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ABSTRACT

This paper presents a maximum likelihood (ML) approach
to mitigate the effect of narrow band interference (NBI) in a
zero padded orthogonal frequency division multiplexing (ZP-
OFDM) system. The NBI is assumed to be time variant and
asynchronous with the frequency grid of the ZP-OFDM sys-
tem. The proposed structure based technique uses the fact that
the NBI signal is sparse as compared to the ZP-OFDM signal
in the frequency domain. The structure is also useful in re-
ducing the computational complexity of the proposed method.
The paper also presents a data aided approach for improved
NBI estimation. The suitability of the proposed method is
demonstrated through simulations.

1. INTRODUCTION

The vast deployment of wireless communication systems cou-
pled with the congestion of available spectrum has resulted
in various systems operating in the same or overlapping fre-
quency bands. For instance, the unlicensed ISM band, used
by several devices like cordless phones, garage door open-
ers, baby monitors etc., also falls within the operating range
of WiFi, WiMAX, Bluetooth, and Zigbee. As a result, to-
day’s wireless systems are very likely to experience interfer-
ence from other devices/systems. This interference results in
severe degradation in performance of the affected communi-
cation system.

Several works in literature deal with NBI cancelation, for
instance [1]-[5]. The approach of [1] is based on finding a lin-
ear minimum mean square error solution and requires place-
ment of a few unmodulated tones near the center frequency of
the NBI; a requirement that might not be fulfilled in most sce-
narios. The approach presented in [2] is based on compressed
sensing. Both [3] and [4] aim to notch out the tones where the
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NBI is present, meaning those tones will not be used for data
transmission by the communication system. The approach of
[5] is based on successive interference cancelation and hence
suffers from error propagation.

In this paper, we present a low complexity receiver design
for ZP-OFDM system based on a structured maximum likeli-
hood approach that mitigates the effect of narrow band inter-
ference. Our method estimates the NBI and cancels it from
the received signal instead of notching out the interference
tones. We consider a sophisticated model for the interferer
with grid offset and allow the NBI to change from one sym-
bol to the next. We use the guard interval of the ZP-OFDM
symbol to obtain an ML estimate of the NBI. We make use
of the rich structure inherent to the OFDM system and show
how the computational complexity of the ML approach can
be reduced significantly. Although the method of [2] is also
based on the sparsity of NBI, it is quite different from the ap-
proach presented here as it casts the NBI estimation problem
as a compressed sensing problem that requires the solution
of a second order cone program (SCOP) for each estimate of
NBI. It also does not utilize the structure of the measurement
matrix.

The rest of the paper is organized as follows. Section 2
presents the system model. Section 3 formulates the NBI can-
celation problem as a sparse signal estimation problem. Sec-
tion 4 presents the proposed method. Section 5 presents the
simulation results and Section 6 gives the conclusion.

2. SYSTEM MODEL

We consider a wireless ZP-OFDM system operating in the
presence of a narrow band interferer. Let N be the number of
carriers available for data transmission and M be the length
of guard interval consisting of trailing zeros with N +M =
P . Let FH

N be the N × N inverse discrete Fourier transform
(IDFT) matrix where (.)H indicates the Hermitian operation.
Mathematically, the NBI affected system is given as

y = HFzpS + xeq + n (1)



where H is the time domain channel convolutional matrix of
size P × P , Fzp is zero padding transform matrix of size
P ×N and defined as Fzp := [FN 0N×M ]H, S is the N × 1
frequency domain1 data vector while y, xeq and n are time
domain received signal, NBI signal and additive white Gaus-
sian noise (AWGN) vectors of size P × 1 each. The AWGN
noise vector is modeled as n ∼ CN (0, σ2

nI) while the time
domain interference signal, xeq, is modeled as

xeq = ΛfoHxF
H
P X̄ (2)

where Hx is the time domain channel convolution matrix of
the interferer, Λfo is a diagonal matrix that models the fre-
quency offset between the ZP-OFDM system and the NBI
signal. Each individual diagonal entry of Λfo is defined as
exp(i 2παnP ) for n = 0, 1, · · · , P − 1 where α is a random
number uniformly distributed over the interval [− 1

2 ,
1
2 ]. X̄ ,

is the r-sparse (contains only r non zero elements) NBI sig-
nal. The sparsity assumption is justified for a narrow band
interferer.

