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ABSTRACT 

OFDM modulation combines the advantages of high achievable 
rat- and relatively essy implementation. However, for proper 
rec.overy of the input, the receiver needs accurate channel infor- 
mation. In this paper, we propose an expectation-maximiaai~~ 
(EM) algorithm far joint channel and data recovery. The algo- 
rithm makes use of the rich structure of the underlying communi- 
Cation problem- a structure induced by the data and channel con- 
straints. These constraints include pilots, the cyclic prefix (CP), 
and the finite alphabet constraints on the data, and sparsity, finite 
delay spread, and the statistical propertie9 of the channel (time 
and frequency correlation) . Channel identification and equalisa- 
tion is performed optimally and rewvery is achieved within the 
same OFDM symbol wing an EM based Kalman filter. 

1. INTRODUCTION 

Orthogonal frequency division multiplexing (OFDM) is an 
effective technique for high bit rate transmission. It has 
found widespread applications and is already part of many 
standards including digital audio and video broadcasting 
(DAB and DVB) in Europe and high speed transmission over 
digital subscriber lines (DSL) in the United States. 

Many techniques have been proposed in literature to es- 
timate and equalize channels for OFDM transmission (see, 
e.g., [I] and the references therein). These techniques rely 
on some constraints on the channel or data to perform chan- 
nel and/or data recovery. Thus, pilots were employed in [2], 
the cyclic prefix (CP) in (31, coding in [4], frequency corm 
lation in 151, and sparsity in [6]. The aim of this paper is to 
make a collective m e  of channel constraints (sparsity, finite 
delay spread, frequency correlation, and time correlation) 
and data constraints (pilots, finite alphabet constraints, and 
cyclic prefix) to achieve optimal channel and data recovery 
within the same symbol and with minimal overhead. 

The paper is organized as follows. After introducing our 
notation in the next section, we perform a careful study in 
section 3 of the elements of the OFDM transmission. In sec- 
tion 4, we show how to perform optimal MMSE recovery of 
the input while the dual task of channel recovery is studied 
in the subsequent section. We end the paper with simnla, 
tions and some conclusions. 
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2. NOTATION 

We use regular small-case letters to denote scalars and small- 
case boldface letters to denote vectors. Calligraphic notation 
(e.g., X )  is used to denote vectors in the frequency domain 
while uppercase boldface letters are reserved for matrices. 
When these variables become a function of time, the time 
index i appears as a subscript. A hat over a variable indi- 
cates an estimate of that variable (e.g., as in k; and &. 

Now consider a length-N vector xi. We deal with three 
derivatives associated with this vector. The first two are 
obtained hy partitioning z; into a lower part 5 (usually 
known as the cyclic prefix) and an upper part e,. The thud 
derivative, Z;, is created by concatenating xi with a copy 
of its prefix gi. The relationship among these variables is 
summarized by 

This notational convention will be extended to matrices as 
well. Thus, a matrix Q having N row9 will have tbe natural 
partitioning 

O N - P  
Q = [  -!& 1 

where the subscripts stand for the number of rows in each 
submatrix. Alternatively, the rows belonging to each suhm- 
tarix could be distinguished by index sets. For example, 
with I = 11,. .. , N - P} and = { N  - P + 1 , .  .. , N}, we 
can rewrite (2) as 

Q=[X:I (3) 

3. ESSENTIAL ELEMENTS OF OFDM 
TRANSMISSION 

Consider the sequence { X ( i ) }  that we wish to transmit. 
Data are collected and transmitted in symbols X ;  of length 
N .  In an OFDM system, the symbol vector Xi undergoes an 
IDFT operation to produce the transform vector xi 

(4) 
1 z. - -QX; '- fi 



where Q is the unitary OFT matrix Q = . This 
induces the underlying sequence { x ( i ) } .  If this sequence is 
transmitted through a nonideal channel 1, which we take as 
FIR of maximum length P + 1, it will be subject to inter- 
symbol interference (ISI). To go around this, a guard band 
is inserted between any consecutive symbols, X.-I and 2.. 

