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Abstract— The distribution of randomly deployed wireless deployment of sensors show the adequacy of the approach.
sensors plays an important role in the quality of the methods This paper is organized as follows, Section II-A describes
used for data acquisition and signal reconstruction. Mathenat- e gystem model used. Section Il provides the algorithm
ically speaking, the estimation of the distribution of randomly ¢ timate the distributi f th Simulationlt
deployed sensors can be related to computing the spectrum of 0 ?S Ima e_ € distnbu an 0 _e sensors. 'ml_J a 'o_m_" 8S
Vandermonde matrices with non-uniform entries. In this paper, Which sustain our theoretical claims are summarized in@ect

we use the recent free deconvolution framework to recover,ni IV followed by the conclusion.
noisy environments, the asymptotic moments of the structued

random Vandermonde matrices and relate these moments to the Il. SENSORDEPLOYMENT

distribution of the randomly deployed sensors. Remarkably the . ) .

results are valid in the finite case using only a limited numbe In the following, (.)"" will represent the Hermitian trans-

of sensors and samples. pose. We denote scalar quantities and matrices by lower case

letters and upper case letters respectively while lowee cas
boldface letters denote column vectof&:(A) represents a

Sensor networks can be used for a variety of importagthce of a matrixA andtry,(A) represents a normalized trace
applications, such as measuring or monitoring temperatufg Ty(A)) of a matrix A.

sunlight or seismic activity in an area [1]. The randomndss o
the deployment of the sensors may have several reasons. &oiSystem Model

example, a case of practical interest is when wireless $8nso |, the following, for simplicity sake and without loss of

are released from an airplane at fixed intervals but happe”g'@nerality, we consider a one dimensional physical fielh Wit

land on earth with random positions. For a.given_distril:nutioSerlsors deployed in the interyel 1]. Letd; € [0, 1] represent
of randomly deployed sensors, one would like to infer on thee nosition of theit sensor in the normalized interval. The
distribution of the sensors. There are several cases whisre tontinuous-time band-limited sensed signély;) measured

is of practical interest: typically, the change of the disttion 5t he spatial position; = 27d; can be represented as the
of the sensors (from a fixed pattern to a random pattern) CRRighted sum ofP harmonics
provide an estimate of the speed of the weed in environment

I. INTRODUCTION

monitoring. The estimation of the entire distribution cdsoa 1 A ,

. . . R (w) - Z T efjlm;I (1)
improve signal reconstruction as recently proposed inf32]- Y\wi VP k

In environment monitoring, different algorithms can be duse k=0

to estimate the sensors location [4]-[5] but these algovith wherei = 1,2, ..., L. x}, is the corresponding Fourier coef-

require a substantial amount of communication between tfieients of thek'" harmonic. We suppose that tdesamples
sensors in large networks. In this paper, we provide a way doe sent from the sensors to a common data-collecting unit
estimate the distribution of the sensors in noisy enviramsie through an orthogonal multiple access (TDMA for example)
without any communication between the sensors. The reswdtiditive Gaussian noise channel. In this case, the model can
are based on the recent framework of free deconvolution [18k written in a vector form as:

[6], [7] and asymptotic Vandermonde random matrix theory

[8]. Interestingly, although the result are valid in the gy "

totic regime, simulations using realistic random disttibn y=Vix+on )



wherey is the received signal vector of lengfhwhosei'® WhereB,, is Rectangular additive free deconvolution (section
element isy(w;), x is the transmitted signal of lengfAwhose 1ll-A) and N is multiplicative free deconvolution (section IlI-
k't element iszy, n is the additive white Gaussian noise wittB). In algorithmic terms, the moments estimation procedure
unit variance noise vector of lengfhwhereass? is the noise follows four steps:

variance.V is a P x I Vandermonde matrix given by, A. Step 1: Rectangular additive free deconvolution

Consider the covariance matrix

1 o1
1 e—Jwt co e—iwe YYH = (A+N)(A+N) (7
V=— . 3 i .
VP | ¢ U 3) where A = VZX. Rectangular additive free deconvolution
e~ i(P-lwi ... e—j(P-lwt (B.,) provides us with the moments oY YH in terms
3 _ . ~of moments ofAA” and moments ofNN*. In order to
Herews,ws, ..., wy arei.i.d random variables with a certaincompute the series of moments, it turns out that it is much

distribution (related to the position of the sensors) anel agasier to compute cumulants. In free probability theorg, th
bounded within the intervaD, 27). We suppose that we havemoments #,,) are related to the sequence of numbers called
K observations of the signal vectgr In this case, the model the rectangular free cumulants,) via the probability measure
takes the following matrix form: e. [9] gives the following set of equations for the relation
between the two.
Y =VIX +0oN (4)

