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ABSTRACT
Under high mobility, the orthogonality between sub-carriers
in an OFDM symbol is destroyed resulting in severe inter-
carrier interference (ICI). We present a novel algorithm to
estimate the channel and ICI coefficients by exploiting the
channel’s time and frequency correlations and the (approx-
imately) banded structure of the frequency-domain channel
matrix. In addition, we invoke the asymptotic equivalence of
Toeplitz and circulant matrices to reduce the dimensionality
of the channel estimation problem by retaining the dominant
terms only in an offline eigen-decomposition. Furthermore,
we show that the asymptotically MMSE-optimum pilot de-
sign consists of identical equally-spaced frequency-domain
clusters whose size is determined by the channel Doppler
spread. Comparisons of our proposed algorithm with a
widely-cited recent algorithm demonstrate a significant per-
formance advantage at a comparable real-time complexity.

Index Terms— Channel estimation, Doppler frequency,
Model reduction, ICI, OFDM.

I. INTRODUCTION
Orthogonal frequency division multiplexing (OFDM) is

widely used in high-rate broadband wireless applications
thanks to its multipath resilience and use of low-complexity
single-tap frequency-domain equalizers. In highly-mobile
scenarios, the channel varies within each OFDM symbol
causing the OFDM sub-carriers to lose their orthogonality
resulting in inter-carrier interference (ICI) and making signal
detection using single-tap equalizers highly sub-optimal.
Furthermore, ICI complicates the channel estimation process
since for each OFDM symbol, interference caused by the
adjacent sub-carriers has to be estimated along with the
channel frequency response at each sub-carrier.
A widely-cited hybrid frequency/time domain channel

estimation algorithm was proposed by Mostofi and Cox
(referred to as MC algorithm in this paper) in [1] based
on a linear approximation of the time-variations of each
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channel impulse response (CIR) coefficient. However, this
hybrid algorithm jointly processes 3 consecutive OFDM
symbols which increases processing latency significantly.
Furthermore, as we show in our simulations, its performance
degrades at high Doppler spread.
In most of the existing literature on optimal pilot design

for mobile OFDM, the channel is assumed fixed within each
OFDM symbol while changing from one OFDM symbol to
another. For doubly-selective channels, previously-proposed
pilot designs use an impulsive frequency-domain pilot cluster
structure made up of a single pilot subcarrier padded with
zero subcarriers as guard band on both sides to eliminate
ICI. This impulsive pilot design effectively treats the channel
frequency response (CFR) matrix as a diagonal instead of
a banded matrix even under high-mobility scenarios; thus
ignoring useful signal energy dispersed into the adjacent
subcarriers.
In this paper, we investigate the optimal pilot design

for our pilot-aided OFDM channel estimation algorithm
presented in [2]. The novelty of this paper lies in proving
that the MMSE-optimum OFDM pilot over doubly-selective
channels consists of identical equally-spaced non-impulsive
frequency-domain pilot clusters for large FFT sizes. The
optimal non-impulsive periodic pilot clusters exploit the
banded CFR matrix structure to improve estimation accuracy.
This paper is organized as follows. Section II introduces

the system model and assumptions. Section III briefly re-
views the channel estimation algorithm in [2]. Optimal pilot
design for the proposed algorithm are derived in Section IV.
Section V presents the simulation results and performance
comparisons. Finally, the paper is concluded in Section VI.

II. MODEL AND ASSUMPTIONS
Assuming perfect synchronization and a cyclic prefix (CP)

length equal to or greater than CIR memory length, L, the
FFT of the received vector after CP removal is given by

Y = Qy = QHQHX + Qz = GX + Z (1)

where Q is the size-N DFT matrix, H is the time-domain
channel matrix, G � QHQH is the CFR matrix and Z is
the frequency-domain noise vector. The vectorsX and Y are
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the comb-type pilot-data-multiplexed transmit and receive
OFDM symbols, respectively, in the frequency domain. For a
time-variant channel,H is not circulant, andG can no longer
be assumed diagonal. Signal energy will be dispersed into
the off-diagonal elements of G. When the channel is fast-
varying, ICI becomes significant and produces an irreducible
error floor.

