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Abstract—In this paper, we describe a novel design of a
Peak-to-Average-Power-Ratio (PAPR) reducing system, which
exploits the relative temporal sparsity of Orthogonal Frequency
Division Multiplexed (OFDM) signals to detect the positions and
amplitudes of clipped peaks, by partial observation of their
frequency content at the receiver. This approach uses recent
advances in reconstruction of sparse signals from rank-deficient
projections using convex programming collectively known as
compressive sensing.

Since previous work in the literature has focused on using the
reserved tones as spectral support for optimum peak-reducing
signals in the time-domain [5], the complexity at the transmitter
was always a problem. In this work, we alternatively use
extremely simple peak-reducing signals at the transmitter, then
use the reserved tones to detect the peak-reducing signal at the
receiver by a convex relaxation of an other-wise combinatorially
prohibitive optimization problem.

This in effect completely shifts the complexity to the receiver
and drastically reduces it from a function of N (the number of
subcarriers in the OFDM signal), to a function of m (the number
of reserved tones) which is a small subset of N .

I. INTRODUCTION

In the last decade, the problem of high peak-to-average-
power ratio (PAPR) in OFDM systems has been tackled by
a variety of approaches, including coding techniques, constel-
lation reshaping, tone-reservation, and selective mapping, to
name a few. Although many of these reduction techniques are
brilliant and extremely effective, the main obstacle limiting
their actual implementation is commonly related to high
complexity.

Our main contribution in this paper is to demonstrate how
the complexity of PAPR reduction techniques based on tone-
reservation in particular can be drastically reduced using
compressive sensing, at the cost of suboptimal performance
of the PAPR reduction algorithm.

After establishing the main technique, we describe and
analyze the performance of a couple of peak reducing schemes
that are suitable for this design, then compare the results
with both suggested and previous attempts of PAPR reduction
techniques based on tone-reservation. The complexity of these
variants is stressed throughout, and brief indications of pos-
sible further improvements being investigated by the authors

are also given.
Since an OFDM signal is typically constructed by the

superposition of a large number of modulated waveforms, its
envelope fluctuates with significant variance, causing the high
PAPR. The highest of these temporal peaks can be modeled
as extreme events such that, given an appropriate limiting
threshold γ, or a fixed number of ordered statistics s, a vector
registering the positions and values of such peaks would be
controllably sparse.

When these rare events occur and clipping is used, such a
nonlinear transformation of a random process results in fre-
quency distortion that spreads un-evenly over the subcarriers.
Now if a sufficient subset of these tones were reserved at the
transmitter, then using appropriate techniques of compressive
sensing, the receiver can estimate the entire temporal sparse
vector containing the locations and amplitudes of the clipped
parts of the OFDM signal by observing the frequency distor-
tion on this subset contaminated by noise.

It is worth mentioning that the objective of this paper is to
establish the serious potential for compressive sensing tech-
niques in PAPR reduction in particular. Interesting approaches
to fine-tune the basic algorithm such as optimizing the reserved
tone-set and clipping criteria, exploiting auto-covariance for
oversampled signals, and angle steering techniques all require
rigorous analysis for improving the estimation process at the
receiver and reducing the error rate with minimum complexity.
These are being pursued by the authors and the details are
avoided here for lack of space.

II. TRANSMISSION MODEL

We define the time-domain complex base-band channel
model as

yk =
L−1∑

i=0

hlxk−l + zk (1)

where {xk} and {yk} denote the channel input and output,
h = (h0, h1, . . . , hL−1) is the impulse response of the channel,
and the noise model {zk} is assumed a circularly symmetric
Gaussian random variable with variance N0. To compactly
notate the OFDM system and the operations to come, we



express the channel model in matrix form y = Hx+z where y
and x are the time-domain OFDM receive and transmit signal
blocks (after cyclic prefix removal) and z ∼ CN (0, N0I).

