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Abstract— The distribution of randomly deployed wireless
sensors plays an important role in the quality of the methods
used for data acquisition and signal reconstruction. Mathemat-
ically speaking, the estimation of the distribution of randomly
deployed sensors can be related to computing the spectrum of
Vandermonde matrices with non-uniform entries. In this paper,
we use the recent free deconvolution framework to recover, in
noisy environments, the asymptotic moments of the structured
random Vandermonde matrices and relate these moments to the
distribution of the randomly deployed sensors. Remarkably, the
results are valid in the finite case using only a limited number
of sensors and samples.

I. I NTRODUCTION

Sensor networks can be used for a variety of important
applications, such as measuring or monitoring temperature,
sunlight or seismic activity in an area [1]. The randomness of
the deployment of the sensors may have several reasons. For
example, a case of practical interest is when wireless sensors
are released from an airplane at fixed intervals but happen to
land on earth with random positions. For a given distribution
of randomly deployed sensors, one would like to infer on the
distribution of the sensors. There are several cases where this
is of practical interest: typically, the change of the distribution
of the sensors (from a fixed pattern to a random pattern) can
provide an estimate of the speed of the weed in environment
monitoring. The estimation of the entire distribution can also
improve signal reconstruction as recently proposed in [2]-[3].
In environment monitoring, different algorithms can be used
to estimate the sensors location [4]-[5] but these algorithms
require a substantial amount of communication between the
sensors in large networks. In this paper, we provide a way to
estimate the distribution of the sensors in noisy environments
without any communication between the sensors. The results
are based on the recent framework of free deconvolution [10],
[6], [7] and asymptotic Vandermonde random matrix theory
[8]. Interestingly, although the result are valid in the asymp-
totic regime, simulations using realistic random distribution

deployment of sensors show the adequacy of the approach.
This paper is organized as follows, Section II-A describes
the system model used. Section III provides the algorithm
to estimate the distribution of the sensors. Simulation results
which sustain our theoretical claims are summarized in section
IV followed by the conclusion.

II. SENSORDEPLOYMENT

In the following, (.)H will represent the Hermitian trans-
pose. We denote scalar quantities and matrices by lower case
letters and upper case letters respectively while lower case
boldface letters denote column vectors.Tr(A) represents a
trace of a matrixA andtrL(A) represents a normalized trace
( 1
L

Tr(A)) of a matrixA.

A. System Model

In the following, for simplicity sake and without loss of
generality, we consider a one dimensional physical field withL
sensors deployed in the interval[0, 1]. Let di ∈ [0, 1] represent
the position of theith sensor in the normalized interval. The
continuous-time band-limited sensed signaly(ωi) measured
at the spatial positionωi = 2πdi can be represented as the
weighted sum ofP harmonics,

y(ωi) =
1√
P

P−1
∑

k=0

xke
−jkωi (1)

wherei = 1, 2, . . . , L. xk is the corresponding Fourier coef-
ficients of thekth harmonic. We suppose that theL samples
are sent from the sensors to a common data-collecting unit
through an orthogonal multiple access (TDMA for example)
additive Gaussian noise channel. In this case, the model can
be written in a vector form as:

y = VHx + σn (2)



wherey is the received signal vector of lengthL whoseith

element isy(ωi), x is the transmitted signal of lengthP whose
kth element isxk, n is the additive white Gaussian noise with
unit variance noise vector of lengthL whereasσ2 is the noise
variance.V is aP × L Vandermonde matrix given by,

V =
1√
P











1 · · · 1
e−jω1 · · · e−jωL

...
. . .

...
e−j(P−1)ω1 · · · e−j(P−1)ωL











. (3)

Hereω1, ω2, . . . , ωL are i.i.d random variables with a certain
distribution (related to the position of the sensors) and are
bounded within the interval[0, 2π). We suppose that we have
K observations of the signal vectory. In this case, the model
takes the following matrix form:

Y = VHX + σN (4)

WhereY = [y1,y2, . . . ,yK ], X = [x1,x2, . . . ,xK ] andN =
[n1,n2 . . .nK ]. The sample covariance matrix is defined as
YYH .

