OPTIMUM ERROR NONLINEARITIES FOR LONG ADAPTIVE FILTERS
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ABSTRACT
In this paper, we consider the.class of adaptive filters with er-
ror nonlinearities. In particular, we derive an expression for
the optimum nonlinearity that minimizes the steady-state
error and attains the limit mandated by the Cramer-Rao
bound of the underlying estimation process.

1. INTRODUCTION

The least-mean-squares (LMS) algorithm is a popular adap-
tive algorithm because of its simplicity and robustness.
Many LMS-like algorithms have been suggested and ana-
lyzed in the literature with the aim of retaining the desirable
properties of LMS and simultaneously offsetting some of its
limitations. Of particular importance is the class of least-
mean-squares algorithms with error nonlinearities. Some of
the most common nonlinearities are tabulated in Table 1.

Our aim in this paper is to derive an expression for the
optimum nonlinearity that minimizes the steady-state mean-
square error. We arrive at this nonlinearity by first deriv-
ing a closed form expression for the steady-state error for a
general error nonlinearity. Subsequently, we choose the op-
timum nonlinearity which reduces the steady-state error to
that mandated by the Cramer-Rao bound of the underlying
estimation process.

2. ADAPTIVE ALGORITHMS WITH ERROR
NONLINEARITY

An adaptive filter in a system identification setting uses
input regressor (row) vectors u; and noisy output data
d(i) = usw® +v(z) to estimate the unknown (column) vector
w®. Many adaptive filters are special cases of the following
general class of algorithms:

win = wi + pfle@ui, i>0 ¢y
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Table 1: Ezamples for fle(i)] .
[ ArLcoriTEM | ERROR NONLINEARITIES fle(s)] ]|

LMS 0]
LMF EI06)
LMF family eZFHI()
LMMN ae(i) + be3 (i)
Sign error sign[e(7)]
Sat. nonlin. foe(l) exp (~ ;:j dz

where w; is the estimate of w at time 7, p is the step size,
e(d) 2 d(3) — wiw; = mw® — ww; + v(i) 2

is the estimation error, and f[e(¢)] is a scalar function of the
error e(i). Mean-square analysis of adaptive filters is most
conveniently carried out in terms of the weight-error vector
; = w° — w; and the a-priori and a-posteriori errors

ea(i) 2 with; ep(i) 2 uiiisn (3)

The adaptive filtering equations can be reformulated in
terms of these quantities as

Wip1 = wi— pfle(@)ul 4

e(?) ea (i) + (i) (5)

Using this parameterization, it it straightforward to show
that the estimation errors are related by

| ep(i) = eali) = pllusll*£le(i) | (6)

and that the energies of the various errors are conserved
according to

- 9 e ()2 ~ 12 ep (i) ?
Y + 1_(JL,_a = [|lw;]||* + 7
” 1+l” “u;” ” 1” ”u,” ( )

Both of these relationships are exact and apply for the class
of adaptive filters (1)-(2). They were derived in [1] and used



subsequently as a unifying tool in a variety of studies on
different aspects of adaptive filtering (see, e.g., [2, 3] for
results on steady-state performance, and {4, 5, 6, 7], where
studies on stability and transient performances have been
pursued to great advantage).

3. STEADY-STATE BEHAVIOR

We start with the following form of the energy relation

E[l@inll®] = E @] - 2pE [ea (i) fle(d)]]
+p”E [|lail|* £*[e(d)] (®)

obtained by averaging (7) and replacing the posteriori error
ep(i) by the equivalent expression (6). Assuming that the
filter is stable, it should eventually reach its steady-state
wherein E [||w;41*] = E [||®:]|*] as i = oo, so that

lim Blea@)fle@))] = £ lim B [lul*fle@] ()

To proceed further, we need to evaluate the two expectations

in (9). This prompts us to introduce (a realistic) indepen-

dence assumption on the noise

AN. The noise sequence {v(i)} is independent, identically
distributed, and independent of the input sequence
{u:}.

and the following asymptotic assumptions:

AG. The filter is long enough such that e, (%) is Gaussian.

AU. The random variables ||u;||* and f?[e(i)] are asymp-
totically uncorrelated, i.e.