As Hx is semi definite positive Hermitian Toeplitz ma-
trix, it can be approximated to be nearly circulant for a large
enough P [6] and thus (2) can be written as

xeq = ΛfoF
H
PΛxX̄

= ΛfoF
H
PX (3)

where we observe that Λx = FPHxF
H
P is a diagonal matrix

representing the frequency domain channel of the interferer.
We define effective NBI as X := ΛxX̄ where both X̄ and X
are r-sparse. For a given support (indices of the non zero en-
tries), the effective interference signal X is complex Gaussian
with zero mean and variance σ2

x. Our aim is thus to estimate
the combined effect of the interferer channel and NBI signal,
i.e. X , as observed by the ZP-OFDM receiver.

3. FORMULATING SPARSE SIGNAL ESTIMATION
PROBLEM

Observe that H in (1) is a circulant matrix owing to the struc-
ture of ZP OFDM system [7] and therefore, can be decom-
posed as Λ = FPHFH

P where Λ is a diagonal matrix repre-
senting the frequency domain channel of the user. Transform-
ing the received signal to frequency domain yields

FPy = FPHFzpS + FPxeq + FPn

Y = ΛFPFzpS + FPxeq +N (4)

where Y , N are frequency domain received signal and AWGN
noise vectors, respectively.

The zero padded portion of the received ZP-OFDM sym-
bol (last M samples) is corrupted by ISI and NBI. In absence
of ISI, the zero padding can be used for support estimation of

1We use calligraphic notation to denote vectors in frequency domain.

the NBI source. This is achieved by equalizing the received
signal in the frequency domain, transforming it to time do-
main and selecting the last M samples. Mathematically,

STF
H
PΛ

−1Y = STF
H
PΛ

−1ΛFPFzpS +

STF
H
PΛ

−1FPxeq + STF
H
PΛ

−1N
= 0+ STF

H
PΛ

−1FPΛfoF
H
PX + n′

y′ = ΨX + n′ (5)

where ST = [0M×N IM ] is a M × P selection matrix,
y′ is the M × 1 time domain observation vector free of ISI,
Ψ := STF

H
PΛ

−1FPΛfoF
H
P is the M × P measurement ma-

trix and n′ is the M × 1 time domain colored noise vector.
Note that we can also do minimum mean square error equal-
ization in (5) instead of least squares (LS) equalization to
avoid the noise enhancement drawback of the LS equalizer.
In that case the measurement matrix would be defined as

Ψ := STF
H
PΛ

H
[
ΛΛH + σ2

nI
]−1

FPΛfoF
H
P (6)

4. MAP BASED NBI CANCELATION

We start by assuming α = 0, corresponding to no offset be-
tween the grids of the OFDM system and the NBI source and
then extend the approach for any arbitrary α. Note that α = 0
yields Λfo = I which simplifies the measurement matrix to

Ψ = STF
H
PΛ

−1 (7)

Next we find the maximum a posteriori probability (MAP)
estimate of the support and then for the chosen support, cal-
culate the linear minimum mean square error estimate of the
NBI.

Let Γ denote the set of all possible supports and X denote
a particular support of NBI, then the MAP estimate of the
support is the one that maximizes the objective function

argmax
X

p(X|y′) = argmax
X

p(y′|X)p(X) (8)

where p(X) is the prior, and hence known at the receiver while
p(y′|X) is the likelihood that needs to be evaluated. For an
NBI signal of unknown sparsity r, we have2 |Γ| =

∑rmax

r=0 (
P
r )

where |Γ| denotes the cardinality of Γ. Its evident that the
complexity of the naive exhaustive search quickly becomes
prohibitive.