In this paper, we assume that the matrixX of unknown
transmitted symbols and the noise matrixN are zero mean
Gaussian matrices with i.i.d. entries of unit variance. Without
loss of generality, we will considerσ2 = 1. We will define the
sample covariance associated withY asYYH . Moreover, we
will consider the asymptotic regime wherec1 = limP→∞

P
K

,
c2 = limP→∞

L
P

andc3 = limK→∞
L
K

. Note that althoughL
(number of sensors) andK are known (number of samples),
P is unknown.

B. Distribution Estimation

The estimation of the distribution ofω in eq. (3) enables us
to retrieve the distribution location of the sensors. In a blind
context, with no training sequence and no communication
between the sensors, this can be a hard task. However, as we
will see afterwards, the moments ofVVH can be estimated
and related to the distribution of the deployed sensors by using
the moments approach. In particular, we relate the moments of
VVH up to a certain order with a polynomial approximation
of the distribution ofω.

III. M OMENTS APPROACH

The moments approach [9] provides us with a good estima-
tor of the moments of the Vandermonde matrix. The moment
(mn) of a P × P matrix H is defined as

mn = trP(Hn) (5)

As recently shown in [6], [8], Free deconvolution relates
the eigenvalue distribution of the covariance matrix (µYYH )
with the eigenvalue distribution of the Vandermonde matrix
(µVVH ) as

µVVH = (µYYH ⊟c1 µNNH ) � µXXH (6)

Where⊟c1 is Rectangular additive free deconvolution (section
III-A) and � is multiplicative free deconvolution (section III-
B). In algorithmic terms, the moments estimation procedure
follows four steps:

A. Step 1: Rectangular additive free deconvolution

Consider the covariance matrix

YYH = (A + N)(A + N)H (7)

whereA = VHX. Rectangular additive free deconvolution
(⊟c1) provides us with the moments ofYYH in terms
of moments ofAAH and moments ofNNH . In order to
compute the series of moments, it turns out that it is much
easier to compute cumulants. In free probability theory, the
moments (mn) are related to the sequence of numbers called
the rectangular free cumulants (tn) via the probability measure
ǫ. [9] gives the following set of equations for the relation
between the two.

Tǫ(z(c2Mǫ2(z) + 1)(Mǫ2(z) + 1)) = Mǫ2(z)

where

Tǫ(z) =
∑

n≥1

tn(ǫ)zn andMǫ2(z) =
∑

n≥1

mn(ǫ)zn.

This equation can be written in a recursive form as

m0(ǫ) = 1

mn(ǫ) = tn(ǫ)

+
n−1
∑

k=1

ck1tk(ǫ)
∑

l1,...,l2k≥0
l1+...+l2k=n−k

ml1(ǫ) . . .ml2k
(ǫ)

Let γ, η and τ be the probability measure ofYYH , AAH

andNNH respectively. In this case, these are related by [10]:

tn(η) = tn(γ) − tn(τ)

Note that asN is a random matrix with independent Gaus-
sian entries with variance1

L
then the eigenvalue distribution of

NNH follow a Marchenko-Pastur distribution with parameter
1
c3

. In this case the rectangular free cumulants ofNNH are
given by [10] tn(τ) = δn,1

1, ∀n ≥ 1.
Hence, the rectangular additive free deconvolution provides

us with the moments ofVHXXHV.

B. Step 2: Multiplicative free deconvolution

In this section, we show how one can extract the moments
of VVH from VHXXHV. As a first step, note that:

mn(XXHVVH) = c2mn(VHXXHV) (8)

We can therefore use the concept of Multiplicative free
deconvolution (�) which computes the moments ofVVH in

1The dirac delta function is defined as,

δn,1 =

{

1 if n = 1

0 else



terms of the moments ofXXHVVH and moments ofXXH .
As previously, from an algorithmic perspective, it is easier to
compute cumulants. The relationship between the moments
mn and the multiplicative free cumulants (sn) is given by [8]:

Mǫ(z)Sǫ(Mǫ(z)) = z(1 +Mǫ(z))

where,

Sǫ(z) =
∑

n≥1

sn(ǫ)zn−1 andMǫ(z) =
∑

n≥1

mn(ǫ)zn.

