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ABSTRACT 

In this paper, we study leaky adaptive algorithms that em- 
ploy a general scalar or matrix data nonlinearity. We per- 
form mean-square analysis of this class of algorithms without 
imposing restrictions on the distribution of the input signal. 
In particular, we derive conditions on the step-size for stabil- 
ity, and provide closed form expressions for the steady-state 
performance. 

1. ADAPTIVE FILTERING MODEL 

In this paper, we consider the following class of leaky 
adaptive filters: 

Wi+l  - - (1 - cup)wi + pEt(ui)uTe(z) (1) 
e ( i )  = d ( i )  - uiwi (2) 
d ( i )  = uiwo + v(2) (3) 

where wi is an estimate for W O  at iteration i, p is the 
step-size, a 2 0 is the leakage parameter, ui is a row 
regression vector, v(i) is measurement noise, and H(ui) 
is a matrix data nonlinearity with nonnegative diagonal 
entries. Usually, H(ui) is a multiple of the identity, say 
H(ui) =- 1 1  for some function g(.). Table 1 lists 
some common examples of data nonlinearities. There 
are several reasons for incorporating leakage into an 
adaptive filter update and special cases of (1)-(2) have 
been studied before in the literature (see, e.g., [l] and 
[2] and the references therein for motivation and related 
discussions). 

The purpose of this article is to provide a framework 
for performing mean-square analysis of the general class 
of leaky algorithms (1)-(2). This is achieved by relying 
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Table 1: Examples of data nonlinearities. 
[[ ALGORITHM 1 H(u; )  I) 

M 
Ui 

variable steps d%(Pl, P2, * . . , PA41 

on the energy-conservation approach developed in [3]- 
[5]. Among other results, the approach avoids imposing 
conditions on the statistical distribution of the input 
sequence (see, e.g., [7, 81). In addition, the approach 
enables us to perform both mean-square analysis and 
transient analysis. 

2. DEFINITIONS AND NOTATION 

Mean-square analysis of (1)-(2) is carried out in terms 
of the error quantities: 

(4) 
A 

~i 5 wo - wi and e,(i) = ui.iiri 

and the normalized regressor i i i  = uiH(ui). These 
quantities can be used to rewrite the filter relations (1)- 
(2) as: 

.iiri+, = (1 - ap).iiri - piiTe(i )  + apw0 (5) 
e( i )  = e,(i) + v( i )  (6) 

We shall replace (5) with the more general adaptation 

wi+l - - (1 - cup)t.iji - pi iTe( i )  + ppwo I (7) 

with separate parameters {a,  p}. 
We also find it useful to use the compact notation 

I[.iiril[% = WTXihi. This notation is convenient because 
it enables us to transform operations on wi into oper- 
ations on the norm subscript, as demonstrated by the 
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following properties. Let a1 and a2 be scalars and Xi 
and be symmetric matrices of size M .  Then 

1) Superposition. 

aiII+iIIgl + azII+iII$2 = 

2) Polarization. 

3) Independence. If w; and U, are independent, 

4) Linear transformation. For any N x M matrix A, 

5) Blindness to asymmetry. For any square matrix A, 
IIAG;II$ = I I ~ ~ I I ~ T E A  

IICiII; = II+iIIaT = II+iII iA++AT 

6) Notational convention. Using the vector notation, we 
A shall write ~ ~ 1 5 ; ~ ~ ~ ~ ~ ~ ~ ~ )  = llGil&l 

The analysis in the sequel relies on the following two 
assumptions: 

AN. The noise sequence w ( i )  is zero-mean, iid, and is 
independent of the input regressor ui. 

AI. The sequence of regressors {ui} is independent with 
zero mean and autocorrelation matrix R. 

Observe that we are not requiring the input to be Gaus- 
sian. 

3. MEAN-SQUARE PERFORMANCE 

To study the mean-square performance of the leaky 
adaptive filters, we need to develop a recursion for the 
weight-error energy. We therefore start with recursion 
(7) and compute the energies of both sides to  arrive at, 
after taking expectations, 

E [ l l ~ a + 1 I l ~ ]  = (1 - w ) Z E  [ l l ~ i l l ~ ]  
-2p(1 - a p ) E  [G1TIlTEiX7-iji 1 1  + p2E &i)llG,[[&] 

+2pLp(1- a p ) E  [woTxi5, - 2p2PE [wOTUTGax+,] 1 
(8) +P2DiE [ l l%l l~]  +~2P211wolI& 

In the above calculation, we used assumption AN to 
eliminate three noise cross-terms. The above recursion 

can be expressed more compactly by using the polar- 
ization and asymmetry properties, in addition to the 
independence assumption, t o  write 

and 

where we defined 

Relations (13)-(14) (or, equivalently, relations (16) 
-(17) below and ultimately (19)) can be used to charac- 
terize the mean-square performance of the adaptive fil- 
ter. In particular, they can be used to derive conditions 
for mean-square stability, as well as expressions for the 
steady-state mean-square error and mean-square devi- 
ation of an adaptive filter. To this end, note that the 
above recursion for I= can be rewritten more compactly, 
using the vec operation and the Kronecker product no- 
tation, as 

where U = vec (E) , U' = vec (E') , and 

In light of (15), recursion (13) becomes 
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To make this recursion self-contained, we need a recur- 
sion for E [ii~i], which can be obtained by evaluating the 
expected value of both sides of (7): 

