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Abstract—In this paper, we present a fast Bayesian method
for sparse signal recovery that makes a collective use of the
sparsity information, a priori statistical properties, and the
structure involved in the problem to obtain near optimal
estimates at very low complexity. Specifically, we utilize the rich
structure present in the sensing matrix encountered in many
signal processing applications to develop a fast reconstruction
algorithm when the statistics of the sparse signal are non-
Gaussian or unknown. The proposed method outperforms the
widely used convex relaxation approaches as well as greedy
matching pursuit techniques all while operating at a much
lower complexity.

I. INTRODUCTION

Compressive Sensing/Compressed Sampling (CS) is a
fairly new field of research that is finding many applications
in statistics and signal processing [1]. CS has been utilized in
numerous applications where the signal of interest is sparse
in nature, for example, peak to average power ratio reduction
in OFDM [2], [3], impulse noise estimation and cancellation
in power-line communication and digital subscriber lines
(DSL) [4], [?], magnetic resonance imaging (MRI) [6],
channel estimation in communication systems [7], ultra-
wideband (UWB) channel estimation [8], [9], and radar
design [10].

The CS problem can be set up as follows. Let x ∈ C
N

be a K-sparse signal (i.e. a signal that can be represented
by K << N coefficients over an N -dimensional space) in
some domain and y ∈ C

M be the observation vector given
by

y = Ψx+ n (1)

Here Ψ is an M × N sensing matrix that is assumed to
be incoherent with the domain in which x is sparse and n
is the complex additive white Gaussian noise CN(0, σ2

nI).
When M << N , we have an under-determined system of
equations that has infinite solutions. However, if the signal
of interest is sparse, this problem can be solved theoretically
by posing it as an �0 minimization problem. Unfortunately,
solving such an �0 minimization problem is NP-hard [11].
Thus, different sub-optimal approaches, categorized under
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Compressive Sensing, have been presented in literature to
solve this problem. In [11]-[14], it has been shown that x can
be reconstructed with high probability in polynomial time
by using convex relaxation approaches with a penalty on the
number of measurements. This is done by solving a relaxed
�1 minimization problem using linear programming instead
of �0 minimization. For �1 minimization to accurately re-
construct the sparse signal, the sensing matrix Ψ must obey
the restricted isometry property (RIP) (see [15], [16] for
details). However, convex relaxation approaches also have
some drawbacks. The linear programming technique used
to solve the �1 minimization problem makes these methods
computationally quite complex (O(M 2N3/2) when interior
point methods are used [17]). Many fast greedy/matching
pursuit algorithms [18]-[20] have been proposed to reduce
this complexity. These methods are also not able to use
any a priori statistical information (apart from sparsity
information) about the signal support and additive noise.
The a priori statistical information can be utilized to refine
the output obtained by using convex relaxation methods but
the performance will still be bottle-necked by the ability of
these methods to recover the sparse signals support. Convex
relaxation methods cannot utilize the structure present in the
sensing matrix (e.g. a partial DFT and Toeplitz matrices) as
well. In fact, they require the sensing matrix to be as random
as possible to obtain best results.

A. Motivation and Paper Organization

This paper employs a low-complexity Bayesian approach
that takes collective advantage of the a priori statistical &
sparsity information, and the structure of the sensing matrix
Ψ while pursuing a direct statistical approach. To the best
of our knowledge, this is the first paper that makes use of
the structure of the sensing matrix for sparsity recovery.
In addition, the paper also demonstrates how this approach
tackles the issues like non-Guassian prior and others stated
above.

The paper organization is as follows. The signal model is
described in Section II followed by Section III which details
the MMSE estimation of x. Section IV explains how the
structure of the sensing matrix can be used for the sparse
signal recovery in a divide and conquer manner. Section
V details the proposed sparse reconstruction algorithm. In



Section VI, the algorithm is applied to Discrete Fourier
Transform (DFT) matrix as an example. The paper ends
with numerical simulations in Section VII that compare the
performance of the proposed algorithm with other sparse
reconstruction algorithms present in literature and by our
conclusion in Section VIII.

II. SIGNAL MODEL

In this paper, we are interested in recovery a sparse vector
modelled as

x = xB � xNG

where the entries of xB are i.i.d. Bernoulli with success
probability p and the entries of xNG are drawn identically
and independently from some non-Gaussian or unknown
distribution. When the support S of x is known, we can
equivalently write (1) as

y|S = ΨSxS + nS (2)

where ΨS denotes the sub-matrix formed by columns {ψ i :
i ∈ S}, indexed by the support S.

