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Abstract—The paper addresses the problem of channel esti-
mation in Impluse-Radio Ultra-Wideband (IR-UWB) communi-
cation system. The IEEE 802.15.4a channel model is used where
the channel is assumed to be Linear Time Invariant (LTI) and
thus the problem of channel estimation becomes the estimation
of the sparse channel taps and their delays. Since, the bandwidth
of the signal is very large, Nyquist rate sampling is impractical,
therefore, we propose to estimate the channel taps from the
sub-sampled versions of the received signal profile. We adopt
the Bayesian framework to estimate the channel support by
incorporating the a priori multipath arrival time statistics. In
the first approach, we adopt a two-step method by employing
Compressive Sensing to obtain coarse estimates and then refine
them by applying Maximum A Posteriori (MAP) criterion. In
the second approach, we develop a Low-Complexity MAP (LC-
MAP) estimator. The computational complexity is reduced by
identifying nearly orthogonal clusters in the received profile and
by leveraging the structure of the sensing matrix.

I. INTRODUCTION

Ultra-wideband (UWB) radio is a fast emerging technology
with uniquely attractive features in wireless communications,
networking, radar, imaging and positioning systems [1].
Conceptually, UWB is characterized by a transmission with
an instantaneous spectrum in excess of 500 MHz, or, a
fractional bandwidth of more than 20%. The Impulse-Radio
Ultra-wideband (IR-UWB) communications utilize low duty
cycle pulses to transmit data over the wireless channel. The
small pulse duration which is on the order of nanoseconds
implies large bandwidth.

UWB communication systems offer several advantages
which include high data rates, high multipath resolution, low
transmission power and simple transmitters. These systems
are primarily envisioned for very high data rates indoor
applications. There are several challenges that accompany the
advantages of UWB communications. The Nyquist sampling
frequency for UWB signals is prohibitively high. In addition,
the transmitted energy is distributed over a large number
of multipath components (MPCs). At the receiver, these
MPCs need to be estimated accurately to capture sufficient
energy for successful communications. Therefore, the channel
estimation problem in IR-UWB becomes an important and
challenging task and several approaches have been considered
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for this problem.

In [2], the Maximum Likelihood (ML) criterion is applied
to estimate the MPCs of a UWB transmitted pulse with
Nyquist rate sampling. Symbol-long samples are used for
both data-aided and non-data-aided ML estimation of the
UWRB channel in [3]. In [4] and [5], the authors use a pair of
successive symbol long segments at the receiver and perform
correlation to estimate the timing. In [6], the repetition pattern
of the pulses is exploited by working with the second order
statistics of the received signal to estimate the timing and
perform synchronization at the receiver. In [7] the authors
estimate the channel’s Fourier co-efficients and use them
to estimate the MPCs delays. Finite Rate of Innovation is
employed in [8] and [9] for developing a low-complexity
UWB channel estimator in the frequency domain, but there
are no guarantees to avoid the potential ill-conditioning. The
methods in [4]-[9] use sub-Nyquist symbol-rate sampling but
are not optimal for parameter estimation and do not utilize
any statistical information of the channel.

The received UWB signal profile contains a number of finley
resolvable multipath components which gives it multipath
sparsity and this makes the application of Compressive
Sensing (CS) attractive. Thus, [10] applied compressive
sensing for the first time to the UWB channel estimation
problem. It basically reconstructs the received signal from the
random samples but does not estimate the channel parameters.

This paper proposes a channel estimation algorithm that
differentiates itself from the algorithms mentioned above
as it is (1) low-complexity, (2) operates at sub-Nyquist
rates and (3) makes optimal use of the channel statistics.
As our simulations show, it beats other approaches both in
performance and complexity. Specifically, we decompose the
channel estimation problem into two parts: (¢) estimation of
the channel support (i.e. MPCs delays), followed by, (ii)
estimation of the support co-efficients (i.e. MPCs amplitudes).
First, we propose Compressive Sensing MAP (CS-MAP)
estimator where we perform coarse estimation of the UWB
channel in a compressive sensing framework and then refine
the estimates using the MAP criterion. Second, we develop
a Low-Complexity MAP (LC-MAP) estimator based on the
sparsity of the received signal profile and the structure of the
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sensing matrix.