III. BAYESIAN LINEAR MMSE CHANNEL
ESTIMATION

We can decompose H as the sum of L matrices, each of
which corresponds to a CIR tap (and its time evolution), i.e.
H =

∑L−1
l=0 Al, where Al is the matrix corresponding to

the l-th CIR tap given by

Al = Diag([h0(l), h1(l), . . . , hN−1(l)])B
l (2)

where hn(l) is the complex zero-mean unit-variance CIR tap
at lag l (for 0 ≤ l ≤ L − 1) and time instant n and B is a
permutation matrix obtained by cyclic shifts of an identity
matrix of size N to the left by one column. Considering
Jakes’s model for channel time variation, we can write
J(m− n) � E[hm(l)hn(l)∗] = J0(2πfd(m− n)Ts), where
fd and Ts are the Doppler frequency and sampling period,
respectively, and J0(·) is the zero-order Bessel function.
Vectorizing the CFR matrix G and using the Kronecker

product property in Theorem T2.13 in [3] yields

vec(G) = ((QH)T ⊗ Q)vec(H) = (Q∗ ⊗ Q)vec(H) (3)

Now, we calculate the covariance matrix of vec(G) in terms
of that of vec(H) as follows

RG � E[vec(G)vec(G)H ]

= (Q∗ ⊗ Q)E[vec(H)vec(H)H ](Q∗ ⊗ Q)H

� (Q∗ ⊗ Q)RH(Q∗ ⊗ Q)H

(4)

Let λ1, . . . , λN be the eigenvalues of J and let
v1,v2, . . . ,vN be the corresponding eigenvectors. Define
v̄n as an over-sampled version of eigenvector vn given by

v̄n = [vn(0), 0, . . . , 0| {z }
Nzeros

, vn(1), 0, . . . , 0| {z }
Nzeros

, vn(2), . . . , vn(N − 1)]T

Following the eigen-analysis of RH and henceforth that of
RG, it has been shown in [2] that the covariance matrix
RG of the CFR matrix G has the NL nonzero eigenvalues
λ1, . . . , λ1︸ ︷︷ ︸

L times

, . . . , λN , . . . , λN︸ ︷︷ ︸
L times

with corresponding eigenvec-

tors Gp (1 ≤ p ≤ NL) given by (Q∗ ⊗ Q)v̄1, . . . , (Q
∗ ⊗

Q)DL−1v̄1, . . . , (Q
∗⊗Q)v̄N , . . . , (Q∗⊗Q)DL−1v̄N . We

can write vec(G) as vec(G) =
∑NL

p=1 αpGp where the
αp’s are independent random variables each with zero mean
and variance equal to the eigenvalue λp. We reduce the
parameter estimation space for G by retaining only those
αi’s with large variance (compared to the noise variance)
and considering the rest as modeling noise. Let Nd denote

the number of dominant eigenvalues of J. In other words,
we can approximate vec(G) as follows

vec(G) =

NdL∑
p=1

αpGp + Z̃ ≈
NdL∑
p=1

αpGp (5)

where the term Z̃ =
∑NL

p=NdL+1 αpGp is ignored. By un-
vectorizing (5), we can re-write (1) as

Y = GX + Z ≈
NdL∑
p=1

αp GpX︸ ︷︷ ︸
Ep

+Z =

NdL∑
p=1

αpEp + Z (6)

Let {k1, k2, . . . , kT } denote the set of indices for training
sub-carriers. From (6), we can remove all the sub-carriers
that do not belong to the training set, resulting in a linear
system of T equations in NdL unknowns (T > Ndl). In
matrix form, we can write

Y = Epα + Z (7)

where, Y = [Y(k1)Y(k2) · · · Y(kT )]
T , Ep =

[Ep(k1)Ep(k2) · · · Ep(kT )]T , Ep =
[
E1 · · ·ENdL

]
and

α = [α1 · · ·αNdL]
T . We compute α for a generalized noise

covariance matrix Rz using the following linear minimum
mean square error (LMMSE) estimator

α̂ = RαEH
p

[
EpRαEH

p + Rz

]
−1

Y

=
[
R−1

α + EH
p R−1

z Ep

]
−1

EH
p R−1

z︸ ︷︷ ︸
�W

Y = WY (8)

where Rα = diag(α1, α2, · · · , αNdl) is a diagonal ma-
trix. We can pre-compute W in (8) with the knowledge
of N , fd and SNR, hence, the real-time implementation
complexity of the channel estimation algorithm can be
significantly reduced. The estimation error vector ε = α−α̂

is zero mean with the following covariance matrix Cε =[
R−1

α + EH
p R−1

z Ep

]
−1

. Hence, the MSE in estimating αi

is MSE(α̂i) = Cε(i, i).