III. MMSE ESTIMATION OF x

Our task is to obtain the optimum estimate of x given
the observation y and the sensing matrix Ψ. The MMSE
estimate of x given the observation y can be expressed as

x̂MMSE = E[x|y] =
∑
S

p(S|y)E[x|y, S] (3)

where the sum is over the possible support set S of x.
For large values of N , the computational complexity for
evaluating this expression becomes very high (as the sum
needs to be evaluated over 2N terms). The idea is to
approximate the expression in (3) in such a way that the
inherent computational complexity is reduced. Let’s start by
demonstrating how to calculate the various terms in (3).

1) Calculating E[x|y, S]: Recall that the relationship
between y and x is linear (see (1)). When xS is non-
Gaussian or when its statistics are unknown, it is difficult or
even impossible to calculate the expectation E[x|y, S]. Thus
we replace it by the best linear unbiased estimate (BLUE),
i.e.

xS = (ΨH
SΨS)

−1ΨH
Sy (4)

2) Calculating p(S|y): Using Bayes rule, we can write

p(S|y) = p(y|S)p(S)∑
S p(y|S)p(S)

(5)

Here, the probability p(S) is given by

p(S) = p|S|(1− p)N−|S| (6)

as the elements of x follow the Bernoulli process with
success probability p. Note that x is an unknown arbitrary
with support S. Therefore, given the support S, all we can
say about y is that it is formed by a vector in the subspace
spanned by the columns of ΨS, plus a white Gaussian
noise vector n. The conditional density of y given S is

proportional to the negative exponential of the projection of
y on the orthogonal complement of the span of the columns
of ΨS. It follows that the corresponding MAP metric can
be approximated by

p(y|S) ∼ exp

(
− 1

σ2
n

‖P⊥
S y‖2

)
(7)

where
P⊥

S = I−ΨS

(
ΨH

SΨS

)−1

ΨH
S (8)

is the orthogonal projector onto the orthogonal complement
of the subspace spanned by the columns of ΨS.

3) Evaluation over S: Note that the two summations
that appear in (3) and (5) need to be evaluated over all
possibilities of S (there will be 2N such sets). Instead of
this exhaustive search approach, we can limit the MMSE
evaluation over the most probable support of x, S r. The
search space would then reduce to 2 |Sr| points. There are
two techniques to limit the search space.

1. Convex Relaxation: Starting from (1), we can use
the standard convex relaxation tools [11]-[14] to find the
support of the sparse vector x. This is done by solving the
�1 minimization problem and retaining some largest P non-
zero values.

2. FBMP: A low-complexity Bayesian technique was
presented in [23] that finds the dominant support and the
MMSE estimate of x jointly by using the Gaussian prior. It
involves an intelligent greedy search over all the possible
combinations of the supports in pursuit of the dominant
ones. The algorithm starts with zero support size and selects
the best support of size one after evaluating the MAP-
Gaussian likelihood for all the N positions. The next support
of size two is then selected based on the support of size
one selected in the previous step. This greedy search is
concluded when the support of size P is reached where
P is selected such that P(S > P ) is very small.1 The above
procedure is repeated again by starting with the second
best support of size one. The algorithm performs D such
greedy searches in the same manner and performs MMSE
estimation over the reduced search space (PD supports
explored during the whole procedure). We can also make
use of other greedy algorithms [18]-[20].

IV. A STRUCTURE BASED BAYESIAN RECOVERY

APPROACH

Neither of the two methods mentioned in Section III-3
make use of the structure of the sensing matrix Ψ. Let
us investigate how this structure can help us substantially
reduce the computational complexity involved in evaluating
the MMSE estimate. While in most CS literature the sensing
matrix Ψ is assumed to be drawn from a random constella-
tion [11]-[14], in most signal processing and communication

1As S is a binomial distribution ∼ B(N, p), it can be approximated by
a Gaussian distribution ∼ N(Np,Np(1−p)) when Np > 5. Thus in this

case, P(S > P ) = 1
2
erfc

(
P−N(1−p)√
(2Np(1−p))

)
[23].



applications this matrix is highly structured. Thus, Ψ could
be a partial DFT matrix (for example in OFDM applications
including PAPR reduction [2], [3], and impulse noise can-
cellation in DSL [4], [?]) or a Toeplitz matrix (encountered
in many convolution applications [7] and UWB [8], [9]) or
a DCT matrix (as in image compression [24]).