In particular, to each symbol, we append a cyclic prefix of 
length P as done in (1). Thus, instead of transmitting z,, 
we transmit Z, defined in (1). The Concatenation of these 
symbols in turn produces the underlying sequence { Z ( i ) ] .  

When passed through the channel &, the sequence { Z ( i ) ]  
produces the output sequence {U(;)}. Similarly, we split the 
output into symbols of length M = N + P, and further 
split each symbol into a length-N symbol yi and a prefix 
associated with it &, i.e. 

(5) 

The prefix y .  absorbs all IS1 that takes place between the 
adjacent s d o l s  2;-1 and Z;. The remaining part yi of the 
symbol depends on the ith input symbol only. This can be 
seen from the input/output relationship 

where n is the output noise which we take to he white Gaus- 
sian with variance s:. The matrices H, E&, and & are 
convolution (Toeplitz) matrices of proper sizes created from 
the vector 9. Because of the redundancy in the input, the 
convolution in (6) cam be decomposed into two distinct con- 
stituent convolution operations or suhchannels as we discuss 
now. 

3.1. Circular Convolution (Subchannel) 

From (6), we can parse the subsystem of equations 

yi = H Zi = H l i+n i  (7) -[::I - 

This shows that yi is created solely from 3; through con- 
volution. Moreover, the existence of a cyclic prefix in Zi 
renders this convolution cyclic, and we can write 

-1 (8 )  

where h is a length-N zero-padded version of 9 

h = [  O ( N - - P - - I ) X 1  ' ] 

In the frequency domain, the cyclic convolution (8) reduces 
to the element-by-element operation 

I Y ;  = diag(X,)X + h f q  

where X, X i ,  Yi, and h f ;  are the OFT'S of h, zi,  Vi,  and 
ni, respectively 

It is easy to show that & and 7L are related by the partial 
DFT relationship 

7L QP+& 

This can be used to rewrite (10) in the timehequency form 
(12)  

-. 

(13) 

Let I P  denote the index set of the pilot symbols, then we 
can form the following pilot/output relationship 

3.2. Linear Convolution (Subchannel) 

From (6), we can also extract a relationship between the 
input and output prefrxer. This can be used to show that 
the input prefix sequence {z(i)} is related to the output 
prefix sequence {r(i)} through linear convolution with the 
channel 4, i.e. 

We could write (15) in matrix form as 

-1 (16) 

where & is a Toeplitz matrix defined by 

&(O) z;-l(p-l) " '  &;-,(O) 
%;(a) ' ' _  t- I (1) 

4 ( P -  1) z ; ( P - 2 )  . . .  P;_,(P - 1) I !  
(17) 

- I  . . .  
&; = 

= XiL+XI" 

and where X;, (Xi,) is the lower (wper) triangular part 
of X ;  formed from the cyclic prefix g. (z~-~). 

3.3. Total Channel 

The sequence { y ( i ) }  at the channel output is related natu- 
rally to the input sequence { Z ( i ) }  through linear convolution 
with the channel 

v(i) = h( i )  * Z( i )  + E ( i )  (18) 

We cam e x p r w  this in matrix form by concatenating (13) 
and (16) to get 
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where, in line with the notational convention (l), 4.1. First and Second Moments of xi 
For the purpose of channel estimation, we need to calculate 

(") the first and second order moments of 3. From (17) and 
(ZO), we can express the first moment of X i  as 

3.4. Sparsity and Time Variance 

Wireless channels are usualIy sparse. Moreover, the taps of 
a typical channel fade in value at a much faster rate than 
in location. We could thus safely assume the taps to he 
known in location but not in value IS]. So let I, denote the 
index set of the active taps in b, the various input/output 
relationships can he rewritten in t e r m  of 4. In particular, 
the relationships (13) and (19) take the form 

yil, = diag(~i),pO;~blc +Mir ,  (zi) 
3; = xJ;&,c tRi (22) 

Here, as per our notation, the matrix ZI. is created from the 
size P + 1 ideutity matrix Z by keeping the rows indexed hy 
the set I* 

To avoid intercarrier interference, we assume that the 
channel remains time invariant over any one OFDM symbol 
and the associated cyclic prefix. However, we also m u m e  
that from one symbol to the next, the active taps follow a 
statespace model 

$+IIa = Fhilc f Gui (23) 
This model allows for maximum time variance without iu- 
troducing intercarrier interference. 

