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ABSTRACT 

This paper derives an expression for the optimal error 
nonlinearity in adaptive filter design. Using an energy 
conservation relation, and some typical assumptions, 
the choice of the error function is optimized by min- 
imizing the mean-square deviation subject to  a fixed 
rate of convergence. The resulting optimal choice is 
shown to subsume earlier results as special cases. 
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An important performance measure of adaptive filter- 
ing algorithms is the mean-square-deviation (MSD), 
which relates to  the steady-state covariance matrix of 
the weight error vector. In this paper we study the 
problem of optimally designing the nonlinear error func- 
tion in an adaptive filter update in order to minimize 
the MSD. This is an issue that has attracted some at- 
tention, as can be seen from the titles of the early refer- 
ences [1]-[3]. We derive an expression for the optimal 
nonlinearity in terms of the probability density func- 
tion of the noise sequence. The result subsumes earlier 
expressions as special cases, and it is obtained by re- 
lying on a fundamental energy (conservation) relation 
that leads to  simplifications both in the presentation 
and the derivation (cf. [4]-[6]). 

Thus consider noisy measurements { d ( i ) }  that arise 
from a model of the form 

d ( i )  = uawo + .(i) , (1) 

where w ( i )  accounts for measurement noise and model- 
ing errors, ui denotes a nonzero row input (regressor) 
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vector, and W O  is an unknown column vector that we 
wish to  estimate. Several algorithms of the stochastic 
gradient type have been developed for this purpose in 
the literature. They can be regarded as special cases 
of the general update scheme 

Wi+l  = wi + 1-1 UT f [ e ( i ) ]  , (2) 

where wi is an estimate for W O  at iteration i, 1-1 is 
the step-size, and f [ e ( i ) ]  denotes a generic scalar func- 
tion of the so-called output estimation error, defined 
by e ( i )  = d ( i )  - uiwi. Different choices for f[.] result 
in different adaptive algorithms. Table 1 defines f [ - ]  
for many famous special cases of (2). 

The weight-error vector, wi = W O  - wi, can be 
easily seen to  satisfy the recursion 

.iiti+l = wi - puTf[e(i)] (3) 
e ( i )  = e,(i)  +v ( i ) ,  (4) 

where e a ( i )  denotes the apriori estimation error e,(i)  = 
uiwi. We also define the a posteriori estimation error 
ep(i) = uiWi+l. If we multiply (3) from the left by ui 
then we can readily see that  e p ( i )  and e a ( i )  itre related 
via 

where we defined p ( i )  = l/l(ui(12. 

(5) 
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The mean-square deviation (MSD) of an adaptive 
algorithm is defined as the steady-state value 

MSD = lim E(IiiYi(l’. 
z+oO 

The MSD clearly depends on the choice of the nonlinear 
error function f in (2). Let p(x) denote the pdf of 
the noise signal v(i). It was argued in [3] that, for 
sufficiently small step-sizes, the choice 

is optimal in the sense that it leads to an asymptotically 
efficient estimator (i.e., one that achieves the Cramer- 
Rao bound). This expression shows that different noise 
distributions can lead to different choices for f; a re- 
mark that  is consistent with related studies in the lit- 
erature for some adaptive algorithms with nonlinear 
updates such as the LMF algorithm [7]. The result (6) 
does not show any dependence on the distribution of 
the regression vector ui. In [SI, on the other hand, a 
calculus of variations argument was used to argue that, 
for the special case of an iid Gaussian input sequence 
{ui} with variance o:l, the optimal nonlinearity takes 
the form 

(7) 

where q(e)  now denotes the pdf of the output error e(i). 
We shall comment on this expression further ahead - 
see (26). In the sequel, we shall derive the optimal 
nonlinearity for a general input sequence under some 
assumptions (also used in [3 ,  81); our expression turns 
out to  subsume the nonlinearities (6) and (7), as well 
as the algorithms of Table 1, as special cases. 

2. FOUR ASSUMPTIONS 

To make our analysis tractable, we shall make the fol- 
lowing reasonable and often used assumptions: 

A l .  The noise sequence {v ( i ) }  is assumed to be a zero- 
mean iid process with symmetric and unimodal pdf, 
and to be independent of the sequence {ui}. 

A2. The error-nonlinearity function f is restricted to  be 
sufficiently smooth, odd-symmetric, and sign pre- 
serving. 

The convenience of these assumptions can be un- 
derstood by noting that they imply that the variables 

all have zero-mean. 

A3. The a priori error e a ( i )  is small enough in steady- 
state so that i t s  higher than second order powers 
could be neglected. 

Assumption A3 will be quite useful when we expand f 
in a third order Taylor series: 

f W 1  = f[ea(i) - (-4i))I 
= -f[v(i)] + f’[v(i)]ea(i) 

- (Wf” [v ( i ) l ( ea  ( iN2 
+ ( v ) f ” ~ ~ i ( ~ ~ ( i ) ) ~ ,  (8) 

for some 7) between 0 and e,(i). For it will enable us 
to  neglect higher powers of e,(i) when operating on f. 

We further assume that (this is known as the in- 
dependence assumptions - see though Remark 5 in 
Sec. 4.1): 

A4. At steady-state, the regressor vector ui and the weight- 
error vector .Wi are independent. 

3. SECOND-ORDER ANALYSIS 

The derivation in this section is simplified by relying 
on the feedback approach of [4]-[6], which notes that by 
computing the energies of both sides of ( 3 )  we obtain 
the energy conservation relation 

I I~i+11I2 + p(i)lea(i>12 = l l~i1I2 + F(i)le,(i)12 (9) 

or, equivalently, using (5), 

Il.Wi+l 1 1 2  = Il.ii)il12 - 2Pea(i>f[e(i>] + P21lui1l2f2[e(i)l. 
(10) 

No approximations or assumptions are needed to  es- 
tablish this relation; the relation holds irrespective of 
assumptions Al-A4! 