Jim E [[luill”*e(0)] = B [Ihuill*] Jim B [£[e(@)]]
(10)

Remark. Assumptions AG and AU act in harmony in that
both get more realistic as the filter gets longer (and hence
the title of the paper). Assumption AG is justified for long
filters by the central limit theorem. Assumption AU has the
same spirit as the independence assumption but is weaker.!
It is justified for long filters by an ergodic argument on
{lus{|> which then behaves like a scaled second moment of
the input.

Now, using AU, we can write
lim B [flusl* £} = B [ludl*} Jim B [f*[()]]

By employing assumptions AN and AG, we can show that the
expectations Elea (i) fle(3)]] of (9) and E[f%[e(?)]] of (11) can
both be expressed in terms of the second moment E[eZ(1)].
This motivates the defining relations

N1 A .
hy (B0 2 B [e(0)] a
he [E[e2(9)]] = E [ea(d) fle(d)]]
) 1The independence assumption Al states that the input re-
gressors {u;} form an independent and identically distributed se-

quence. This assumption is heavily resorted to in the adaptive
filtering literature.

1I-1374

and, together with (11), enables us to rewrite (9) as

lim; 00 hu [Eled(3)]]
lim; 0 ha [E[e2(3)]]

lim E [¢3(5)] 2 %T: (R)

Now denote the mean-square error by S 2
lim;_.ooE[ez(i)]. Since both hy and hg are analytic
in their arguments, we have

Jim hy [Ele2@]] =hulS] lim he [Ele2@)] = holS]

This means that the MSE satisfies the nonlinear relationship

S = Tx(R) 34 (12)

For a given error nonlinearity f, we can evaluate hy and
he and subsequently solve for the MSE (see [6] for specific
examples).

4. OPTIMUM CHOICE OF THE
NONLINEARITY

In this section, we build upon the second-order analysis per-
formed above to optimize the choice of the error nonlinearity
f. To this end, consider expression (12) for the mean-square
written in a more explicit form 2

Iz E[f*[e()]]
S = ZTr(R) =557 13
2 " E[Fle) 3
The mean-square error is fundamentally lower-bounded by
the Cramer-Rao bound « of the underlying estimation pro-
cess (viz., the problem of estimating the random quantity
u;w® by using u;w;). We can thus write

Bfe@), 2
B[] = pTe(R)* a4

Now let p. denote the pdf of e(i). We claim that the nonlin-
earity

Flei)] = —a’ Ele) -

pele(i

attains the lower bound on the MSE and hence is optimum.
To see this, let’s evaluate the numerator and denominator
of (14) for this choice of f. Using integration by parts, we
can write

BIfe@l = [ fle@lpele(d] de(i)
= Je@lpele@liZ — [ TG de(d)

For the choice (15) of f, this reads

Bl = =o' e[+ [ (”p—[{f{)% de(s)
_ [ @),
= /_m Py 2@ (16)

2Assuming f is differentiable, we can show by Price theo-
rem that hg takes the alternative form hg = Eleq(i)fle(:)]] =
E[f'[e(3)]]. This, together with (11) and (12), yields (13).



assuming that p/, decays to zero as e(i) approaches +oco. Now
for the same choice of f, we have

PN = @) [ (L) e ey

~ @)’
= [ S0

CTPR
ie. i[;,[[:((:))]]] = ¢/, as required.

4.1. Further simplifications

To determine the nonlinearity (15),
and determine the pdf p. at each time instant. Upon sub-
stituting the optimum nonlinearity (15) into the adaptation
equation (1), the constant o' appears multiplied by the step
size u — a design parameter that is usually varied; hence,
o' can be absorbed into p. Thus, the optimum nonlinearity
simplifies to

. fe(i)]
fle@} = *%ﬁ;‘(‘m

(17)

Furthermore, since e(i) is the sum of the independent vari-
ables e, (z) and v(2), its pdf is the convolution of their pdf’s,
ie.,

Pele(d)]

L e T apyfe(i)]

Pea [e(3)] % pule(?)]