This paper is organized as follows: We present the UWB
channel model and its parameters in Section II-A and our
formulation of the IR-UWB channel estimation problem in
Section II-B. In Section III we present the CS-MAP and
LC-MAP estimation algorithms. Section IV discusses the
simulation results and finally Section V concludes the paper.

II. UWB COMMUNICATION MODEL
A. IR-UWB Channel

In an IR-UWB communications system, data is transmitted
by sending very short duration low duty cycle pulses. These
pulses have periods on the order of nanoseconds. When the
transmitted pulse travels through the channel it gets delayed
and attenuated. Since the bandwidth is very large, many
MPCs are resolvable at the receiver. In order to estimate the
channel, the receiver needs to estimate the delays and the
attenuations of the MPCs. The channel is modeled as the finite
impulse response (FIR) filter and so the MPCs’ delays and
attenuations correspond to the locations of the filter taps and
their coefficients, respectively. Mathematically speaking, the
received signal profile is given by the following,

r(t) = g(t) * h(t) + w(?t) )]
L—1

gt —m) + w(t) 2
=0

where L is the number of MPCs, g(¢) is the transmitted pulse
which is shaped as second derivative of the Gaussian pulse,!
h(t) is the channel impulse response and * denotes linear
convolution. In Eq. (2), a; denotes the gain and 7; denotes
the delay of the I*" path while w(t) is the additive noise at
the receiver which is assumed to be white Gaussian (AWGN).

Due to the large bandwidth of the signal, the small-
scale fading co-efficients, «;’s, are modelled as Nakagami
distributed in the IEEE 802.15.4a model [11]. Furthermore,
the UWB channel impulse response (CIR) has been found
empirically to exhibit a clustered structure [12]. The number
of clusters is an important parameter and is modelled as
Poisson-distributed in [11] whereas the arrival of the clusters
and the paths within a cluster are modelled as Poisson
processes. This implies that if L MPCs occur in a given
duration of time, they are uniformly distributed. The rate
of arrival of the MPCs within a cluster, A, is given in [11]
for the different Line-of-Sight (LOS) and non Line-of-Sight
(NLOS) environments. Therefore, the probability of a path
occuring in a time bin of small duration, d;, is given by Ad;.
Thus the occurance of a single MPC in a bin can be assumed
to be a Bernoulli trial, with probability of success p, = Ad;
[13]. This assumption is valid if the bin duration, d;, is small
enough such that it either contains exactly one or no MPC.

ISecond and fifth derivatives of the Gaussian pulse are generally used in
IR-UWB systems since their spectrum follows the FCC specifications.

B. Matrix Model Formulation

Consider the signal profile in Eq. (2), which we would like
to express in matrix form. We can represent r(t) using its
Nyquist rate (Fv) samples. Thus, the samples are taken at
every 0y = ﬁ seconds which is much less than the pulse
duration 7,; and we can write,

L—1
r(ndy) =Y cug(ndy — 1AS;) + w(nd;) 3)

1=0

L-1
r(n) = Z arg(n —IA) +w(n) 4)

1=0
where we assume that the delays 7;’s can be represented as
integral multiples of d¢, i.e. 7 = [Ad; (A is the amount

of the basic shift of the pulse as shown in Eq. (6) further
ahead) and where we have dropped §; from the argument
(4) for notational convenience. The number of multipath
components L is generally large but only the L,,,, strongest
MPCs capture the significant portion of the transmitted signal
energy [14]. This leads to a practical Selective Rake Receiver
implementation where estimates of only L,,., 7’s and the
corresponding o’s are required.