Due to the presence of the cyclic prefix, H is a circu-
lant matrix describing the cyclic convolution of the channel
impulse response with the block x and can be decomposed
as H = FHDF where the superscript H denotes Hermitian
conjugation, F denotes a unitary Discrete Fourier Transform
(DFT) matrix with (k, l) element

[F ]k,l =
1√
N

e
−j2πkl

N , k, l ∈ 0, 1, . . . , N − 1

D = diag(ȟ) and ȟ =
√

NFh is the DFT of the channel im-
pulse response (whose coefficients are found, by construction,
on the first column of H).

III. PAPR REDUCTION DESIGN

The time-domain OFDM signal x is typically constructed by
taking the IDFT of the data vector ď whose entries are drawn
from a QAM constellation. Since this signal is typically of
very high PAPR, we add a peak-reducing signal c of arbitrary
spectral support at the transmitter and then estimate it and
subtract it from the demodulated signal at the receiver.

In what follows, the main condition we impose on c is that it
be sparse in time. This is basically the case if we set a clipping
threshold on the envelope of the OFDM symbols or, better yet
for the performance of this algorithm, if the transmitter were
to clip the highest s peaks.

Denoting Ω as the set of frequencies in an OFDM signal of
cardinality |N |, let Ωd ⊂ Ω be the set of frequencies that are
used for data transmission and Ωc = Ω\Ωd the complementary
set reserved for measurement tones of cardinality |Ωc| = m.
Note that for compressive sensing purposes, a near optimal
strategy is to use a random assignment of tones for estimating
c [3]. However, based on results in [11] it was found in [6]
that using difference sets, one is able to boost the performance
of the recovery algorithm and reduce the symbol error rate.

The data symbols ďi are drawn from a QAM constellation
of size M and are supported by Ωd of cardinality |Ωd| =
N−m = k. Consequently, the transmitted peak-reduced time-
domain signal is

x̄ = x + c = FHSxď + c (2)

where Sx is an N × k selection matrix containing only one
element equal to 1 per column, and with m = N−k zero rows.
The columns of Sx index the subcarriers that are used for data
transmission in the OFDM system. Similarly, we denote by S
the N×m matrix with a single element equal to 1 per column,
that span the orthogonal complement of the columns of Sx .

Demodulation amounts to computing the DFT

y̌ = Fy = F (Hx̄ + z)
= F (FHDF (FHSxď + c) + z)
= DSxď + DFc + ž (3)

where ž = Fz has the same distribution of z since F is unitary.
Assuming the channel is known at the receiver, we can now

estimate c by projecting y̌ onto the orthogonal complement of
the signal subspace leaving us with

ý = ST y̌ = ST DFc + ź. (4)

Note that ź = ST Fz is an m × 1 i.i.d Gaussian vector with
variance N0. We denote the m×N projection matrix obtained
by a row selection of F (according to S) by Ψ = ST DF .

The observation vector ý is a projection of the sparse N -
dimensional peak-reducing signal c onto a basis of dimension
m << N corrupted by ź. To demonstrate how such an N -
dimensional vector can be estimated from m linear measure-
ments, a few relevant notes about compressive sensing are
given next. The interested reader is referred to [1] and [3] for
details.

An N -dimensional vector v of s nonzero entries such that
s << N is said to be s-sparse. We denote by |s | or simply s
the cardinality of v, and refer to the positions of the nonzero
entries of v as the sparsity pattern, which we formalize by an
s× 1 indexing vector, v . The upshot of compressive sensing
techniques is that the sparsity pattern of such a vector can
be recovered non-combinatorially (i.e. without the need to
minimize ‖v‖0) with a penalty on the additional number of
measurements m, so that s < m << N .

Finding the exact number of measurements m required for
exact recovery of v has proven to be difficult in the literature,
especially when noise is considered. This critical number
not only depends on the dimension of the sparse vector and
its cardinality, but also varies according to the measurement
matrix Ψ, the recovery algorithm used for estimating v, the
estimation Signal-to-Noise-Ratio (SNR), and the Minimum-
to-Average-Ratio (MAR) of the nonzero entries of v. Unfor-
tunately, whereas our design uses random row selections of a
unitary Fourier matrix for measurement (scaled by the channel
coefficients), most results in the literature consider Gaussian
ensembles exclusively, and we have yet to find sharp bounds
for our case. (refer to [6] for sufficient conditions in the special
case of a Fourier matrix indexed by a difference set and to [7]
for a thorough treatment of random submatrices).