In the next two sections, we show how to perform opti- 
mal data detection given the channel estimate and how to 
perform optimal channel estimation given some information 
about the data. 

4. MEAN-SQUARE ESTIMATION OF DATA 

Data is hest estimated from the circular channel. The de- 
coupled nature of this channel makes it possible to perform 
optimal data recovery with low complexity. Thus, given the 
channel gain in the Ith bin, ?&(I), the MMSE estimate of 
X,(I) is given by 

where A = {AI,  A?, . . . , AIAI)  is the input alphabet. Since 
i, and X, are linearly related hy (ll), so are their MMSE 
estimates and we can write 

1 .  1 -  

We c m  as easily calculate the conditional second-order mo- 
ment of the input which will be useful for channel estimation 
further ahead 

(25) i =-Q X,  i ---OX, -, N --p ' -  N 

where &, (&,) is constructed from & (&<-,I just as aiL 
(&,) is constructed Bom a (s-,). 

The covariance of x; is not as easy to calculate.' From 
the defining expressions (17) and (ZO), we deduce 

cov [x:] = O p + , ~ o v [ d i a g ( ~ ~ ) l  Q;,, + COVE:] 

= Qp+,Cov [diag(X:)] o;,, + cov [&:] + cov [XJ 
Now the covariance Cov [diag(X;)] is a diagonal matrix whose 
diagonal elements are simply the variances 

C a ~ [ X ; ( l ) l  = E[lX(l)l*l- IR(0I' (29) 

which can be calculated from (24) and (26). The elements 
of the covariance matrix CL 5 Cov [&:] are calculated 
recursively from 

CL(j,k)= C L ( j + l , k + l )  (30) 

covariance evaluated in (33) 

The recursion is run (backward) for j, k = 1 , 2 , ,  . . , P stat  
ing hom the boundary conditions 

CL(P+ 1,I) = C&P + 1) = 0, 1 = 1,2, . . .  , P  (31) 

The covarianca that appear in (30) are the entries of the 
covariance Cov h] and are collectively calculated from 

1 
Covk,] = -Q COv[Xi]gp N -P 

N-P 

(32) 
= -Q 1 Cov[&ag(X;)]Q; (33) 

where (32) follows hom the partial IDFT relationship 4 = 
( I / f i ) Q  - X i ,  and where the diagonal elements of the co- 
variance &ov[diag(X;)] of (33) have already been calcu- 
lated in (29). Similarly, we can show that the covariance 
Cu = A Cov &,] satisfies the recursion 

G u ( j + l , k + l ) = C u ( j , k ) +  
Ek:- l (P  - j)z;-,(P - k)l - &TL1(P - j )$_ , (P  - k) 

The recursion is kick-started from the initial conditions 

C"(1,I) = C"(l, 1) = 0, 1 = 1,2,. . . , P (34) 
A 'The covariance of a matrix A is defined ag Cov[A]  = 

E [ A X ]  - E[A]E[A'] .  
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5. CHANNEL ESTIMATION 

Our aim in this paper is to perform joint channel and data 
recovery. Given the input and output data, the IR & is op- 
timally estimated by maximizing the log-likelihood function 
log &IFir X,) which amounts to solving the least-squares 
problem 

&=argmaxIIF;-X;&112 h. * (35) 

Since the input is not available, we average the log likelihood 
over the input xi resulting in the regularized least-squares 
problem 

& = argmaxEx. llFi -X;f&I\' (36) 