As y′ is a linear function of X , so for a given support X
and observation vector y′, the NBI estimate X̂ is given as

X̂ = E[X |y′,X] = σ2
xΨ

H
X

[
σ2
xΨXΨ

H
X + σ2

nΨΨH
]−1

y′

= σ2
xΨ

H
XΣ(X)−1y′ (9)

where Σ(X) :=
[
σ2
xΨXΨ

H
X + σ2

nΨΨH
]

and ΨX is a matrix
consisting of only those columns of Ψ that correspond to the
indices of X.

2rmax is chosen such that the sparsity assumption is valid, typically
rmax < M/4.



When NBI given the support X |X is Gaussian, y′|X is
also Gaussian [8]. Assuming the receiver has knowledge of
second order statistics of the NBI source, the likelihood p(y′|X)
is evaluated as

p(y′|X) = 1

(2π)r/2det(Σ(X))
exp
(
− 1

2
y′H[Σ(X)]−1y′

)
(10)

The problems in calculating the optimum MAP solution
are i) the search space is huge (|Γ| =

∑rmax

r=0 (
P
r )) ii) it in-

volves inverting a matrix of size M × M for each support
combination and iii) its computationally expansive to repeat-
edly calculate the likelihood (10).

Next we show how structure can be used to efficiently cal-
culate an approximate MAP estimate.

4.1. Exploiting structure

The measurement matrix Ψ has a very rich structure owing to
the fact that its a partial DFT matrix. To this end, let β :=
P
M . As Ψ is a fat matrix (M < P ), its columns are linearly
dependent. However, a subset of M columns are independent
such that by collecting these M columns together, we can
form a matrix ΨM of full column rank. Particularly, if we
choose M = N

l for some integer l then it turns out that every
kth column is highly correlated to its neighboring ±(β − 1)
columns (i.e. with its 2β−2 neighboring columns) and (semi)
orthogonal to the remaining distant columns. The correlation
beyond ±k′β is small and can be neglected [9]. Based on this,
we can make a cluster of size 2β− 1 centered around the kth
column.

This rich structure of Ψ is very helpful to limit the search
space of Γ. Specifically, if we project the transpose of obser-
vation vector of (5) onto Ψ, the magnitude of the individual
entries of the resulting vector

c = y′TΨ (11)

correspond to the likelihood of the NBI support being located
in a cluster centered around it (where (.)T denotes the trans-
pose). Thus if the mth entry of c is the largest, it means the
cluster centered on the mth column of Ψ is a candidate for
the true support of X . If two clusters overlap or are close by,
they are lumped together to form a single cluster. Selecting
the largest T entries of c reduces the search space to only T
non overlapping clusters within Ψ. Thus, the matrix ΨX can
be written as a combination of T clusters as

ΨX = [ΨX1ΨXT ′ ] = [ΨX1ΨX2 · · ·ΨXT ] (12)

where Xt is the support set corresponding to the tth cluster.
This allows us to rewrite (5) as

y′ = [ΨX1ΨX2 · · ·ΨXT
]

[ X 1

X 2

...
X T

]
+ n′ (13)

The MAP estimate of the support within cluster t is obtained
by maximizing the objective function

argmax
Xt

p(Xt|y′) = argmax
Xt

p(y′|Xt)p(Xt) (14)

where |Γt| =
∑ŕ

r=0 C
(2β−1)
r , ŕ is the maximum number of

possible support within a cluster and is a design parameter.
Note that |Γt| ≪ |Γ|.