Assuming the cardinality is known, and for a given SNR
and MAR, a necessary and sufficient scaling with respect to
N and s for asymptotically reliable sparsity pattern recovery
is given in [2] as m = O(s log(N−s)). More specifically, for
Lasso, a necessary condition is that

m >
2

MAR · SNR
s log(N − s) + s− 1 (5)

where the SNR is defined as

SNR =
E[‖Ψc‖]2
E[‖ź‖]2 =

E[‖ST DF‖]2
E[‖ST Fz‖]2 (6)

and
MAR =

minj∈uc | cj |
‖c‖2/s

(7)

A comparable bound to [2] can be found in [4]. Note that
in our case, the number of measurements m is equivalent to
the number of reserved tones, while the number of clips is



equivalent to |s|, and hence for a fixed number of tones m
the number of clips should be below this bound for reliable
recovery. By definition, MAR ∈ (0, 1] with the upper limit
occuring when all the nonzero entries of c have the same
magnitude. The effect of the SNR is also obvious in controlling
s for a fixed m.

Now coming back to our problem, assume the peak reducing
signal c is s-sparse in time, given ý in (4), we use compressive
sensing at the receiver to estimate c using a Second Order Cone
Program (SOCP) adapted to complex vectors:

min ‖ c̃ ‖1
s.t. ‖ý −Ψc̃‖2 ≤ ε (8)

The resulting solution by compressive sensing alone is
an estimate ĉcs of the peak reducing signal which not only
reliably detects the positions of its nonzero entries, but also
gives a good approximation to the corresponding amplitudes.

IV. DESIGN AND PERFORMANCE ANALYSIS OF THE PEAK
REDUCING SIGNALS

So far we have shown that a sparse, additive peak-reducing
signal c can be estimated at the receiver by partially observing
its spectral support. Since m is normally fixed, the ability
to reduce the PAPR is directly related to increasing s. The
bottleneck here is the Symbol Error Rate (SER); the more we
increase s, the more prone the recovery is to erroneous sparsity
pattern detection and amplitude estimation.

Consequently, an initial intelligent choice of how clipping
should be performed has proven to be critical in the perfor-
mance of the recovery algorithm. What’s more, in keeping with
our desire to reduce the complexity of the PAPR reduction
scheme at the transmitter, unlike [5] we do not need to
perform an optimization search for the time-domain clipper
that minimizes the PAPR supported by a specified set of
reserved tones.

Instead, we use simpler peak-reducing signals that directly
operate on the highest temporal peaks. The reserved tones in
our design are for estimating c by the frequency distortion
naturally induced by clipping, which is completely handled at
the receiver.

A. Annihilators based on Level Crossing

The simplest design, requiring the least amount of temporal
and spatial complexity at the transmitter, would depend on
setting an optimal clipping threshold γ∗ such that, for a given
SNR and recovery algorithm, the probability of exceeding a
number of clips s∗ tolerable by (5) is small. The peak reducing
signal will hence take the form c = −∑

i:|xi|≥γ xiδ(n − ni)
where ni corresponds to the location at which |xi| exceeds γ.
Such an approach can guarantee a maximum peak Pmax ≤ γ2

provided the recovery of c is reliable.
Note that in this rudimentary work, once |xi| is above the

threshold, we don’t clip the portion of which |xi| exceeds
γ, but rather annihilate xi altogether. This avoids the issue of
exploiting the direction of a complex entry of c or x̄ to enhance
the recovery at the receiver should differential clipping be

used, which we postpone to another more advanced exposition.
This also simplifies the comparison with an analogous system
in which only least squares is used without compressive
sensing. We will henceforth refer to c as an annihilator, not
clipper.

In what follows, for simplicity we assume annihilation is
done on the OFDM signal sampled at Nyquist rate, causing
the entries of x to be uncorrelated. What’s more, following
[8] and [9] we assume that the real and imaginary parts of
x are asymptotically Gaussian processes for large N . This
directly implies that the entries of x are independent and
that the envelope of x can be modeled as a sequence of
i.i.d Rayleigh random variables with a common cumulative
distribution function (CDF) F|X|(|x|). It can be shown that
this is a worst case scenario for recovery of c, and that the
estimation can actually be enhanced by knowledge of the
autocorrelation of an oversampled signal.