Now, while we can represent r(¢) using its Nyquist
rate samples, we sub-sample it at a lower rate pFy = %FN
where M < N. We represent this in the matrix form as,

y=Ya+w %)
where

g(n—A)
gn+1—-A)

g(n— NA)
g(n+1—NA)

gn+ (M —1)—NA)

(6)
Note that in (5) y is the M x 1 received vector, and w is the
M x 1 AWGN vector with zero-mean and M x M covariance
matrix C,, = Nyl. The vector « is the N x 1 sparse channel
parameter vector with its active elements at the channel delays.
We further decompose ¢ as, & = a ® a (® denotes element
by element multiplication) where « is an N x 1 binary vector
that represents the support of « i.e., & = supp(a)?, and a is
an N x 1 vector of the amplitudes of oc where the amplitudes
are zero except at the active locations of a; we collect these
non-zero amplitudes in the vector ao. Now, if we set A =
diag(c)?, then we can rewrite eq. (5) as

y=VPAa+w (N

g(n+(M—-1)—A)

With this formulation, the estimation of the 7’s and a’s of
Eq. (4) translate into the estimation of the vectors o« and
aq respectively, i.e., the estimation of the location of active
elements of @ and the corresponding amplitudes.

2supp(cx) is a binary vector having elements as 1’s and 0’s where a 1
indicates that there is a non-zero element at the same location in cx.

3diag(c) is a diagonal matrix formed by placing the elements of v along
its diagonal.
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III. CHANNEL ESTIMATION

The formulation of the last section allows us to decompose
the channel estimation into two parts. Once the support vector
« is estimated, the amplitudes vector a,, corresponding to that
support is estimated using Least-Squares (LS)*,

dn, = (THw,)'wly 8)

where W, represents the sub-matrix of ¥ consisting of the
columns indicated by the active elements of a.

Now, we present the estimation of the channel support
in a Bayesian Framework, where « is the unknown random
vector with a known prior probability distribution. Let R be
the set consisting of all 2V possible support vectors o. We
need to search for the best estimate of o over the entire
set N. In our first method we reduce this search space by
using CS and in the second method we attempt to find
the low-complexity MAP estimate by jointly exploiting the
sparsity of y and the structure of the matrix W. In the
following, we assume that the start of the received signal
profile, i.e., the location of the first multipath component, is
known. Therefore our task is to estimate the support of the
remaining MPCs.

A. Maximum A Posteriori (MAP) Based Support Estimation

In order to find the MAP estimate of the support, we need
the pdf p(a|y) which is given using the Baye’s Rule as,

p(y, @)

plaly) == ®
_ p(y,as]a)p(a) (10)
p(y)

The prior p(a) is to calculate since the entries of « are
independent Bernoulli trials, with P(a; = 1) = pp and
Pla, = 0) = (1 —pp) for i = 1,...,N (see Sec. II-A).
Therefore,

pla) = py*!°(1 — py)N el (1

The vector a, is non-Gaussian and therefore, the joint prob-
ability distribution given by p(y,aq|a) is difficult to obtain
in a closed form. We assume the vectors a5 and o to be
independent, and since we are interested in estimating the
support vector o, we consider a, as the nuisance parameter
and inegrate it out to obtain the likelihood as,

p(y,aqla) = p(ylaa, a)p(aqs)

+o0 +oo
/ DY, 2 ) dag = / P(¥ |20, 0)p(ag)dag

. = p(_ylg)

The MAP estimate of « is now given by the following,

Q) ap = arg glggp(ylg)p(g) (12)

“4In the abscence of any a priori statistics about a, LS is the best we can
do.

For a given support vector cx, we can say that the received
vector y lies in the subspace spanned by the columns of ¥,
plus an AWGN vector w. Thus, the orthogonal projection
of y onto the orthogonal complement of ¥, is Gaussian.
Specifically, the vector Hi,ay is Gaussian where Héa is the
projection matrix onto the orthogonal complement of W, i.e.