IV. OPTIMAL PILOT DESIGN
Assuming that the Z(k)’s are i.i.d samples with zeros

mean and variance of σ2
z , Cε can be written as

Cε = [R−1
α +

1

σ2
z

EH
p Ep︸ ︷︷ ︸

�RE

]−1 = [R−1
α +

1

σ2
z

RE]−1 (9)

Our main objective is to design a frequency-domain pilot
structure to minimize the trace of Cε. The structure of RE

is given by
RE = EH

p Ep

=

2
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IV-A. Problem Formulation
Now, C−1

ε � R−1
α + 1

σ2
z
RE is a positive-definite Hermi-

tian matrix of size NdL × NdL for any X ∈ C
N . Hence,

Jensen’s inequality yields following trace inequality∑NdL

i=1 λC(i)

NdL
≥ NdL∑NdL

i=1
1

λC(i)

(11)

⇒ Trace(Cε)Trace(C−1
ε ) ≥ (NdL)2

⇒ Trace(Cε) ≥ (NdL)2

Trace
(
R−1

α

)
+ Trace (RE)

with equality if and only if C−1
ε = kINdL where k is

a real positive constant. It follows from (9) that RE =
σ2

z

(
C−1

ε − R−1
α

)
. Since,Rα is diagonal, to minimize MSE,

RE must be a diagonal matrix. Therefore, from (10) below,
our objective is to determine X such that
1) X

HGH
i GjX = c, i = j; i, j = 1, 2, · · · , NdL

2) X
HGH

i GjX = 0, i �= j; i, j = 1, 2, · · · , NdL

where c is a constant representing pilot power constraint.

IV-B. Asymptotic Analysis
For simplicity, we assume that X is a comb-type OFDM

pilot symbol with data sub-carriers masked out by zeros. We
can gain further insight into the pilot optimization problem
by approximating the Toeplitz matrix J by a circulant matrix
for large N using Szego’s theorem. Hence, the eigenvectors
and eigenvalues of J converge to the FFT columns and
FFT transform of the first column of J, respectively. Using
the expression Gi = Qdiag(vn)BlQH (see [2] for details)
where vn are the dominant eigenvectors of J, the (m, n)-th
element of RE can be rewritten as follows

RE(m, n) = X
HQBH(j1) diag(vi1)

Hdiag(vi2)︸ ︷︷ ︸
Λi1i2

B(j2)QHX

= xH BH(j1)Λi1i2B
(j2)︸ ︷︷ ︸

Ic(i1,i2,j1,j2)

x̄ = xHIc(i1, i2, j1, j2)x

(12)

where m = (i1 − 1)Nd + j1, n = (i2 − 1)Nd + j2
for i1, i2 = 1, 2, · · · , Nd and j1, j2 = 1, 2, · · · , L. Based
on this circulant approximation of J, we have 4 possible
values of RE(m, n) as given in Table I. Now, as long
as j1 = j2, Ic(i1, i2, j1, j2) is always a diagonal matrix.
Otherwise, Ic(i1, i2, j1, j2) will be an upper-shifted or lower-
shifted diagonal matrix where the position of the super or
sub diagonal depends on the difference between j1 and j2.
Note that (L−1) is the maximum index of the super or sub
diagonal of Ic(.) that can be non-zero. Hence, by designing
x as a sparse vector with non-zero time-domain samples
separated by Nc − 1 zeros where (Nc − 1) > (L − 1), it
is possible to zero out all case 2 and 4 non-zero elements
in Table I. It is also possible to achieve a diagonal RE for
large N using such a sparse x. Next, we prove a key result.

Table I: Elements of RE

Case i1 = i2 ji = j2 RE(m, n) Comments
1 Yes Yes Real, ‖X‖2 Diagonal elements of RE

2 Yes No 0 Ic(·) is upper/lower
shifted diagonal

3 No Yes Complex Ic(·) is diagonal
4 No No 0 Ic(·) is upper/lower

shifted diagonal

Proposition: If the frequency-domain pilot vector X has
the periodic clustered structure shown at the top of Fig. 1
with Np adjacent subcarriers in each pilot cluster and the
number Nc and period Lc of the pilot clusters satisfy the
relation N = NcLc, then the time-domain pilot vector x

will be sparse as shown at the bottom of Fig. 1.
Proof: If we use a periodic clustered X with Np adjacent

sub-carriers in each cluster, the FFT operation will also
ensure periodicity in the time-domain signal x. Let Lc and
Nc denote the period of the pilot clusters and the total
number of pilot clusters in X , respectively. Using the FFT
relationship, the m-th element of x is given by

xm =
1√
N

N−1∑
n=0

Xnej 2πmn
N (13)