To proceed, we introduce the Taylor series expan- 
sion (8) of f [ e ( i ) ] ,  which yields 

For notational convenience, the argument v( i )  o f f  and 
its derivatives has been suppressed. Upon taking the 
expectations of both sides and invoking A1 we get 
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Finally, by using the independence assumption A4 we 
can write 

E[e:(i)] E [11~i1I2] E [11wi1I2] , (12) 

and, following [7] and [9], we also have 

E [e:(i)lluill2] = E [llUi1I4] E [llfiJill2] . (13) 

Upon substituting (12) and (13) into (11), we get a 
first-order difference recursion for the mean-square de- 
viation (MSD) of the form 

E [IlfiJi+l 112] = a E [IIwi1I2] + b, (14) 

where the coefficients {a ,  b }  are given by 

a = 1 - 2 p  E[f‘] E [llui1I2] + p 2  E [ f t 2  + ff”] E [lbil14] 

b = P2 E[f21 E[llUi1l21. 

The moments E [ I ( u ~ ~ ( ~ ]  and E[ll~i11~] are assumed time- 
invariant. 

4. SYNTHESIS OF THE OPTIMUM 
NONLINEARITY 

We can now use our analysis results to  optimize the 
choice of the error nonlinearity. By inspecting (14), 
we notice that the quantity a controls the transient be- 
havior of (14) and (together with b)  controls its steady- 
state value, given by &. We can optimize the choice 
of f by minimizing the steady-state value E [llti~..1[~] 
for a fixed transient behavior, or, equivalently, 

r m  

subject to 

roo 

where p(v)  is the pdf of the noise sequence { ~ ( i ) } ,  

To solve this optimization problem, we consider the 
associated Lagrangian 

(18) 

03 

[f” - P A  (f(.)f”(.) f (f’(.))”] P(.)d. ?Loo 
where y is a Lagrange multiplier. While the calculus 
of variations is the standard method for solving similar 
problems, sufficient conditions for optimality are often 
difficult to  check. We can instead arrive at the opti- 
mum solution by using more elementary methods. To 
do this, notice first that  f f ”  + f” = (ff’)’ = f ( f 2 ) ” .  
Using this fact, coupled with a repeated use of integra- 
tion by parts, and by further invoking the symmetry 
properties of f and p ,  we get 

where the second equality follows from the bounded- 
ness of f .  Minimizing L( f )  now amounts to minimizing 
the integrand of (19) a t  each point. It can be shown 
that the multiplier y must be negative and that 

if p ( 2 )  - iypAp”(2) > 0. Otherwise, fopt(2) = fmax. 

For small p, we essentially have 

which is dependent on 7. We can determine y from 
the constraint (16), or we can do away with it by sub- 
stituting (21) into the adaptation equation (3) where 
we notice that $ and p always appear multiplied by 
each other. Thus, -$  can be absorbed into the design 
parameter p and the optimum nonlinearity effectively 
becomes one of the general form: 

4.1. Relation to other optimum nonlinearities 

and where C is a constant. The constraint f 5 fmax 

on f is included to ensure that f is bounded for finite 
values of its argument. Just like p, fmas is a design pa- 
rameter that is mandated by the practical application. 

The above optimal nonlinearity subsumes as special 
cases several of the nonlinearities that  have already ap- 
peared in literature. This is summarized in the follow- 
ing remarks. 
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1. 

2. 

3. 

4. 

Since ui and wi are independent (by the indepen- 
dence assumption A4), we could have carried out 
the second-order analysis and the optimization 
conditioned on the data vector ui. The resulting 
nonlinearity would have been 

which incorporates data normalization similar to 
that of the NLMS. 

For small ,U, the optimum nonlinearity reduces t o  
( 6 ) ,  which was obtained in [3] for the arbitrary 
input case. Note however that, more generally, 
the optimal choice (22) is also dependent on the 
input data statistics (through the variable A = 
E[ll~i11~]/2 E[ll~i11~]), as we expect it to  be. 

If the input sequence is iid with fourth order mo- 
ment t: and variance o:, then 

and the optimum nonlinearity simplifies to 

Here M is the filter order. This is the same non- 
linearity obtained in [lo] for an iid input. 

If we further restrict the input to be iid Gaussian, 
then t: = 30: and the optimum nonlinearity (22) 
becomes 

When e a ( i )  is small enough that e ( k )  = ~ ( k ) ,  the 
nonlinearity becomes essentially (7) which was 
derived in [8] by a conditional analysis approach. 

5. We could have instead approached the problem of 
optimally designing the nonlinearity f by study- 
ing the mean-square error (MSE) rather than the 
mean-square deviation, where the MSE is defined 
as 

MSE = 05 + lim E lea(i)12. (27) 
a+cc  

As argued in [6],  the evaluation of the MSE can be 
carried out by relying on a weaker set of assump- 
tions than those used in the earlier sections. For 
example, the independence assumption A4 could 
be removed. We shall pursue this extension else- 
where. 

6 .  Notice finally that the sign algorithm turns out to 
be the optimum algorithm to  use in the presence 
of Laplacian noise. This can be seen by substitut- 
ing p(x) = ie-1.l in the expression for the opti- 
mum nonlinearity (20). Moreover, it was argued 
in [ll] for the choice ( 6 )  that  by expanding p ( ~ )  
in an Edgeworth series, the other (non)linearities 
of Table 1 turn out to  be approximations of ( 6 ) .  
Similar analysis can be extended to the more gen- 
eral optimal nonlinearity (22) of this paper. 
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