T, M- 1)(M.,2 1)) = M.
WhereY = [y1,y2,...,yk], X = [x1,Xa,...,xx] andN = (2(c2 (z) +1)( () +1)) (2)

[n1,n5...nx]. The sample covariance matrix is defined as where

YY™ T.(2) = 3 ta(e)2" and Ma(z) = 3 ma(e)2"
In this paper, we assume that the mat®x of unknown ‘ — ‘ — '

transmitted symbols and the noise mathk are zero mean _ S ) ) -

Gaussian matrices with i.i.d. entries of unit variance.haitt 1HiS €quation can be written in a recursive form as

loss of generality, we will consider? = 1. We will define the mo(e) = 1
sample covariance associated withas Y'Y . Moreover, we .
. ! . . ) P M (€) tn(€)
will consider the asymptotic regime wheeg = limp .o 7, "1
=i L andcs = li L Note that although.
c2 IMp—oo 5 c3 K o0 F7- 9 + letk (¢) Z my, (€) ... mu,, (€)
(number of sensors) and are known (humber of samples), pt LT
. - 1yeesl2p 2
P is unknown. Lt Hlog=n—k

Let v, n and r be the probability measure &Y, AAY

o S ) and NN respectively. In this case, these are related by [10]:
The estimation of the distribution af in eq. (3) enables us

to retrieve the distribution location of the sensors. In iadl tn(n) = tn(y) — ta(7)

context, with no training sequence and no communicationgte that asN is a random matrix with independent Gaus-
between the sensors, this can be a hard task. However, asp enries with variancg then the eigenvalue distribution of

. H .
will see afterwards,_ th_e moments 8V™ can be estimated Nn# fglow a Marchenko-Pastur distribution with parameter
and related to the distribution o_f the deployed sensors Bgus 1 | this case the rectangular free cumulantNaN’ are
the moments approach. In particular, we relate the moménts’

m . . ; MENSRen by [10]t,(7) = dnst b, Vn > 1.
A up tc_) a f:ertam order with a polynomial approxmatlorﬁ] Hence, the rectangular additive free deconvolution presid
of the distribution ofw.

us with the moments oV XXV,

[11. M OMENTS APPROACH B. Step 2: Multiplicative free deconvolution

The moments approach [9] provides us with a good estima-In this section, we show how one can extract the moments
tor of the moments of the Vandermonde matrix. The momeot VV* from VE XX V. As a first step, note that:
(m,) of a P x P matrix H is defined as

B. Distribution Estimation

mn(XXEVVH) = com, (VEXXHV) (8)
my, = trp(H") ®) I
We can therefore use the concept of Multiplicative free
As recently shown in [6], [8], Free deconvolution relatedeconvolution §) which computes the moments V¥ in
the eigenvalue distribution of the covariance matpix {+) _ o
with the eigenvalue distribution of the Vandermonde matrix 'he dirac deita function is defined as,

(uvve) as s -1 if n=1
1 0 else

pvve = (pyyn Be, pinnn) B pixxxs (6)



terms of the moments XX VV# and moments oKX*. Vandermonde mixed moment expansion coefficient and are
As previously, from an algorithmic perspective, it is easte defined, in the case whete is a uniform distributionw ~
compute cumulants. The relationship between the momeht&), 1)? as

m, and the multiplicative free cumulants,) is given by [8]:

. 1
M(2)Se(M.(2)) = 2(1 + M.(2)) Kpw= lm s
"1 — edPwb—1)—wik))
where, / 1—= dwr . .. dwyy)
. (0,21l 1 — edP(wok—1) —wo(x))
Se(z) = snu(€)2" " and M(z) = > ma(e)2". : k=1
n>1 n>1 (11)
These set of equations can be represented in a recursivihterestingly, the moments of the Vandermonde matrix can
form as be written in terms of the distribution of, of w as
mi(€e)si(e) =1,
1(€) 1(n)+1 p— Z Kpucf'T, (12)
mp(e) = Z si(€) Z my, (€) ... my, (€) PEF(n)
k=1 l1,..., lkzzl o lp|—1 2m o]
bt Hle=n+1 wherel|,| = (2x) Jo po(x)?ldr) andu ~ U0, 1).
Let 9, < and v be the probability measures &X' VV In general, it is extremely difficult to obtain an explicit