The semi-orthogonal structure of the measurement matrix
allows us to reuse calculations from one cluster to another.
Next we show how Σ(X) and Σ(X)−1 can be calculated re-
cursively exploiting the structure. From (9), we have

Σ(X) = σ2
xΨXΨ

H
X + σ2

nΨΨH

= σ2
xΨX1Ψ

H
X1

+ σ2
xΨXT ′Ψ

H
XT ′

+σ2
nΨΨH

= Σ(X1) + σ2
xΨXT ′Ψ

H
XT ′ (15)

where we observe that

Σ(X1) = σ2
xΨX1Ψ

H
X1

+ σ2
nΨΨH (16)

Using the matrix inversion lemma, the inverse can be written
as in (17). Inserting (16) in (17) and observing that prod-
uct of two semi-orthogonal clusters is approximately zero,
ΨH

X1
ΨXT ′ = ΨH

XT ′ΨX1 ≈ 0, it can be shown that

Σ(X)−1 ≈
T∑

t=1

(
σ2
xΨXtΨ

H
Xt

+ σ2
nΨΨH

)−1

(18)

Similarly it can be shown that the determinant of Σ(X) is
approximately given by

det(Σ(X)) ≈
T∏

t=1

det(Σ(Xt) (19)

The likelihood calculation can also be reduced in a similar
fashion. Let the likelihood of cluster t for the Gaussian case
be denoted by Lt given as

Lt =
1

(2π)r/2det(Σ(Xt))
exp
(
− 1

2
y′H[Σ(Xt)]

−1y′
)

(20)

then the likelihood in (10) can be approximated as

L = p(y′|X) ≈
T∏

t=1

Lt (21)

This result has far reaching effects. It shows that we can eval-
uate the likelihood in parts over individual clusters. The semi-
orthogonal structure, thus, allows us to reduces the complex-
ity of the MAP search dramatically as instead of performing
a joint search over the entire length P for the support of X ,
as in (10), we can search within each of the T clusters inde-
pendent of the other T −1 clusters, and still obtain almost the
same MAP estimate.



Σ(X)−1 = Σ(X1)
−1 − σ2

xΣ(X1)
−1ΨXT ′

[
I+ σ2

xΨ
H
XT ′Σ(X1)

−1ΨXT ′

]−1

ΨH
XT ′Σ(X1)

−1 (17)

4.2. Estimation of NBI in the presence of grid offset

So far we had assumed α = 0, i.e., perfect grid alignment
between the NBI source and OFDM system. Now we show
how to solve the general case in the presence of grid offset.
Assume the range of α is divided into 2ξ + 1 discrete levels
where ξ is some positive integer and that α can lie randomly
on any of these levels. Let qα be a vector of length P formed
by collecting the diagonal entries of Λfo, then

ΛfoF
H
P = [qα⊙ a0 qα⊙ a1 · · · qα⊙ a(P−1)] (22)

where aj is the jth column of the IDFT matrix and ⊙ denotes
the Hadamard product. Next we expand the vector X from
a vector of size P × 1 to one of size P (2ξ + 1) × 1 and
search for the most probable support. We call the new vector
X . The sensing matrix is also expanded from size M × P to
M × (P (2ξ + 1)) as

Ψ = STF
H
PΛ

−1FPA (23)

where A is given in (24) and is a P × (P (2ξ + 1)) matrix.
Quasi-orthogonality continues to apply. Thus if ai and aj
are semi-orthogonal, qα ⊙ ai and qα ⊙ aj are also semi-
orthogonal.

4.3. Data aided estimation of NBI

In data aided approach, we start by obtaining an initial esti-
mate of the NBI based on the MAP approach. Next we re-
move the estimated NBI from the received signal and get an
initial estimate of the data, Ŝ. This is done by equalizing the
resulting signal corrupted by residual NBI. If the actual data
symbol S was known at the receiver, we could simply remove
the effect of the data symbol and estimate the NBI term. Let
ω, of cardinality l, be the set of carrier indices (and hence
the data symbols) most affected by NBI3. Knowledge of ω
helps to identify the indices of data symbols most likely to be
in error. Based on the data constellation size, d, there are dl

possibilities for the received symbol Ŝωj such that

Ŝωj (i) =

{
S ′(i) i ∈ ω

Ŝ(i) otherwise
(25)

where i = 1, 2, · · · , N and j = 1, 2, · · · , dl. The correct
combination completely removes the effect of data symbol
from the received signal enabling us to detect the NBI signal.
Mathematically,

Yr = Y −ΛFPFzpŜωj (26)

3ω is known based on initial NBI estimate.