= argm=IIYi hi -EF~I&II$ + I I N I ~ + ~ , ~ ~ ; ] ( ~ ~ )  *" 

hi * 
Thus, starting from snme initial channel estimate, we alter- 
nate hetween data detection using (24) and (26) and chan- 
nel estimation from (36) in an iterative process known as 
the Expectation Maimization (EM) algorithm. With a pri- 
ori frequency-correlation information (no), one can add the 
regularizing term llh11* to the objective functions (35) and "0 
(36) to enhance the quality of the estimates. More details 
and elaborate discussions can he found in [SI 

In the present case, the impulse response, or the active 
part of it, 1,,*, is related to L&- , l=  through the state-space 
model 

l;+ll, = FbiIe +Cui (38) 
This fact together with the input/output equation 

9; = x;I;<&lc +r; (39) 

can be used to optimally estimate &,.. Specificdly, when 
the input is fully available, we employ the Kalman filter [7] 

P+, = 

R.i = 

Xf., = 

Pi = 

= 

where &,,< = 0.  In practice, however, the input is only 
partially known and the Kalman filter has to he modified 
accordingly; we distinguish hetween three possibilities 

6.1. Inpu t  Partially Known (Pilots) 

Here, we replace the input/output equation (39) with the 
pilot/output relationship 

Y ~ I ,  = diag(xi)lvG&,~ +Mi,, (45) 

As a result, the Kalman filter (40)-(44) applies with the 
following change of variables 
- 
X i I i  -+ diag (X;),*C?;~ + Yil,  I N + P  -+ I l l p l  (46) 

where Ip is the index set of the pilot locations and II,l is 
their number. 

5.2. Input  in  Detected Form 

Here, the detected input is available to us in the form of an 
MMSE estimate and an estimate of the input energy (see 
(24) and (26)). In this case, we can derive an EM-based 
Kalman filter that is similar to (40)-(44) with the following 
change of variables (see [9] for details) 

5.3. N o  Input  Information 

For the first symbol, we need some pilot information to kick- 
start the estimation process. For the subsequent symbols, 
however, we can do away with pilots and rely on the previous 
channel estimate to initialize the estimation process for the 
current OFDM symbol. We can thus assume that we have no 
inpnt/output equation and accordingly, we modify Kalman 
filter (40)-(44) by the change of variables 

- 
x;rie -+ 0 (48) 

5.4. Summary of the Algorithm 

In what follows, we summarize the channel estimation and 
equalization algorithm. Consider a sequence of OFDM sym- 
bols passing through a time-variant channel =cording to 
(23). The first symbol is assigned pilots in the frequency 
bins Ip while the subsequent symbols might not have any. 
For each symbol, we perform two operations 

Initialization: Obtain the initial estimate using the Kalman 
filter (40)-(44) together with the change of variables 

{ (48) with no pilots (applies for i 2 1 only) 
(46) In the presense of pilots 

Iterations: 

Obtain the frequency response ??.; using (12) 

Obtain the estimate of the first and second mw 
ments of the input (using (24) and (26)) and of 
the matrix x, (using (27)-(34)) 

Estimate hi,- using the Kalman filter (40)-(44) 
together with the substitutions (47) 

Repeat 

6. SIMULATIONS 

We consider an OFDM system that transmits a sequence of 
5 symbols each with 128 carriers and a cyclic pretix of length 
P = 15. The input data is 16 QAM transmitted at an SNR of 
14 dB. The first symbol contains 16 pilots that are equally 
spaced while the subsequent 4 symbols carry none. The 
channel IR consists of 16 complex taps (the maximum length 
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possible). The initial IR f& has an exponential delay profile 
E[J&(k)lZ] = e-’”’. For i 2 0, !ai is generated according 
to the state-space model (38) with F = ,991 and with G 
diagonal sucb that C(i , i )  = ,/(I - (0.99)2)E[l&(k)12]. The 
state noise U, is iid with unit variance. 