XX and VV# respectively. Then these probability meaexpression ofK, , for any moments (in [8] only the first

sures are related to each other thought the multiplicative f S€ven moments were computed). In this paper, we provide an
cumulants as algorithm to calculate all the moments:

Algorithm: K, , can be expressed as the volume of the

si(e)s1(y) = s1(9) solution set of
s Sn = 5,(9) —s,(¢)s
1(S)sn(¥) 7(1_)1 ()s1(2) ST 13)
- $k(S)Sn+1-k (W) kep; kep;
k=2

with 0 < [ < 1. This volume is calculated after expressing
Note that if X is a P x K random matrix with independent|p| — 1 variables in terms ofi + 1 — |p| free variables and is
Gaussian entries with variance then the eigenvalue distri- bounded within[0, 1]. Note thatk, , = 1 when the partitions
bution of XX follow a Marchenko-Pastur distribution with of p are non-crossing [11] otherwise it is smaller theAs I
parametercll. In this case the multiplicative free cumulants oflepends on the block cardinalitigs |, we can therefore group

XX are given bys, (¢c) = (—cy)" %, Vn > 1. togetherk, ,, for p with equal block cardinalities. Hence, we
H group the cardinalities in descending order> ro > ... > 7y

C. Step 3: Moments WV and define

In the following, we assume that; = 27(i — 1) 4w} where
i =1,2,...,L. In other words, all the sensors are centered Ky rg,.m, = Z Kpu (14)
at equally spaced positions with a certain off-set. Hefds pEP(n)
a random variable with continuous (not necessarily unifjorm ) , .
distribution and is bounded by, 27). We suppose that ay/ Where [pi| = ri, Vi. In this case, the moments can be
,1=1,2,..., L have the same distribution. represented as

The asymptotic moments of the Vandermonde matrix are
defined aZ P My = Z Z Koy oy 51 (15)

k=1,2,..,n  TLT2-Tk
my = lim Eltrp(VVT)"] ©) e

) o As an example, the first moments expand to:
It has been shown recently in [8] that for any distribution of

the random phases, the moments of the Vandermonde matrix ,, = K14
can be calculated as

me = Kocoly + K171C§I2
ms = Kscoly + K13l + Ky116515
S Kpwdy! (10) > 5
w2 my = Kycoli + (K31 + Kapo)csla + Ko 10513
pEP(n) A
. iy +K1,1,1,16514

where®(n) is the set of all partitions of1,2,...,n} andp _ _

is the notation for a particular partition #i(n). This can be : : (16)

also written as = {p1, ..., px}, Wherep, are the blocks of

p and |p| is the number of blocks im. K, are called the 2herelis the uniform distribution.



D. Step 4: distribution Approximation Figure 1 plots the relative distance far = 1,2,...,20

(n is the order of the moments) withk = L = P = 1000
whenw with a uniform distribution. Interestingly, even with
only K = 1000 samples, the error is quite low for moments
inferior to 10. If one requires higher moments, one wouldchee
more moments.

. n— n . . B :
I, = lim(2r) Y (k1 N kt> B. Von Mises Distribution
’ﬂ*--jkf:” . Let us consider the case whesehas a Von Mises distribu-
<F(1 +in =Y vk,)T(>,_q vky —n + 1)) tion. Von Mises distribution have an inverted bell shape ared

Now in order to estimate the distribution of wherew is
bounded within[0, 1), we use the Weierstrass approximatio
and multinomial expansion to derive an alternative fornd,pf
given by

T((t—1)n+2) bounded within(0, 27]. The parametet/« of the distribution
is analogous t@ in a Gaussian distribution. The value Bf

t ky
. (H [pw (v - 1) (t - 11)] ) (17) for a von mises distribution is given by
t—1 —
v=1 Y J0(2I€)
I =

where p,,(x) represents the unknown distribution of and — Jo(k)?