E [Gi] = J E  [Gi-1] + ppw" 1 (18) 

0 1 . . '  0 
0 0 * . '  0 

A .  G1 = . 
0 0 . . '  1 

- -Po  -p1 . . '  -pM*-l A 

Recursion (18) is what we need to supplement (17) and 
produce the desired self-contained relation. To this end, 
let us write (17) explicitly for {U ,  F a , .  - .  , FM2-' U )  : 

(20) 

In the above system of equations, f I; is a vector defined 
by f = JLkw", where Lk is matrix of size M such that 
vec(Lk) = Fku.  The last expresion in the above sys- 
tem is obtained from the previous one by means of the 
Cayley-Hamilton theorem, which enables us to express 
F M 2  as a linear combination of lower powers: 

FM'-I  F M 2  = -POI -plF - - - .  - P M Z - ~  

where the pi's are the coefficients of the characteristic 
polynomial of F, viz., p(z) = det ( X I  - F). 

In summary, recursions (15)-(18) can be combined 
together into a single matrix recursion in state-space 
form: 

The state recursion (19) characterizes the transient be- 
havior of the leaky adaptive filters (1)-(2). It can now 
be used to study mean-square stability and mean-square 
error performance. 

3.1. Stability 

From (19), we see that stability is achieved if, and only 
if, both GI and J are stable matrices. However, since 
GI and F have the same eigenvalues, this condition cor- 
responds to requiring that F and J be stable matrices. 
By inspecting the defining expressions (12) for J and 
(16) for F ,  we can show that 

1 

where A = E [U,] 81 + 18E [Ui] and B = E [Ui@Ui]. 

3.2. Steady-State Error 

Steady-state performance can be obtained directly from 
recursion (17). So, assuming the filter is stable, we get 
E [ll1k;+~113] = E [IIT~Y~I~:] as i + 00. Therefore, in the 
limit, relations (17) and (18) lead to 

and 

or, equivalently, 
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This expression allows us to evaluate the steady- 
state weight-error energy for any choice of a symmetric 
weight E. In particular, we can get the mean-square er- 
ror by choosing L: = R, i.e., by choosing a such that 
( I  - F ) a  = vec(R). This leads to the expression 

where vec(X) = ( I  - 8‘)-’vec(R). Similarly, the mean- 
square deviation is obtained by choosing U (and hence 
I=) such that ( I  - F ) a  = vec(1). 

4. TRACKING ANALYSIS 

The results of the previous section can be specialized for 
non-leaky normalized filters by setting tu = p = 0. More 
importantly, the analysis can be used to infer (almost 
immediately) the tracking performance of normalized 
adaptive filters. In the tracking case, w o  is no more 
constant but undergoes random perturbations, say 

wp+’ = wp + qi 

As in the leaky case, we still‘carry out the derivation 
in terms of the error quantities e,(i) and ‘Lzfi as defined 
in (4), with w‘ replaced by the now time varying wy. 
To perform mean-square analysis in the tracking case, 
we rely on assumptions AN ‘and AI, in addition to the 
following assumption: 

AT The sequence of tracking errors { q i }  is zero-mean 
and stationary, and is independent of the input  ui 
and the additive noise w(i ) .  

Now consider the adaptation equation (1) for tu = 0, 
rewritten in terms of iii, ea(z), and w i :  

GZ+l - - ~i - pe(z)ii: + qi (24) 

Notice that this is the same as (5) for a: = 0, p = 
l/p, and W O  = qi. We can similarly argue that the 
mean-square behavior is also described by (17) for the 
same values of cy and ,L3 and for’ 

Ilw”ll? = E [kdl?] , and w o  = E [qi] = 0 

That is, we now have 

E [ll~i+lll:] = E [ll~ill;u] + P 2 d E  [IIuill:] + E [lln;113] (25) 

Stability and steady-state behavior can now be ,  de- 
duced from (25). In particular, (mean-square) stability 

‘For completeness, we point out that the mean weight-error 
behavior can similarly be obtained from (18) with Q = 0 , p  = l/p, 
and wo = E[qi]  = 0. 

is guaranteed if, and only if, F is a stable matrix (see 
(22)) where now 

ui = a1 + UTiTila=O = u:ni 
Moreover, by an approach similar to that of the previous 
section, we can derive the following expression for the 
steady-state error 

5. CONCLUSION 

In this paper, we performed mean-square analysis of 
leaky normalized adaptive filters. We showed how the 
analysis can be further used to infer the tracking perfor- 
mance of normalized adaptive filters. Our study applies 
to a large class of data nonlinearities and does not im- 
pose Gaussian assumptions on the data. 
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