-1
My, =1— ¥, [\Pgwg] ol (13)
Therefore, we can approximate the likelihood p(y|a) as
1o 2)
pyla)ocexp | ———|llg, y (14)
(vl exp (- 53 18, 1

Substituting (11) and (14) in (12), we see that we can find the
MAP support estimate by maximizing the log-likelihood

llello
1
- ) o IMeayl3 (19)

& =argmax In
MAP PR <1 B

where from (13),
-1
Mg, yI3 = lvl3 +y" %o [ehwa] iy  (16)

B. Compressive Sensing based MAP (CS-MAP) Estimation

The challenge in (15) is that we need to maximize the
likelihood over the entire set N which is computationally
very complex. Therefore, in the following we employ CS
for coarse estimation to reduce the search space. From CS
point of view [10], the uniformly sub-sampled matrix ¥
in the under-determined system of Eq. (5) is the dictionary
matrix composed of atoms - the linear shifted versions of the
discretized pulse g(n). Since the received UWB signal y is
made up of a linear superposition of only L atoms of the
dictionary and L < N, therefore the vector o is sparse and
CS can be applied to reconstruct o from y as follows:

Qo = argmin||aflp st y=P«
[

This is a combinatorial problem. Therefore, its convex
relaxation where the [y norm is replaced by the [; norm
is employed which lends itself to linear programming
implementation [15]. Alternatively, greedy algorithms can
also be used for reconstruction which are computationally
more efficient but incur further approximations leading to
larger reconstruction errors.

The CS based channel support estimate is &, = supp(éics).
In order to refine the CS estimates, we retain the support
vector &, corresponding to the L.s > Lq, largest entries
of é&.s; and apply the MAP criterion. Thus the CS-MAP
support estimate is given as,

llexllo
Qcs_map = argéneagi In <1 fbpb> —ﬁllﬂéng%

an
where R* represents the set consisting of all the 27 possible
combinations of the columns of W4+ . The computational
complexity could still be high dependfng upon the value of
L.s and the reconstruction method.
We note that the CS reconstruction is performed with the
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objective of having the sparsest representation of the received
signal in the dictionary but the sparsest estimate need not be
a good estimate of the true channel support. The CS-MAP
is only an approximation of the MAP estimator as it relies
on the initial CS estimates and it can only perform well if
these initial estiamtes are good. We tackle this drawback in
the next sub-section where we show how the rich structure of
the sensing matrix allows us to perform true MAP estimation
(i.e. maximize (15)) with low complexity.

C. Low-Complexity MAP (LC-MAP) Estimation

The sensing matrix ¥ in Egs. (5)-(7) is rich in structure. It
is not only Toeplitz but is a banded diagonal matrix. Let |g]
denote the length of the basic pulse g(n) at Nyquist rate, then
for a given sub-sampling ratio p the bandwidth of the matrix
W is given by 8 = |g|u. This implies that

H _ 07
Vi = {f(li o

where 1, is the i'" column of ¥ i.., the columns that are
distant enough are orthogonal. Therefore we can collect the
columns of ¥ to form a number of mutually orthogonal
clusters of width s where s is an integer. We correlate
the received vector y with the columns of W to identify
the location and width of these clusters, as shown in Fig.
1. We select s for each of these nearly orthogonal clusters;
this technique is refered to as orhtogonal clustering (OC).
A similar approach involving FFT matrix is adopted in [16]
(see also [17] for more details). For ease of calculations, but
without loss of generality, we assume the same s for every
cluster and thus each cluster has a width of s3. We remark
here that due to the multipath sparsity, only a few of these
clusters are active (see Fig. 1).

li —j| > B

Y (18
li—jl <8 )

0.2

L

—0.05

Correlation Coefficient

—0.1bF

-0.15

200 400 600 800 1000 1200 1400 1600 1800
Column Index

Figure 1. Correlation of the Received vector y with Columns of ¥ Showing
Orhogonal Clustering, at SNR = 20 dB and px = 1/4

If for a certain received vector y, C' orthogonal clusters are
identified after correlation, then, we can express ¥, in a block
matrix form as

T, =0 ©,..0¢ (19)

where ©; stands for the i*" cluster. Now we need to determine
which columns of ®; are active. Since, the ®,’s are orthog-
onal, the inverse term that appears in Eq. (16) becomes the
inverse of the block diagonal matrix,

(@{161)71 0 0
0 (6562)71
- o o (20)
0 : ... (®Hec)!