By a convenient abuse of notation, we let s be the number
of crossings of x to a fixed threshold γ, i.e. the number of
entries in x who’s magnitude exceeds γ. Consequently, the
sparsity s becomes a random variable with a CDF

FS(s; γ) =
s∑

i=0

(
N
i

)
(1− F|X|(γ))iF|X|(γ)N−i

≈ e−N(1−F|X|(γ))
s∑

i=0

[N(1− F|X|(γ))]i

i!
. (9)

For a given number of reserved tones m, we need to ensure
that the probability of s violating (5) is low. This entails
finding a corresponding annihilating threshold γ∗ = sup{γ :
F̄S(s; γ) ≤ ε}, where F̄S(s; γ) is the complementary CDF
of s. This can be found by first determining λ∗ = sup{λ :
e−λ

∑s
i=0

λi

i! ≥ 1−ε} where λ = N(1−F|X|(γ)), then simply

substituting in γ∗ = F−1
|X|(1 − λ∗

N ) =
(
−2σ2 ln(λ∗

N )
)1/2

where σ is the parameter of the Rayleigh distribution function
F|X|(|x|).

Although such an approach will be the simplest to imple-
ment at the transmitter, the recovery at the receiver will be
poor in general since the variance of the required number of
measurement tones m (which is a function of s) will be large.
For instance, if we let m(s) = s log(N − s) + s and use a
second order Taylor approximation for evaluating the variance
of m in terms of the moments of s we get

σ2
m(s) ≈ {ṁ(E[s])}2σ2

s

=
(

1
ln 2

[1 +
N

E[s]−N
+ ln(N − E[s])] + 1

)
σ2

s

= N(1− F|X|(γ)){1 +
1

ln 2
[1− 1

F|X|(γ)
+ ln(NF|X|(γ))]}2 (10)

resulting in a significantly fluctuating demand for reserved
tones. Hence for a fixed m in practice, it’s either that γ must
be set too high for Pmax ≤ γ2 to be significantly lower then
the non-limited envelope, or that the symbol error rate will



be high. Consequently, either the recovery performance or the
PAPR reduction capability of the system will be sacrificed. The
following slightly more complex design can greatly enhance
the recovery capability.

B. Annihilators based on Order Statistics

By far, the most valuable function of compressive sensing
algorithms is providing a good estimate of the sparsity pattern
of a sparse vector with a number of measurements much
smaller then the vector dimension. However, if these positions
were known beforehand, say by a genie-augmented receiver,
then estimating the amplitudes at these positions by least
squares is optimum (assuming no side-information is used).
In-between these two extremes lies an intermediate solution
which only requires supplying the receiver with the cardinality
s of c at initialization. This means the transmitter can only
annihilate s peaks for each OFDM symbol, and these should
obviously be the maximum s peaks of the time domain signal
for maximum PAPR reduction.

The performance of this scheme is directly related to the
tolerable sparsity s of c. Since the cost paid for PAPR
reduction is m, this parameter is the main bottleneck in our
design, so that the larger m, the more clipping we can perform
and recover at the receiver and hence the more PAPR we
can reduce. This approach offers significant improvement in
terms of SER at the minor cost of increasing the number of
comparisons from N (with γ) in the previous thresholding
case to a number of ordered selections upper bounded by
N − s + (s − 1)dlog2(N − s + 2)e [13], which is actually
very close to N for s ¿ N .

Let xi:N be the ith order statistic of x, then
the peak-reducing signal can be expressed as
c = −∑N

j=N−s+1 xj:Nδ(n − nj). In this case the PAPR is
a random variable. The power P of a coefficient in x can
be approximated by a Chi-square random variable of two
degrees of freedom, and denoting by FP the CDF of P , the
CCDF of the highest power Pmax is

F̄Pmax(P ) = Pr{x2
N−s:N > P}

= 1−
N∑

k=N−s

(
N
k

)
(FP )k(1− FP )N−k

= 1− IFP
(N − s, s + 1) (11)

where the last expression is Pearson’s incomplete beta function
[10]. Analysis of the PAPR reduction capability of this scheme
amounts to computing the distribution or moments of the
difference between the maximum and (N−s)th order statistics
which we do not pursue here.