(18)

= ———¢€

V27wa2,

where the second line follows from the Gaussian assumption
AG on es(%), and o, denotes the variance of e.(z). Thus,
modeling p. reduces to the simpler task of modeling the noise
statistics and tracking the time variations of oZ,. In our
simulations, we estimate o, by first estimating the variance
of e(i) using a window of (the 4 most recent) samples of e(i)
and subsequently calculate the estimate 630(1-) from

62wy = Ol —os (19)

To avoid malfunctioning of the algorithm, we enforce the
assignment 62 = ¢ whenever the windowed estimate falls
outside the interval [a,b]; the three constants a,b, and ¢
should be specified by the designer.

Remarks

1. The derivation of the optimum nonlinearity blends
smoothly with the stability® and steady-state anal-
yses in that it relies on the same set of assumptions,
and is also obtained as a fallout of the same energy
conservation approach.

3Refer to [5], [6], and [7] to see how the energy relation can be
used to establish stability under the assumptions of this paper.
Stability analysis and optimum design share another feature in
that they both rely on the fundamental limit set by the Cramer-
Rao bound.
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we need to evaluate o

2. Also note that no heavy machinery is appealed to in
developing the optimum nonlinearity. In particular,
we avoid the variational approaches that are usually
employed in literature in designing optimum adapta-
tion schemes (see [8, 11]).

3. The nonlinearity (17) is derived under simpler as-
sumptions compared to what is available in literature.
For instance, we employ a weaker version of the inde-
pendence assumption (compare with [8] and [9], [11],
[10]) and make no restriction on the color or statis-
tics of the input (compare with [8] and [11]). The
nonlinearity (17) also applies irrespective of the noise
statistics or whether its pdf is symmetric or not (con-
trary to what is assumed in (8] and [9]).

4. More importantly, perhaps, we avoid the need for any
linearization arguments making the nonlinearity (17)
accurate over all stages of adaptation. In contrast, the
optimum nonlinearity

Pule(d)]

f[e(z)] = _pu[e(i)]

of [9], rederived in [8] using linearization arguments,
is only accurate in the final stages of adaptation.
In fact, the more accurate expression (17) collapses
to the nonlinearity (20) as the filter reaches its
steady-state.

(20)

5. Notice further that expression (17) for the optimum
nonlinearity applies irrespective of whether the noise
pdf is smooth enough (differentiable) or not. Thanks
to the smoothing convolution operator of (18), we can,
for example, directly calculate the optimum nonlinear-
ity for binary and uniform noise (see examples below).
This comes contrary to the nonlinearity (20) where an
artificial smoothing kernel needs to be employed for
such singular cases [8].

5. EXAMPLES

In what follows, we show how the error nonlinearity
manifests itself for different noise statistics. Due to space
limitations, we save the details to [6], and simply write
down the form of the nonlinearity.

Gaussian noise: v is N(0,1):

forele(@)] = ”}28} () (21)
Laplacian noise: p,[v] = 1e~I*!:

e“Dg.fe(i)] — e=*Mg-[e(i)]

Sopt = — T T
(i e(i)+o2 —eli e(i)—o?
ee(d) (l—erf[——za—e—u-“-])+e ()<1+erf[—\7—2_;r:9-])
where
. (e(iYka? )2
. e(i) £ a2, 2 -
gele(d)] = 1 Ferf [ o7 ] ~\/7ore 7,



Binary noise v = +1 with equal probability:

e(i)—e_(%éj_l)t h[ (')] (22)

fomle(®) = =

ea o

5.1. Simulations

Here we use simulations to illustrate the behavior of the
optimum algorithm in comparison to the LMS and to the
asymptotic algorithm (20). The system to be identified is
an FIR channel with 15 taps normalized so that the SNR
relative to the input and output is the same (10 dB in our
case). The input is taken to be Gaussian while the additive
output noise is assumed to be Gaussian or Laplacian. The
variance o2 is estimated using the most recent 4 samples of
e(i), and the estimate is in turn used in (19) to estimate
the va.riance of e, (i). Whenever the estimate 2 falls outside

the range [, 507] ([—l 602]) in the Gaussian (Laplacian)

noise case, we enforce the assignment 62 = o2 (52 = 202)
instead. The experiment is averaged over 1000 runs.