These set of equations can be represented in a recursive
form as

m1(ǫ)s1(ǫ) = 1,

mn(ǫ) =

n+1
∑

k=1

sk(ǫ)
∑

l1,...,lk≥1
l1+...+lk=n+1

ml1(ǫ) . . .mlk(ǫ)

Let ϑ, ς andψ be the probability measures ofXXHVVH ,
XXH and VVH respectively. Then these probability mea-
sures are related to each other thought the multiplicative free
cumulants as

s1(ς)s1(ψ) = s1(ϑ)

s1(ς)sn(ψ) = sn(ϑ) − sn(ς)s1(ψ)

−
n−1
∑

k=2

sk(ς)sn+1−k(ψ)

Note that ifX is a P ×K random matrix with independent
Gaussian entries with variance1

P
then the eigenvalue distri-

bution of XXH follow a Marchenko-Pastur distribution with
parameter1

c1
. In this case the multiplicative free cumulants of

XXH are given bysn(ς) = (−c1)n−1, ∀n ≥ 1.

C. Step 3: Moments ofVVH

In the following, we assume thatωi = 2π(i−1)+ω′
i where

i = 1, 2, . . . , L. In other words, all the sensors are centered
at equally spaced positions with a certain off-set. Hereω′

i is
a random variable with continuous (not necessarily uniform)
distribution and is bounded by[0, 2π). We suppose that allω′

i

, i = 1, 2, . . . , L have the same distribution.
The asymptotic moments of the Vandermonde matrix are

defined as

mn = lim
P→∞

E[trP(VVH)n] (9)

It has been shown recently in [8] that for any distribution of
the random phases, the moments of the Vandermonde matrix
can be calculated as

∑

ρ∈P(n)

Kρ,ωc
|ρ|
2 (10)

whereP(n) is the set of all partitions of{1, 2, . . . , n} andρ
is the notation for a particular partition inP(n). This can be
also written asρ = {ρ1, . . . , ρk}, whereρj are the blocks of
ρ and |ρ| is the number of blocks inρ. Kρ,ω are called the

Vandermonde mixed moment expansion coefficient and are
defined, in the case whereω is a uniform distributionω ∼
U(0, 1)2 as

Kρ,ω = lim
N→∞

1

Pn+1−|ρ|

∫

(0,2π)|ρ|

n
∏

k=1

1 − ejP (ωb(k−1)−ωb(k))

1 − ejP (ωb(k−1)−ωb(k))
dω1 . . . dω|ρ|

(11)

Interestingly, the moments of the Vandermonde matrix can
be written in terms of the distribution ofpω of ω as

mn =
∑

ρ∈P(n)

Kρ,uc
|ρ|
2 I|ρ| (12)

whereI|ρ| = (2π)|ρ|−1
(

∫ 2π

0 pω(x)|ρ|dx
)

andu ∼ U(0, 1).

In general, it is extremely difficult to obtain an explicit
expression ofKρ,u for any moments (in [8] only the first
seven moments were computed). In this paper, we provide an
algorithm to calculate all the moments:
Algorithm: Kρ,u can be expressed as the volume of the
solution set of

∑

k∈ρj

lk−1 =
∑

k∈ρj

lk (13)

with 0 ≤ lk ≤ 1. This volume is calculated after expressing
|ρ| − 1 variables in terms ofn+ 1 − |ρ| free variables and is
bounded within[0, 1]. Note thatKρ,u = 1 when the partitions
of ρ are non-crossing [11] otherwise it is smaller the1. As I|ρ|
depends on the block cardinalities|ρj |, we can therefore group
togetherKρ,u for ρ with equal block cardinalities. Hence, we
group the cardinalities in descending orderr1 ≥ r2 ≥ . . . ≥ rk
and define

Kr1,r2,...,rk
=

∑

ρ̂∈P(n)

Kρ,u (14)

where |ρ̂i| = ri, ∀i. In this case, the moments can be
represented as

mn =
∑

k=1,2,...,n

∑

r1,r2,...,rk
r1+r2+···+rk=n

Kr1,r2,...,rk
ck2Ik (15)

As an example, the first moments expand to:

m1 = K1c2I1

m2 = K2c2I1 +K1,1c
2
2I2

m3 = K3c2I1 +K2,1c
2
2I2 +K1,1,1c

3
2I3

m4 = K4c2I1 + (K3,1 +K2,2)c
2
2I2 +K2,1,1c

3
2I3

+K1,1,1,1c
4
2I4

...
... (16)

2hereU is the uniform distribution.



D. Step 4: distribution Approximation

Now in order to estimate the distribution ofω, whereω is
bounded within[0, 1), we use the Weierstrass approximation
and multinomial expansion to derive an alternative form ofIn
given by

In = lim
t→∞

(2π)n−1
∑

k1+...+kt=n

(

n

k1, . . . , kt

)

.