The advantages of this approach include more efficient
utilization of the measurement tones and increased reliability
of the recovery algorithm. This includes improving both the
sparsity pattern and amplitude recovery, resulting in a signifi-
cantly lower SER.

The reason is this. In the presence of noise, the estimate ĉcs

of c will not be a strictly sparse vector, but rather one that has
relatively smaller values at the locations of which the original

vector is null (assuming the estimation is good). This requires
setting a threshold on the entries of the estimated vector to
differentiate between actual nonzero entries of c and noise,
and finding such an optimal threshold that would minimize
the probability of error is not straightforward.

However, if the the receiver were to know the cardinality
of c beforehand, then the compressive sensing estimate of the
sparsity pattern can be enhanced by selecting the positions
corresponding to the s maximum values in ĉcs as the true
support of c. Once these positions have been registered, the
amplitude estimate can now be refined by least squares.

Let ̂ cs denote the indexing set that registers the positions
of the highest s nonzero entries in ĉcs and Ŝc the N × s
selection matrix corresponding to ̂ cs. Also denote by uc the
s× 1 vector that contains the non-zero entries of c. Then we
write c = Ŝcuc and update (4) to

ý = ST DFŜcuc + ź

≡ Φcuc + ź (12)

then using the least-squares estimate ûls
c = (ΦH

c Φc)−1ΦH
c ý

we get the corresponding LS estimate of c

cls = Ŝc(ΦH
c Φc)−1ΦH

c ý (13)

To see the value of this approach, we compare its performance
(in the section after the following) to a system which relies on
Least Squares alone with an estimate ̂ x̄ of the sparsity pattern
of c based on selecting the smallest s values of x̄ instead of
compressive sensing such that

̂ x̄ = arg{|x̄|1:N , |x̄|2:N , . . . , |x̄|s:N} (14)

The reason is that, since we annihilate the highest peaks of x,
we expect the sparsity pattern of c after noise addition at the
receiver to correspond to the positions of where ˆ̄x is minimum.

V. COMPARISON WITH TELLADO: PEAK REDUCTION VS.
COMPLEXITY

In the familiar work of Tellado (Ch 4 of [5] in particu-
lar), a peak reducing scheme using tone reservation is also
implemented. However, the design offered in that work is
fundamentally different; The basic idea in [5] is to use the
reserved tones as a spectral support for the time-domain signal
that minimizes the peak of the OFDM signal, and hence
requires an optimization search at the transmitter for each
OFDM signal expressed in our notation in the form

min
č

t

s.t. ‖x + FHSč‖2 ≤ t (15)

where č = Fc is nonzero only on Ωc from the definition of S.
Clearly, this optimization approach will result in significantly
more PAPR reduction compared to our design, since for
the same number of reserved tones m, we can only clip
s < m maximum peaks, whereas by Tellado’s method no such
restriction exists. However, the complexity factor is critical in
any PAPR reduction scheme, and this is where our method
justifies its utility.



Firstly, the main complexity (i.e. the stage at which the
optimization search is performed) in Tellado’s technique is at
the transmitter. As for our technique, the peak reducing signal
is automatically constructed from annihilating the maximum
peaks, leaving the problem of estimating the positions and
amplitudes of the clips by a SOCP to the receiver. Secondly, al-
though Tellado’s general Quadratically Constrained Quadratic
Program can be replaced with a simpler suboptimal iterative
algorithm, the complexity is nevertheless always a function of
N , whereas ours is a function of m << N , which can also
be replaced with simpler recovery techniques such as basis
pursuit. 1

Thirdly, a very important concept which must be stressed
is that compressive sensing by definition is inherently a
complexity-reducing scheme. Although one could theoretically
search for the sparsity pattern of a s-sparse vector corrupted by
AWGN using Maximum Likelihood (ML) with s+1 measure-
ments instead of m [2], the associated complexity is enormous,
and this is why one pays an extra m− s measurements to use
convex programs instead. Hence in all disregard to complexity,
one could theoretically beat the PAPR reduction capability of
Tellado’s approach with the same number of peak reducing
tones by amplifying and shifting the complexity to the receiver.