For each symbol, we iterate the EM-algorithm a number 
times. The whole simulation is run for 50 runs. Fig. 1 shows 
a typical learning curve for the channel variation over the 5 
symbols. For each OFDM symbol, the MSE is largest at 
the start of each symbol and decreases after a few iterations 
although pilots are employed for the first symbol only. 

We next measure the effect of the cyclic prefix and the 
soft estimates of the input. We thus compare the EM al- 
gorithm with a version that does not use the cyclic prefix 
observation and with one that makes use of the hard in- 
put estimate as opposed to the soft estimate as mandated 
by the expectation step. We compare +ese three scenarios 
hy plotting the aggregate MSE E:=, [I& -&I[’ YS. itera- 
tion in Fig. 2. The difference in gain demonstrates the gain 
provided by more sophisticated sipd processing. 

1.6 
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Figure 1: Learning Curve along 5 OFDM symbols 
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7. CONCLUSION 

In this paper, we designed an OFDM receiver for time-variant 
channels. Specifically, the receiver uses the pilots to kick 
start channel estimation and subsequently iterates between 
that and data recovery. In doing so, the receiver utilizes 
the data constraints (which includes the cyclic prefix, pilots, 
and the finite alphabet nature of the data) and employs the 
data estimates in soft format. The receiver also makes use 
of the various constraints on the channel (which includes 
sparsity and k i t e  delay spread information as well as time 
and frequency correlation). Channel estimation boils down 
to an EM-based Kalman filter and is always done with zero 
latency. If increased latency is not an issue, one can enhance 
channel estimation by employing Future as well as past sym- 
bols using an EM-based forward backward Kalman filter. 

. . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . .  . . . . . . . . . . .  

. . . . . . . . .  

. . . . . . . . . . . . .  

1D Io 

S. REFERENCES 

[l] W. Zbendw and G. B. Giannakis, “Wireless multicar- 
rier communications,” IEEE Signal Pmcessing Moga- 
dne, vol. 17, no. 3, pp. 2948, May 2000. 

[Z] R. Negi and J. Cioffi, “Pilot tone selection for channel es- 
timation in a mobile OFDM system,“ IEEE !7hns. Con- 
s u m e ~  Electr., vol. 44, no. 3 , 1122-1128, Aug. 1998. 

[3] R.W. Heath and G .  B. Giannakis, “Exploiting input cy- 
clostationarity for blind channel identification in OFDM 
systems,” IEEE h n s .  Signal Pmcessing, vol 47, no. 3, 
pp. 848-856, Mar. 1999. 

[4] V. Mignone and A. Morello, T D I O F D M :  A novel de- 
modulation scheme for fixed and mobile receivers,” IEEE 
h n s .  Commun., vol. 44, no. 9 , pp. 1144 -1151, Sep. 
1996. 

[5] Y. Li. L. J. Cimini, and N. R. Sollenberger, “Robust 
channel estimation for OFDM system with rapid disper- 
sive fading channels,” IEEE %ns. Commun., vol. 46, 
no. 7 , pp. 902-915, Jul. 1998. 

(61 B. Yang, K. Ben Letaief, R. Cheng, Z. Cao, “Channel 
estimation for OFDM transmission in multipath fading 
channels based on parametric channel modeling,” ZEEE 
h n s .  Commun., vol49, no. 3 , pp. 467479, Mar. 2001. 

(71 T. Kailath, A. H. Sayed, and B. Hassibi, Linear E3stimo- 
tion, Prentice Hall, I”J, 2000. 

[SI T. Y. AI-NafTouri, A. Bahai, and A.  Paulraj, “Semi- 
blind channel identification and equalization in OFDM: 
An expectation-maximimzation approach,” to appear in 
VTC 2002, Vancouvor, Canada. 

[9] T. Y. AI-NafTouri, A. Bahai, and A. Paulraj, “An EM- 
based OFDM Receiver,” to be submitted t o  IEEE %ns. 
Signal Processing. 

81 

593 