1 2
Pw(0), o (7=7), Po(=7), - -, Pw(1) are the unknowns of the where.J; is the bessel function of the zero order.

weierstrass approximation. By equating (17) with (16)sthi
will give us a set of non-linear equations to solve. As the

(18)

14

number of unknowns should be equal to the number of o T T T T TS Emasoire

equations, we take = t. One can solve this by using any al + Caimanotn (o
. . . . —— - Actual value of K (k=:

optimization algorithm. o e e o =

o o o
¥R =~ ¢ o R 50,1, BRSSP
IV. SIMULATION RESULTS 5 oooOOQ%GDOOO%O%O S g &

o
In this section, we provide some simulation results to

sustain our theoretical claims. We apply the previous foep s

+

procedure for various values éf, L and P. We restrict also B S T ST = SO
our analysis to some specific distribution in order to astess A ’
validity of our results in various case. % 10 20 30 4w s 0 70 80 %0 100

Number of observations

A. Estimation of the moments ¥V
Fig. 2. Estimation ok for Von Mises distribution withk' = L = P = 100.

By applying rectangular additive free deconvolution and

multiplicative free deconvolution on the covariance matri  +a value ofx is estimated by solving equation (16) and
H H
YY", we can compute the moments 8V™. To check (1g) Figure 2 shows the simulation result fer— 4 and

the validity of the moments approach, we plot the reIativs — 10 with K — L — P — 100 averaged over a varying
. . H - - - -
distance between the estimated momentsvVaf™ and the_ number of observations. Figure 3 simulates the result fer th

" . .
gc;galdmome.nts ofVV™. The relative distance we use 'Sestimation ofx as K, L and P increase linearly. It can be
efined asyn: seen that by asymptotically increasing the valugsgfL and
ma[(pyy s Be, pnne) N pixx ] P the estimation gets better.

-1
m,[VVH]

C. Distribution Approximation

We consider now the general case where there is no con-
straint on the distribution ofs except that it is bounded in

05
ods the intervall0, 1]. For simulations purposes, we consideto
04l . have a beta distribution with two degrees of freedanand
oss| o (. The PDF is given by,

§ 03F q

3 v (1 — )8

govzs— 1 )= —— 19

% ol ) + | pUJ( ) B(O{,ﬁ) ( )
015 + ] By takingn =t = 9 in (17) with (16), we obtain a a set of
.l Lt ] non-linear equations of ordé&: Here we use nonlinear least-
il et | | squares based algorithm [12] to calculate the unknowns.

% 5 10 5 20 Figure 4 shows the simulation result for the estimation ef th

distribution ofw with ¢ = 3, 5,9 whenw has beta distribution
Fig. 1. Relative distance of the moments ¥V and the estimated With o = 2 and 3 = 5. Figure 5 represents the estimation of
moments by applying the moments approach with= L = P = 1000. the PDF whenv has beta distribution witlk = 1, 3 = 3 and
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Fig. 3. Estimation ofx for Von Mises distribution with varyingk’, L and

P Fig. 5. Estimation of the PDF af, wherew has a beta distribution with
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Zlg:' g.angsﬁtgag!m of the PDF ab, where has a beta distribution with Fig. 6. Estimation of the PDF ab, wherew has a beta distribution with

a=2andg = 2.

t - 3’ 5’.9' S|m|larly, Figure 6 shows the estimate of the _bEt@] O. Kwon, H. Song, “Localization through Map Stitching Wireless
distribution witha = 1, 8 = 3 andt = 3, 5. In each case, W'th ~ Sensor Networks,” IEEE Transactions on Parallel and Distributed
more than 5 moments we already get a good approximation Systemsyol. 19, no. 1, pp. 93-105, Jan. 2008.

of the distribution. Note that we can loosen the bound on ti8 9 Ryan and M. Debbah *Free Deconvolution for Signal fessing
Applications,” IEEE International Symposium on Information Theory,

range ofw from [0,1) to [0,27) by replacingt by ¢/27 in ISIT 2007,June 2007.
@an). [7]1 @. Ryan and M. Debbah “Channel Capacity Estimation usfrge
Probability theory,”IEEE Trans. Signal Process., Vol. 56, No. 11, 2008,
V. CONCLUSION pp. 5654-5667
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