It is worth mentioning that Tellado also suggests a subop-
timal system that avoids repetitive optimization by designing
peak reducing kernels. These are used for directly clipping
the peaks which exceed a threshold (similar to our basic
threshold-based annihilator), but are, however, designed at
initialization to have a confined spectral support based on
the provided peak reducing tones. The problem is that due
to this confined spectral support, these kernels have temporal
sidelobes that cause variable peak-regrowth among the OFDM
signals, and Tellado attempts to optimize the location of the
peak reducing tones to minimize these sidelobes. Clearly, our
approach sidesteps this annoying problem since we need not
confine the spectral support of c.

Finally, it appears to the authors that the two techniques
(our’s and Tellado’s) can be combined in a mobile-user setting,
such that the mobile station uses our technique to transmit,
leaving the burden of estimating c to the base station, and
allowing the base station to use Tellado’s technique when
transmitting, by that simplifying the complexity at the mobile
station in both stages of transmission and reception.

VI. SIMULATIONS AND RESULTS

In support of a comprehensive analysis of our design,
we tested the PAPR reduction capability, the SER, and the
temporal complexity for different scenarios and compared
against possible alternatives. For N = 256, M = 32 and
m = 20% of N , we compared the PAPR resulting from
annihilating the highest 8 peaks of 1000 OFDM blocks to the
PAPR of the original signal and to Tellado’s primary algorithm
under the same conditions. Figure 1 shows the CCDF of

1Although we tested basis pursuit in our design and found it to perform
just as well as a SOCP, we preferred not adopting it as the simplest recovery
algorithm due to theoretical reasons related to convergence.

the PAPR in the three cases. Results show that at a PAPR
excursion probability of 10−3, the PAPR of the original OFDM
signal was approximately 11 dB, the PAPR after using (15)
was near 4.3 dB, while using the basic annihilator with s = 8
the PAPR was about 6.5 dB. Obviously once the detection
process is improved we can safely clip more then 8 peaks and
reduce the PAPR even further.

In terms of SER, we compared the performance of the
compressive sensing algorithm in (8) with the case where we
augment the algorithm by least squares given the knowledge of
s as expressed in (13), and with the case where no compressive
sensing is used and least squares is done on the pattern
estimated by (14). In figure 2, we show the SER as we varied
s for the three aforementioned cases given the same settings
in the previous simulation. We note that the knowledge of s in
(13) offers significant advantage over (8), especially once we
plotted the SER against SNR which we do not show here for
lack of space. Most importantly, these two cases drastically
outperform the case where compressive sensing is not used.
The naive estimation of the sparsity pattern conveyed by (14)
only begins to outperform the two once the sparsity condition
in (5) is grossly violated, and in that case the estimates given
by all three are useless.

To test the effect of measurement-tone positioning on the
SER of (13), we ran the algorithm for three different cases:
A) m tones drawn randomly from N , B) m tones positioned
uniformly over the spectrum of x, and C) m and N selected
to compose a difference set. In this case we were limited in
our selection of N and m, and the closest setting we found to
our original one was N = 197 and m = 49 with Ωc matching
a (197, 49, 12) difference set found in [14].

Figure 3 confirms that uniform tone positioning results
in extremely poor performance of compressive sensing algo-
rithms. It also confirms that random tone assignment is nearly
optimal as stated in [3]. Although the use of difference sets
appears to outperform random positioning, the optimality of
such an approach and the extent to which they can improve
recovery is still unknown. A last point conveyed by figure
3 is that the SER does not increase monotonically with s,
indicating that choosing m too high or s too low for a fixed m
is not always advantageous due to the possibility of detecting
false positives.

Lastly, to compare the relative temporal complexity of each
technique, in the last figure we plot the empirical CCDF of
the normalized relative time required to execute 1000 runs of
(8) and (15). Using [12] with ε = 10−3 and the same settings
as in the first simulation, the average time required to perform
the optimization in (8) was less then (15) by 89.34%.
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