Since Ψ is a wide matrix (M << N), it is rank-
deficient and thus its columns are not orthogonal. However,
the M orthogonal columns that span the columns space of
Ψ can usually be identified, for instance, in impulse noise
cancellation in DSL and the above mentioned applications.
The remaining N − M columns of Ψ group around these
orthogonal columns to form semi-orthogonal clusters (see
Section VI for an example, see also [9], [5], and [25]).

Now we discuss how to obtain the MMSE estimate of x
using the orthogonality of clusters. The MMSE estimate of
x in (3) can be written as

x̂MMSE =

⎡
⎢⎢⎢⎣

x̂1

x̂2

...
x̂P

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

E[x1|y]
E[x2|y]

...
E[xP |y]

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

∑
S p(S|y)E[x1 |y, S]∑
S p(S|y)E[x2 |y, S]

...∑
S p(S|y)E[xP |y, S]

⎤
⎥⎥⎥⎦ (9)

Let So be a possible support of x. The columns of ΨS in
(2) can be grouped into semi-orthogonal columns as follows

ΨSo = [ΨS1 ΨS2 · · · ΨSP ]

Due to orthogonality, we have

ΨH
Si
ΨSj � 0

This can be used to show that (see equations (10)-(14) on
the next page)

E[x|y, S] =

⎡
⎢⎢⎢⎣

E[x1|y, S1]
E[x2|y, S2]

...
E[xP |y, SP ]

⎤
⎥⎥⎥⎦ (15)

Due to orthogonality, we can also show that the likelihood
p(y|S) can be factored as (see Appendix for details)

p(y|S) = exp

(
P − 1

σ2
n

‖y‖2
) P∏

i=1

p(y|Si) (16)

from which we can omit the common factor,
exp

(
P−1
σ2
n
‖y‖2

)
. This decomposition coupled with a

similar decomposition

p(S) =

P∏
i=1

p(Si) (17)

Begin

Correlate observation vector y with
the sensing matrix Ψ

Form P semi-orthogonal clusters of
length L each around the positions

with high correlation values

Process each cluster independently
and in each cluster, calculate the
likelihoods for supports of size

|S| = 1, 2, · · · , Pc

Find the dominant supports of size
|S| = 1, 2, · · · , Pc for each cluster

Find E[x|y, S] for dominant support
of each size

Evaluate x̂MMSE using equation (18)

End

Fig. 1: Flowchart of the OC algorithm

together with (15) allows us to eventually show that

x̂MMSE =
∑
S

p(S|y)E[x|y, S]

=

⎡
⎢⎢⎢⎣

∑
S p(S|y)E[x1|y, S]∑
S p(S|y)E[x2|y, S]

...∑
S p(S|y)E[xP |y, S]

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

∑
S1

p(S1|y)E[x1|y, S1]∑
S2

p(S2|y)E[x2|y, S2]
...∑

SP
p(SP |y)E[xP |y, SP ]

⎤
⎥⎥⎥⎦ (18)

In other words, orthogonality allows us to approach the
problem of sparse reconstruction in a divide and conquer
manner.

V. ORTHOGONAL CLUSTERING (OC) ALGORITHM FOR

SPARSE RECONSTRUCTION

We summarize the main steps of the proposed OC algo-
rithm for sparse signal recovery in Figure 1. In the following,
we discuss these steps in detail.

A. Determine dominant positions

Consider the model given in (1). By correlating the
observation vector y with the columns of the sensing matrix



E[x|y, S] =

⎡
⎢⎢⎢⎣

E[x1|y, S]
E[x2|y, S]

...
E[xP |y, S]

⎤
⎥⎥⎥⎦ (10)

=

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

ΨH
S1

ΨH
S2

...
ΨH

SP

⎤
⎥⎥⎥⎦
[
ΨS1 ΨS2 · · · ΨSP

]
⎞
⎟⎟⎟⎠

−1 ⎡
⎢⎣

ΨH
S1

...
ΨH

SP

⎤
⎥⎦y (11)

�

⎡
⎢⎢⎢⎣

(ΨH
S1
ΨS1)

−1 0 · · · 0

0 (ΨH
S2
ΨS2)

−1 · · · 0
...

. . .
. . .