Moreover, if we select the same set of active columns in @4
and ©,, then it is easy to show that

(©1'01)' = (07@,) ' =--- = (©ec)”" (@

since in this case the @, is simply a shifted version of ®;
and where a maximum of only (28 + 1) computations are
required for (@fl ©®,) as implied from (18). Furthermore, due
to orthogonal clustering (16) is decomposed as follows:

Mg @yl3 =yl +y ' He,y + - +y' ey  (22)

where for r =1,2,...,C,

lle, = ©,[070,] ' (23)

Moreover, from (21) we observe that only a single matrix
inversion is required in Eq. (22). Now, for a certain received
vector y the MAP metric in Eq. (15) can be evaluated for all
a € XN from only a few computations. Specifically, all we need
to compute is the energy of y and the N correlations: y 1,
fori=1,...,N. In this way we determine the MAP estimate
of the channel support where the objective is to find the most
probable channel support for the observed signal profile. This
estimator is presented in Eq. (15) which we reproduce below:

llello
1%3 1 1 2
| 24

Qprap = ArgMAX In <
In evaluating the above we make use of the (20) and (22)
to perform the maximization on each of the C clusters
independently and obtain the Low-Complexity Maximum A

Posteriori (LC-MAP) estimate of the true channel support.

For a cluster duration of 6. = (sf X d;) seconds the
expected number of paths is 6.\ and the probability of having
k paths in a single cluster is given by the Poisson distribution

(6A)F exp™ (0N
k!

We restrict the maximum number of paths in a single cluster,
ke, to be such that P.(k.) < e, where ¢ is arbitrarily small.
For a certain cluster ®, we compute the metric in eq. (24)
for all @ with ||afo = 1,2,..., k.. In doing so, and when
moving from |allo = ! to ||aflo = (I + 1), we can make
use of the Order Recursive approach as presented in [17] to
further reduce the computations. Finally we note here that, the
complexity of CS estimation based on convex relaxation using
I, minimization is O(M?N?/?) [18] and that of our LC-MAP
estimator is only O(M Nk./5).

Pe(k) = (25)
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IV. SIMULATIONS AND RESULTS

In our simulations the channel impulse response h(t) was
generated according to the IEEE 802.15.4a Indoor Residential
LOS model. The second derivative of the Gaussian pulse with
Ty = 1 nanosecond was generated as the IR-UWB signal and
convolved with h(t). This signal has a 3 dB bandwidth of
4 GHz and consequently the Nyquist rate sampling period
of 0.125 nanosecond. The simulations were run for 1000
realizations of the channel in the prescence of AWGN and
the normalized root mean square error (NRMSE), expressed
as number of samples, in the estimation of a@ was calculated
for different values of SNR where the normalization was
performed with respect to the Nyquist rate sampling period.
The comparison of CS, CS-MAP and LC-MAP estimation
methods for estimating 10 MPCs at = 1/2 and p=1/4 is
shown in Fig. 2. CS-MAP performs little better than CS but
LC-MAP performs better than both CS and CS-MAP over the
whole SNR range. Furthermore, LC-MAP is computationally
very efficient as shown in Fig. 3, where the mean computation
times of the three methods are compared.

‘ <-CSatu=1/4
~-CSaty=1/2
+-CS-MAP atp = 1/4] ]
IR o CS-MAP at = 112
u S e <-LC-MAPatp =1/4| |
) ) ~-LC-MAP atu=1/2

Normalized RMSE (samples)

Figure 2. Performance Comparison of CS, CS-MAP and LC-MAP Methods
at p=1/2and p=1/4

V. CONCLUSION

The channel support estimation problem in IR-UWB is a
challenging one. In this paper, we approached the problem
of estimation using the sub-sampled versions of the received
signal. The CS based estimates were improved using the
MAP criterion and a novel Low-Complexity MAP (LC-MAP)
estimator was developed by exploiting the rich structure of
the sensing matrix. The simulations showed that LC-MAP
improves the estimation with a significant reduction in com-
putational complexity as well.
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