-QAM input
(see Figure 2). Note however that in the high SNR region, the
BER curve of blind based estimation exhibits steeper slope
(higher diversity) which can be explained from the fact that
two channels (linear and cyclic) are used to detect the data.
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Fig. 1. BER vs SNR for BPSK-OFDM over a Rayleigh channel
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Fig. 2. BER vs SNR for 4QAM-OFDM over a Rayleigh channel

In Figure 3, the three approaches are compared for BPSK
modulated data when the channel IR has zeros on the FFT
grid. We note that at high SNR, the BER for perfectly known
channel and that of the estimated channel reach an error oor.
Our blind method does not suffer from this problem and thus
blind case outperforms the other two cases.

6. CONCLUSION

In this paper, we demonstrated how to perform blind ML data
recovery in OFDM transmission. This is done using a sin-
gle output OFDM symbol and associated CP. In particular, it
was shown that the ML data estimate is the solution of an in-
teger nonlinear-least squares problem. This proves that the
data recovery is possible from output data only, irrespective
of the channel zero locations and irrespective of the quality
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Fig. 3. BER vs SNR for BPSK-OFDM over channel with zeros on
FFT grid

of the channel estimates or of its exact order. The algorithm
developed in this paper entails exponential complexity whose
reduction is the subject of future research.

7. REFERENCES

[1] Z. Wang and G. B. Giannakis, “Wireless Multicarrier
Communications: Where Fourier Meets Shannon,” IEEE
Signal Processing Mag., vol. 17, May 2000.

[2] T. Y. Al-Naffouri, “An EM-based forward-backward
Kalman for the estimation of time-variant channels in
OFDM,” IEEE Trans. Signal Process., vol. 55, Jul. 2007.

[3] M. Chang and Yu T. Su, “Blind and semiblind detections
of OFDM signals in fading channels,” IEEE Transactions
on Communications, vol 52, Issue 5, May 2004.

[4] R. W. Heath and G. B. Giannakis, “Exploiting input cy-
clostationarity for blind channel identi cation in OFDM
systems,” IEEE Trans. Signal Process., vol 47, Mar. 1999.

[5] B. Muquet, M. de Courville, P. Duhamel, and V. Buzenae,
“A subspace based blind and semi-blind channel identi -
cation method for OFDM systems,” Proc. IEEE Work-
shop for Signal Process., May 1999.

[6] E. Chen, R. Tao, and X. Zhao, “Channel Equalization for
OFDM System Based on the BP Neural Network,” The
8th International Conference on Signal Processing, 2006.

[7] X. Wang and R. Liu, “Adaptive channel estimation using
cyclic pre x in multicarrier modulation system,” IEEE
Comm. Lett., vol. 3, no. 10, Oct. 1999.

[8] Ali H. Sayed, “Fundamentals of Adaptive Filtering,” John
Wiley and Sons, Inc., 2003.

2832

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 11:49 from IEEE Xplore.  Restrictions apply.