...
0 0 · · · (ΨH

SP
ΨH

SP
)−1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

ΨH
S1

ΨH
S2

...
ΨH

SP

⎤
⎥⎥⎥⎦y (12)

=

⎡
⎢⎢⎢⎣

(ΨH
S1
ΨS1)

−1ΨH
S1
y

(ΨH
S2
ΨS2)

−1ΨH
S2
y

...
(ΨH

SP
ΨSP )

−1ΨH
SP

y

⎤
⎥⎥⎥⎦ (13)

=

⎡
⎢⎢⎢⎣

E[x1|y, S1]
E[x2|y, S2]

...
E[xP |y, SP ]

⎤
⎥⎥⎥⎦ (14)

Ψ, we can determine the dominant regions to which the
support of x is most likely to belong.2

B. Form semi-orthogonal clusters

Select the index with the largest correlation and form
a cluster of length L around it (The cluster length L can
be estimated by investigating the correlation between the
columns of the sensing matrix [25]). Continue in a similar
fashion for the remaining large indices untill P clusters are
formed. If a particular index is already present in the clusters
formed by the previous indices, it is discarded and the next
dominant index is considered.

C. Find the dominant supports and their likelihoods

Let L be the cluster size and let Pc denote the maximum
possible support size in a cluster3. For each of the P clusters,
find the most probable support of size |S| = 1, 2, · · · , Pc

by calculating the likelihoods for each size (using (7)).
Each cluster is processed independently due to the semi-
orthogonality between clusters. The expected value of x
given y can also be evaluated using (4) for the dominant
support of each size.

2The dominant support regions could also be found by employing some
convex relaxation approach and retaining the support corresponding to the
dominant values.

3Pc is evaluated in a way similar to P (see [25] for further details).

D. Evaluate the estimate of x

Once we have the dominant supports for each cluster, their
likelihoods, and E[x|y, S], the MMSE estimate of x can be
evaluated using equation (18).

VI. PARTIAL DFT MATRIX: AN EXAMPLE

In the preceding sections, we demonstrated how semi-
orthogonality allowed us to calculate the MMSE estimate
of the sparse signal in a divide and conquer manner. It
turns out that we can reduce the complexity even further by
utilizing other structural properties of the sensing matrix. We
demonstrate this by considering the case when the sensing
matrix is a partial DFT matrix, i.e.

Ψ = SF

where S is an M×N selection matrix consisting of all zeros
and exactly one entry equal to 1 per row and F denotes the
N ×N unitary DFT matrix given by

[F]a,b =
1√
N

e−j2πab/N

with a, b ∈ {0, 1, . . . , N − 1}. To impose the desired semi-
orthogonal structure, the sensing matrix must consist of a
continuous band of sensing frequencies (as opposed to the
random sensing matrix required in general in CS). This form
of sensing matrix is encountered in many OFDM problems
[2], [3], [5], [25]. The correlation between two columns in
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Fig. 2: The 500th column has high correlation with its neigh-
bours only (a) Correlation with all columns (b) Correlation
with neighbouring columns

a partial DFT sensing matrix can be shown to be

ψH
kψk′ =

⎧⎨
⎩

1, (k = k′)∣∣∣∣ sin(π(k−k′)M/N)
M sin(π(k−k′)/N)

∣∣∣∣ , (k �= k′) (19)

which is a function of the difference (k − k ′)mod N ,
so it suffices to consider correlation of one column with
the remaining ones. Figure 2 illustrates this correlation for
N = 1024 and M = 256. It can be seen that the selected
column (500th in this case) has high correlation only with
its immediate neighbours and is almost uncorrelated with
other columns. This implies that a cluster formed around a
particular column will be almost orthogonal to the clusters
formed around the other farther columns.

A. Reducing the Computational Complexity

In this subscetion, we will demonstrate how the structure
of the partial DFT sensing matrix enables us to reduce the
computational complexity in the following two dimensions.

1) From one cluster to the other: For the case when
the sensing matrix is a partial DFT matrix, we show that
different clusters are very similar. In fact, one cluster can be
obtained from the other by a simple modulation operation.
This enables us to reduce the complexity involved in the
likelihood calculations across clusters.

