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Abstract 
This paper presents a unifying view of various 

error nonlinearities that are used in least mean 
square (LMS) adaptation such as the least mean 
fourth (LMF) algorithm and its family and the 
least-mean mixed-norm algorithm. Specifically, 
it is shown that the LMS algorithm and its error- 
modified variants are approximations of two re- 
cently developed optimum nonlinearities which 
are expressed in terms of the additive noise prob- 
ability density function (pdf). This is demon- 
strated through an approximation of the opti- 
mum nonlinearities by expanding the noise pdf 
in a Gram-Charlier series. Thus a link is es- 
tablished between intuitively proposed and theo- 
retically justified variants of the LMS algorithm. 
The approximation has also a practical advan- 
tage in that it provides a trade-off between sim- 
plicity and more accurate realization of the opti- 
mum nonlineari ties. 

1 Introduction and Motivation 

The least. mean squares (LMS) algorithm is 
one of the most widely used adaptive schemes 
because of its simplicity, efficiency, robustness, 
and numerical stability [l? p. 531. Moreover? it 
has been very thoroughly investigated over a pe- 
riod of time that it is now very well understood. 
Therefore, many modifications of this algorithm 

have been suggested and analyzed. Of particular 
importance is the class of least-mean algorithms 
employing an error nonlinearity. This class is de- 
scribed by 

W(k + 1) = W(k) + w(e(~))X(k) 
e(k) = d ( k )  - wt(k)x(k). 

where W(k) is the adaptive filter vector of coeffi- 
cients, X(k) is the data input vector, d(k) is the 
desired response, and q(e(k)) is the error nonlin- 
earity. The choice 

a ( e ( W  = e3(W (1) 

yields the least mean fourth (LMF) algorithm [2]. 
which is one of the most popular variants of the 
LMS algorithm. Other members of the LMF fam- 
ily are obtained by choosing [2] 

q ( e ( k ) )  = e(2'-1)(k), (I 2 3). (2) 

The recently proposed least-mean mixed-norms 
algorithm [3] combines the advantages of the 
LMS and LMF algorithms by choosing 

q(e(k)) = Xe(k) + (1 - x ) e 3 ( k ) ,  o 5 x 5 I. (3) 

Here a natural question arises: are these nonlin- 
earities theoretically justified. or is intuition used 
to support the choice of a certain nonlinearity? 
Unfortunately, more often than not, the latter 
approach is used. 
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This was not the case in [4] were the calculus of 
variations was used to arrive at  the optimum er- 
ror nonlinearity. Specifically, it was shown there 
that under the system identification model 

d ( k )  = W(jtX(k> + n ( k ) ,  (4) 

the optimum error nonlinearity for an arbitrary 
input is given by 

(5) 

where p ( ~ )  is the probability density function of 
the additive noise n ( k ) .  In the independent input 
case, a more accurate description of the nonlin- 
earity is possible [5] 

Both of these optimum nonlinearities are valid 
for a symmetrically distributed white noise and 
for sufficiently small step size p. The optimum 
nonlinearities in turn give rise to two questions, 
a theoretical and a practical one. 

1. How do the theoretically justified nonlinear- 
ities (5) and (6) relate to the LMS algorithm 
and its error-modified variants (1)-(3)? 

2. How is it possible to have a practical and 
inexpensive implementation of the optimum 
nonlinearities, especially that they are ex- 
pressed in terms of the noise pdf which is 
usually unknown? 

Both of these questions are answered by ex- 
panding the pdf p ( z )  in a Gram-Charlier series. 
This will be demonstrated for the nonlinearity 
-p'(z)/p(z) only although the discussion applies 
equally to the other optimum nonlinearity (6). 