The three algorithms are compared (Fig. 1 and Fig. 2)
in terms of their learning curves; the evolution of E[|]11;,-||2]
with time (also known as the mean-square deviation or
MSD). We also plot the nonlinearities employed by the three
algorithms. Since the optimum nonlinearity is time varying
(through its dependence on ¢2,), it has a stochastic nature.
The plots thus show the optimum nonlinearities in their av-
eraged forms.

Error (non)linearities Leaming curves

— LMSalg. |: : : — LMS aig.
-— Aspt.alg. | // =2R cccreeeeieo - Aspt.alg.
—ommp | = - optag. |

Error update
o

-5 0 5 0 200 400 600 800 1000
() iteration

Figure 1: Error updates and learning curves for the LMS,
optimum (17), and asymptotically optimum (20) algorithms
(Gaussian noise case).

6. CONCLUSION

In this paper, we derived an expression for the optimum er-
ror nonlinearity in LMS adaptation. Starting from an energy
conservation relation, we derived a closed form expression
for the steady-state error for a general error nonlinearity
and subsequently minimized this expression over the class
of smooth nonlinearities. The nonlinearity turns out to be
a function of the estimation error and the pdf of additive
noise.
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Leaming curves

Error (non)linearities

Error update

-5 : 6 : : : :
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Figure 2: Error updates and learning curves for the LMS,
optimum (17), and asymptotically optimum (20) algorithms
(Laplacian noise case).

7. REFERENCES

[1] A.H. Sayed and M. Rupp, “A time-domain feedback analysis
of adaptive algorithms via the small gain theorem,” Proc.
SPIE, vol. 2563, pp. 458-69, San Diego, CA, Jul. 1995.

[2] N. R. Yousef and A. H. Sayed, “ A unified approach to
the steady-state and tracking analyses of adaptive filters,”
IEEE Trans. Signal Processing, vol. 49, no. 2, pp. 314-324,
Feb. 2001.

{3] J. Mai and A. H. Sayed, “A feedback approach to the
steady-state performance of fractionally-spaced blind adap-
tive equalizers,” IEEE Trans. Signal Processing, vol. 48,
no. 1, pp. 80-91, Jan. 2000.

[4] T. Y. Al-Naffouri and A. H. Sayed, “Transient analysis of
adaptive filters — Part I: The data nonlinearity case,” Proc.
5th IEEE-EURASIP Workshop on Nonlinear Signal and
Image Processing, Baltimore, Maryland, Jun. 2001.

{5] T. Y. Al-Naffouri and A. H. Sayed, “Transient analysis of
adaptive filters — Part II: The error nonlinearity case,” Proc.
5th IEEE-EURASIP Workshop on Nonlinear Signal and
Image Processing, Baltimore, Maryland, Jun. 2001.

[6] T. Y. Al-Naffouri and A. H. Sayed, “Adaptive filters with
error nonlinearities: Mean-square analysis and optimum de-
sign,” to appear in EURASIP Journal on App. Signal Pro-
cessing, Dec. 2001.

[7) T. Y. Al-Naffouri and A. H. Sayed “Transient analysis of
adaptive filters,” Proc. ICASSP, vol. VI, pp. 3869-3872 Salt
Lake City, Utah, May 2001.

[8] S.C.Douglas and T. H.-Y Meng, “Stochastic gradient adap-
tation under general error criterion,” IEEE Trans. Signal

Processing, vol. 42, no. 6, pp. 1335-1351, Jun. 1994.

B. Polyak and Y. Tsypkin, “Adaptive estimation algorithms
(convergence, optimality, stability),” Avtomatika i Tele-
mekhanika, no. 3, pp. 71-84, Mar. 1979.

[10] T.Y. Al-Naffouri, A. H. Sayed, and T. Kailath, “On the se-
lection of optimal nonlinearities for stochastic gradient adap-
tive algorithms,” Proc. ICASSP, vol. 1, pp. 464-467, Istan-
bul, Turkey, Jun. 2000.

[11] N. J. Bershad, “On the optimum data nonlinearity in LMS
adaptation,” IEEE Trans. Acoust., Speech, Signal Process-
ing, vol. 34, no. 1, pp. 69-76, Feb. 1986.

fo



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