To this end, let ψ1, ψ2, · · · , ψL denote the sensing
columns associated with the first cluster. Then, it is easy to
show that the corresponding columns for the ith cluster of
equal length that is 	i columns away are

ψ1 �ψ�i
, ψ2 �ψ�i

, · · · , ψL �ψ�i

where ψ�i
is some constant vector that depends only on the

distane 	i between the two columns.4 Now assume that we
calculate the projection matrix P⊥

Ω1
for a set of columns Ω1

in the first cluster and let Ωi denote the same set of columns
chosen in the ith cluster (i.e. a distance 	i away). For the
set of columns Ωi in the ith cluster, the projection matrix

4For example, if we use the last M columns of sensing matrix, ψ�i
=

exp
(
− j2π(N−(M−k))

N
�i

)
with k = 0, 1, · · · ,M − 1.

in (8) can be written as

P⊥
Ωi

= I− Ωi

(
ΩH

i Ωi

)−1
ΩH

i

= I− (Ω1 �A�i)[
(Ω1 �A�i)

H
(Ω1 �A�i)

]−1

(Ω1 �A�i)
H

where AΔi is a matrix consisting of L identical columns
ψΔi

, i.e. AΔi =
[
ψΔi

ψΔi
· · · ψΔi

]
. Thus,

P⊥
Ωi

= I− (Ω1 �A�i)
(
ΩH

1Ω1

)−1
(Ω1 �A�i)

H (20)

Let’s see how this helps to write ‖P⊥
Ωi
y‖2 in terms of P⊥

Ωi
,

‖P⊥
Ωi
y‖2 = yH [I− (Ω1 �A�i)(

ΩH
1Ω1

)−1
(Ω1 �A�i)

H
]
y

= ‖y‖2 − (yH �ψT
�i

)

(Ω1

(
ΩH

1Ω1

)−1
ΩH

1 )(ψ
∗
�i

� y)

= ‖y �ψ∗
�i

‖2P⊥
Ω1

(21)

In other words, to calculate the likelihood for a particular
set of columns Ωi of the ith cluster, we can re-use P⊥

Ω1

(evaluated for the same set of columns of the first cluster)
and just modulate y by ψ∗

�i
.

2) Within a cluster: Consider a single cluster for which
we need to calculate the likelihoods for the supports of size
|S| = 1, 2, ..., Pc. We proceed to evaluate these likelihoods
in an order recursive manner i.e. we utilize the computations
for |S| = 1 to evaluate the likelihood for |S| = 2 and so on.
Recall that evaluating the likelihood involves computing the
following norm

‖y‖2P⊥ = ‖y‖2 − yHΨ
(
ΨHΨ

)−1

ΨHy

where Ψ corresponds to the candidate sensing matrix. We
would like to compute this norm recursively. When Ψ
consists of |S| columns i.e. it is of size M × |S| we use
the notation Ψ|S| instead and the corresponding likelihood
is given by

L|S| = exp

(
− 1

σ2
n

{
‖y‖2 − yHΨ|S|

(
ΨH

|S|Ψ|S|
)−1

ΨH
|S|y

})

Now we add another column to Ψ |S| to obtain Ψ|S|+1 =[
Ψ|S| ψi

]
and we calculate the corresponding likelihood

L|S|+1 in a recursive manner from the previous likelihood
L|S|. This approach to calculate the likelihood in recur-

sion hinges upon calculating the inverse term Σ |S|+1
Δ
=

(ΨH
|S|+1Ψ|S|+1)

−1 recursively. To this end, note that using
the block inversion formula, we can relate Σ |S|+1 to Σ|S|
as

Σ|S|+1 =

[
Σ|S| + 1

ξi
ωiω

H
i − 1

ξi
ωi

− 1
ξi
ωi

1
ξi

]
(22)

where
ωi

Δ
= Σ|S|(Ψ

H
|S|ψi) (23)
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and

ξi = ‖ψi‖2 + (ψH
i Ψ|S|)Σ|S|(Ψ

H
|S|ψi) (24)

= ‖ψi‖2 + ωH
i (Ψ

H
|S|ψi) (25)

Following this recursion, we can express L |S|+1 as shown
in equation (26) where in the ith step of recursion δi is the
part which needs to be calculated.