(

Γ(1 + tn−∑t

v=1 vkv)Γ(
∑t

v=1 vkv − n+ 1)

Γ((t− 1)n+ 2)

)

.

(

t
∏

v=1

[

pω

(

v − 1

t− 1

)(

t− 1

v − 1

)]kv

)

(17)

where pω(x) represents the unknown distribution ofω and
pω(0), pω( 1

t−1 ), pω( 2
t−1 ), . . . , pω(1) are the unknowns of the

weierstrass approximation. By equating (17) with (16), this
will give us a set of non-linear equations to solve. As the
number of unknowns should be equal to the number of
equations, we taken = t. One can solve this by using any
optimization algorithm.

IV. SIMULATION RESULTS

In this section, we provide some simulation results to
sustain our theoretical claims. We apply the previous four step
procedure for various values ofK,L andP . We restrict also
our analysis to some specific distribution in order to assessthe
validity of our results in various case.

A. Estimation of the moments ofVVH

By applying rectangular additive free deconvolution and
multiplicative free deconvolution on the covariance matrix
YYH , we can compute the moments ofVVH . To check
the validity of the moments approach, we plot the relative
distance between the estimated moments ofVVH and the
actual moments ofVVH . The relative distance we use is
defined as,∀n:

∣

∣

∣

∣

mn[(µYYH ⊟c1 µNNH ) � µXXH ]

mn[VVH ]
− 1

∣

∣

∣

∣

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

n

R
el

at
iv

e 
D

is
ta

nc
e

Fig. 1. Relative distance of the moments ofVV
H and the estimated

moments by applying the moments approach withK = L = P = 1000.

Figure 1 plots the relative distance forn = 1, 2, . . . , 20
(n is the order of the moments) withK = L = P = 1000
whenω with a uniform distribution. Interestingly, even with
only K = 1000 samples, the error is quite low for moments
inferior to 10. If one requires higher moments, one would need
more moments.

B. Von Mises Distribution

Let us consider the case whereω has a Von Mises distribu-
tion. Von Mises distribution have an inverted bell shape andare
bounded within(0, 2π]. The parameter1/κ of the distribution
is analogous toσ in a Gaussian distribution. The value ofI2
for a von mises distribution is given by

I2 =
J0(2κ)

J0(κ)2
(18)

whereJ0 is the bessel function of the zero order.
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Fig. 2. Estimation ofκ for Von Mises distribution withK = L = P = 100.

The value ofκ is estimated by solving equation (16) and
(18). Figure 2 shows the simulation result forκ = 4 and
κ = 10 with K = L = P = 100 averaged over a varying
number of observations. Figure 3 simulates the result for the
estimation ofκ asK, L and P increase linearly. It can be
seen that by asymptotically increasing the value ofK, L and
P the estimation gets better.

C. Distribution Approximation

We consider now the general case where there is no con-
straint on the distribution ofω except that it is bounded in
the interval[0, 1]. For simulations purposes, we considerω to
have a beta distribution with two degrees of freedomα and
β. The PDF is given by,

pω(x) =
xα(1 − x)β

B(α, β)
(19)

By taking n = t = 9 in (17) with (16), we obtain a a set of
non-linear equations of order9. Here we use nonlinear least-
squares based algorithm [12] to calculate the unknowns.

Figure 4 shows the simulation result for the estimation of the
distribution ofω with t = 3, 5, 9 whenω has beta distribution
with α = 2 andβ = 5. Figure 5 represents the estimation of
the PDF whenω has beta distribution withα = 1, β = 3 and
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Fig. 4. Estimation of the PDF ofω, whereω has a beta distribution with
α = 2 andβ = 5.

t = 3, 5, 9. Similarly, Figure 6 shows the estimate of the beta
distribution withα = 1, β = 3 andt = 3, 5. In each case, with
more than 5 moments we already get a good approximation
of the distribution. Note that we can loosen the bound on the
range ofω from [0, 1) to [0, 2π) by replacingt by t/2π in
(17).

V. CONCLUSION

In this paper, we showed that by using the moments
approach, we can find an estimate for the distribution of the
sensors with very few noisy observations and without any
communication between the sensors. This is very helpful for
large networks of randomly deployed sensors where one needs
to recover the distribution.
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