2 Gram-Charlier Approximation of 
the Optimum Nonlinearity 

Let ~i denote the ith cumulant of the noise 
n ( k )  and let o2 denote its variance. The Gram- 

Charlier expansion of the pdf p(z)  is given by [6] 

where 4 is the standard Gaussian pdf, He2i is 
the Hermite polynomial of degree 2i, and a2i is a 
function of the cumulants of n(k). In particular, 

With this expansion the optimum error nonlin- 
earity, -p'(z)/p(z) can be expressed as 

To simplify the discussion, only the first- 4 terms 
of the summation in (10) are retained, which 
amounts to approximating p ( ~ )  by the first four 
terms of Gram-Charlier expansion (7). It is also 
more convenient to express this sum as a polyno- 
mial in x 

where 

A0 

A2 

-44 

A6 

A' 

(15) 

Thus, L e  nonlinearity -p'(z)/p(z) can -e ap- 
proximated as 

P ' ( X )  x 1 8A8x7 + 6&Z5 + 4A4x3 + 2A22 
P ( X )  - o2 

-- N --- 
As,' + A6X6 + A4x4 + A2z2 + 1' 
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We can also approximate the rational part of the 
last equation by its 8th-order Taylor series so that 
the nonlinearity - p ' ( z ) / p ( z )  finally reads 

z+c3z3+c5z5+c7z7, (17) 

where 

-2Az 
c1=- 

U !  

2 
c3=- (Ai - 2A4) , 

d 
2 

c5=- (Ai + 3A2A4 - 3%) , and 
U 

The relation sets (8)-(9)!(12)-(16)! and (18)-(21) 
serve to show that the coefficients q of the a p  
proximation (17) can be explicitly written as a 
function of the noise cumulants. 

3 Relationship between the Optimum 
and other Error Nonlinearities 

The special polynomial approximation (17) 
shows that the LMS algorithm and its variants 
(1)-(3) are simply approximations of the opti- 
mum nonlinearity. To start with, the lowest order 
term in (17) is that which appears in LMS adap- 
tation, so that the LMS is a first order approx- 
imation of the optimum nonlinearity (5). This 
explains the robustness that the LMS algorithm 
enjoys in different noisy environments. The sec- 
ond term of (17) corresponds to the error non- 
linearity of the LMF algorithm while the higher- 
order terms correspond to error nonlinearities in 
the LMF family. 

This approximation also suggests that a mix- 
ture of the LMS algorithm and the LMF family 
of algorithms will outperform the performance of 
each of the individual algorithms as this mixture 
provides a better approximation of the optimum 
nonlinearity. The LMS-LMF mixture was actu- 
ally studied and simulated in [3] and [9] and was 

found to have better performance compared to 
both of the algorithms. The polynomial approx- 
imation (17) not only justifies such mixtures but. 
also identifies the optimum mix in terms of the 
polynomial coefficients, which can in turn be ex- 
pressed in terms of the noise cumulants. 

4 Practical Implementation of the 
Optimum Nonlinearity 

The nonlinearity - p ' ( z ) / p ( z )  is difficult to im- 
plement because a different nonlinearity must be 
implemented for each type of noise. Moreover? 
p ( z )  is usually unknown and must be estimated. 
The approximation in (17) does away with both 
of these problems by preserving a general form 
of the nonlinearity which requires a small num- 
ber of operations. The general form provides a 
method for a trade-off between simplicity of im- 
plementation and more accurate approximation 
of the optimum nonlinearity. Moreover! pdf esti- 
mation is traded for cumulant estimation which 
is straightforward to implement given a sample 
of the noise process. The cumulants can also be 
estimated on-line giving rise to a time varying 
nonlinearity. 

Cumulant estimation might be complicated by 
the fact that the noise n(k) is unobservable. Only 
the output error 

is accessible, and it can actually be used for cu- 
mulant estimation. This is justified by observing 
that under slow adaptation conditions, which is a 
requirement for the nonlinearity - p ' ( z ) / p ( z )  to 
be optimum, e(C) consists mainly of n(k) [2],[4]. 
The central limit theorem provides another justi- 
fication in that vt (k)x is approximately Gaussian 
[7], [8], so that the cumulants of the output error 
are approximately equal to those of the additive 
noise. 

'V(k) is the weight-error vector representing the 
diffrence between WO and W(k). 
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5 Conclusion 

The LMS algorithm and several of its error- 
modified variants are approximations of the op- 
timum error nonlinearities for LMS adaptation. 
This link between intuitively proposed and the- 
oretically derived least mean algorithms justifies 
the use of the former ones and actually provides 
a means for optimizing their performance. The 
general approximation arrived at also serves as a 
practical implementation of the optimum nonlin- 
earities. Although the results of this paper were 
demonstrated for one optimum nonlinearity (5), 
they apply equally to the optimum nonlinearity 
(6). 
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