VII. SIMULATION RESULTS

In this section, the performance of the proposed OC algo-
rithm is compared with some popular sparse reconstruction
techniques including convex relaxation methods [12], OMP
[18], and FBMP [23]. The parameters for these algorithms
are set in such a way that they perform to the best of
their abilities. For a fair comparison, we perform MMSE
refinement to the output of convex relaxation methods
and OMP. The parameters used in all the simulations are
N = 800, M = N

4 = 200, and p = 10−2 (unless
stated otherwise). Figure 3 compares the Normalized Mean
Square Error (NMSE) of the algorithms for the case when
sensing matrix is a DFT matrix. In FBMP implementation,
the number of branches to explore (D) is set to 10 and
it is allowed to estimate the hyper-parameters using its
approximate maximum-likelihood estimator (with E set to
5)[23]. It can be seen that the proposed algorithm easily
outperforms OMP and FBMP while �1 minimization method
performs quite close to it (but at the cost of much higher
complexity). OC easily beats FBMP and �1 minimization
method in execution time as demonstrated in Figure 4.

VIII. CONCLUSION

In this paper, we present a fast Bayesian sparse recon-
struction algorithm which we call Orthogonal Clustering
(OC) that uses the sparsity, non-Gaussian (or unknown)
prior, and the structure of the sensing matrix in a collective
manner. Two unique aspects of the paper are 1) its ability
to deal with non-Gaussian prior (or prior with unknown
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statistics) in a Bayesian framework and 2) the ability to
use the structure of the sensing matrix for drastic reduction
in complexity of sparse reconstruction algorithm. The paper
focussed on the partial DFT matrix to illustrate how OC
works and its superior performance compared to the popular
sparse recovery algorithms present in literature (see [25]
for other examples and for extenstion of OC to the case
of Gaussian prior).

APPENDIX: PROOF OF EQUATION (16)

To prove equation (16), we start from the likelihood (7)
which involves the orthogonal projector P⊥

S given by

P⊥
S = I−ΨS

(
ΨH

SΨS

)−1

ΨH
S (27)

We assume for simplicity that ΨS consists of two clusters.
Thus,

ΨS = [ΨS1 ΨS2 ]

In this case, the inverse involved in (27) is given by

(
ΨH

SΨS

)−1

=

([
ΨH

S1

ΨH
S2

] [
ΨS1 ΨS2

])−1

=

[
ΨH

S1
ΨS1 ΨH

S1
ΨS2

ΨH
S2
ΨS1 ΨH

S2
ΨS2

]−1

As ΨS1 and ΨS2 are almost orthogonal, (28) results in a
block diagonal matrix given by

(
ΨH

SΨS

)−1

�
[

ΨH
S1
ΨS1 0

0 ΨH
S2
ΨS2

]−1

�
[

(ΨH
S1
ΨS1)

−1 0

0 (ΨH
S2
ΨS2)

−1

]



L|S|+1 = exp

(
− 1

σ2
n

[
‖y‖2 − yHΨ|S|+1Σ|S|+1Ψ

H
|S|+1y

])

= exp

(
− 1

σ2
n

[
‖y‖2 − yHΨ|S|Σ|S|Ψ

H
|S|y

])

exp

(
− 1

σ2
n

[
1

ξi
|(yHΨ|S|)ωi|2 − 2

ξi
Re{(yHψi)ω

H
i (Ψ

H
|S|y)}+

1

ξi
|yHψi|2

])

= L|S| exp

(
− 1

σ2
n

[
1

ξi
|(yHΨ|S|)ωi|2 − 2

ξi
Re{(yHψi)ω

H
i (Ψ

H
|S|y)} +

1

ξi
|yHψi|2

])
︸ ︷︷ ︸

(26)

δi

Substituting this in (27) yields

P⊥
S = I−ΨS1(Ψ

H
S1
ΨS1)

−1ΨH
S1

−ΨS2(Ψ
H
S2
ΨS2)

−1ΨH
S2

= −I+
(
I−ΨS1(Ψ

H
S1
ΨS1)

−1ΨH
S1

)

+
(
I−ΨS2(Ψ

H
S2
ΨS2)

−1ΨH
S2

)

= −I+P⊥
S1

+P⊥
S2

Incorporating this result in the MAP-metric (7) yields

p(y|S) = exp

(
1

σ2
n

‖y‖2
)
exp

(
− 1

σ2
n

‖P⊥
S1
y‖2

)

exp

(
− 1

σ2
n

‖P⊥
S2
y‖2

)

= exp

(
1

σ2
n

‖y‖2
)
p(y|S1)p(y|S2) (28)

which can be written in general form for P clusters as

p(y|S) = exp

(
P − 1

σ2
n

‖y‖2
) P∏

i=1

p(y|Si) (29)
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