Next we define
Ψ2 := S2F

H
P (27)

where S2 = [IN 0N×M ] is a N × P selection matrix. Let
y′
r = Ψ2Yr then (26) can be written as

y′
r =Ψ2ΛFPFzp

(
S − Ŝωj

)
+Ψ2FPxeq +Ψ2N (28)

When Ŝωj = S, the first term on the right hand side would
disappear leaving the NBI term. Thus the NBI is given by the
optimal data combination Ŝ

o

ωj
that solves

argmax
ˆSωj

p(y′′|Ŝωj
) (29)

where p(.) is defined in (10) and y′′ is obtained by concate-
nating (28) and (5), i.e.,

y′′ =

[
y′
r

y′

]
(30)

Note that an erroneous initial support estimate of the NBI can
be tackled by expanding ω to include its neighboring tones.

5. SIMULATION RESULTS

We simulate an uncoded ZP-OFDM system with N = 64 data
carriers modulated with 4-QAM data symbols. The length of
zero padding is M = 16. The channel is assumed to be of
L = 13 taps and changes from one OFDM symbol to the
next. Both the location and offset of the NBI is assumed to
vary from one symbol to the next. The width of the NBI, r,
is assumed to vary from 0 to 3 according to a binomial distri-
bution. For an NBI cancelation algorithm, it is also important
to recognize those symbols which do not require NBI can-
celation. Including the r = 0 case would test the proposed
algorithm if it is able to make this distinction. Here we con-
straint the NBI to be confined to contiguous tones though the
method will work for non contiguous interference as well. All
algorithms are compared in an uncoded OFDM system so that
the performance gain due to coding does not mask the perfor-
mance of the individual algorithm. The signal to noise power
ratio (SNR) is defined as SNR = σ2

s/σ
2
n and the signal to in-

terference ratio (SIR) is defined as SIR = σ2
s/σ

2
x where σ2

s ,
σ2
x, σ2

n are OFDM signal power, interference power and noise
power respectively.

Figure 1 shows the uncoded ZP-OFDM case where per-
formance of the proposed MAP approach is compared to the
CS method, data aided MAP approach and the exhaustive
search in the presence of NBI of unknown width and SIR
= −10 dB. Results are plotted for ξ = 5 (corresponding to 11



A = [q−ξ ⊙ a0 q−ξ+1 ⊙ a0 · · · qξ ⊙ a0 · · · q−ξ ⊙ a(P−1) · · · qξ ⊙ a(P−1)] (24)
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Fig. 1. Uncoded BER comparison for various NBI cancelation
methods (SIR = −10 dB).
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Fig. 2. Comparison of normalized run time.

levels of α). The CS method does not perform well in the un-
coded case while the performance of the proposed algorithm
is comparable to that of the exhaustive search method. Figure
2 shows the normalized running time of the CS based method,
the exhaustive search and the proposed MAP method. The
proposed method requires slightly less CPU time than the
CS method at all SNR values. The runtime of the proposed
method can be further reduced by using structure to reduce
calculations for the expanded grid.

6. CONCLUSION

This paper presents a MAP approach for narrow band inter-
ference cancelation by formulating it as a sparse signal esti-
mation problem. We consider a highly sophisticated model

for the NBI signal by allowing the NBI to have a grid off-
set relative to the ZP-OFDM system and letting it change its
location and amplitude on a symbol by symbol basis. The
proposed technique exploits the inherent structure of the ZP-
OFDM system to significantly reduce the search space. The
computational complexity of the algorithm is low as many
calculations can be reused owing to the rich structure of the
sensing matrix. Further reduction in complexity is possible by
exploiting the structure for within a cluster calculations. Sim-
ulations show that the proposed method is able to perfectly
estimate and remove the interfering signal.
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