Using the periodic pilot cluster structure, (13) becomes

xm =
1√
N

[
P0e

j 2πdm
N

(
1 + ej

2πLcm

N + · · · + ej
2πLc(Nc−1)m

N

)
+P1e

j
2π(d+1)m

N

(
1 + ej

2πLcm

N + · · · + ej
2πLc(Nc−1)m

N

)
+ · · ·

+PNp−1 ej
2π(d+Np−1)m

N

(
1 + ej

2πLcm

N + · · · + ej
2πLc(Nc−1)m

N

)]
(14)

Using N = NcLc, (14) can be written as follows

xm =
1√
N

Np−1∑
i=0

Pie
j

2π(d+i)
N

(
Nc−1∑
k=0

ej 2πmk
Nc

)
(15)

If m is not an integer multiple of Nc, (15) becomes

xm =
1√
N

Np−1∑
i=0

Pie
j

2π(d+i)
N

(
Nc−1∑
k=0

e
j 2πk

Nc

)m

(16)

Now,
(∑Nc−1

k=0 ej 2πk
Nc

)
is the geometric series sum of all of

the Nc-th roots of unity which equals zero. Thus, x will have
only Lc non-zero elements separated by Nc − 1 zeros. All
we are left with now is the 3rd case in Table I ; i.e. we have
to make xHIc(i1, i2, j1, j2)x = 0 when i1 �= i2 and j1 = j2.
Note that due to the periodic structure of X , all pilot clusters
are identical. Hence, we only need to optimize one pilot
cluster. Towards this objective, we propose to choose the
pilot cluster symbols from standard constellations and then
to determine the optimum cluster size. Since the Gp’s are
(approximately) banded matrices with M main diagonals,
X should have at least M adjacent non-zero tones in each
cluster setting the lower bound of Np. In addition, GH

i Gj’s
will also be banded but with (2M − 1) diagonals. An upper
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Fig. 1: Optimized pilot structure for our channel estimation algorithm in [2].

bound on Np is derived by observing that if we choose
Np greater than (2M − 1) sub-carriers, we will be only
adding zeros to RE(m, n) since the GH

i Gj’s are banded
with (2M − 1) diagonals. Increasing Np beyond (2M − 1)
also decreases the number of pilot clusters given the pilot
overhead ratio. Hence, we must have M ≤ Np ≤ 2M − 1;
where M = 3, 5, · · · and Np odd. In [2] we have shown
that for equidistant (but neither identical nor periodic) pilot
clusters with random BPSK pilots, cluster size of (2M − 1)
achieves best BER performance. Hence in the simulations
presented in the following section we set the cluster size
to (2M − 1) pilot sub-carriers. Finally, we propose to use
identical periodic clusters with (2M−1) pilot sub-carriers in
each cluster modulated with random BPSK signals as pilots
up to 20% normalized Doppler spread.

V. SIMULATION RESULTS
In this section, we compare the performance of our

proposed algorithm with the MC algorithm [1] and impulsive
pilot designs for a mobile coded OFDM system. We assumed
the 3-tap SUI-3 channel perturbed by additive white Gaus-
sian noise (AWGN). We found that for a normalized Doppler
of 10%, G can be well approximated by a banded matrix
with M = 3 diagonals and the first 3 eigenvalues of J are
dominant, i.e. Nd = 3. For data detection, we implemented
the 3-tap MMSE FEQ designed in [4]. We assumed a 15%
pilot training overhead with size-5 periodic pilot clusters.
Figure 2 demonstrates the significant performance gains of

our proposed channel estimation algorithm with optimized
pilot design over the MC algorithm [1] and over impulsive
pilot designs. It can also be seen from the figure that the
performance loss due to the complexity-reducing circulant
approximation is less than 2 dB for the entire SNR range
under consideration.

VI. CONCLUSIONS
We proposed a new pilot-aided algorithm for the estima-

tion of fast time-varying channels in OFDM transmission.
Unlike many existing OFDM channel estimation algorithms
in the literature, we propose to perform channel estimation
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Fig. 2: BER comparison between our proposed algorithm
(both exact and approximate versions) and MC algorithm for
N=1024, fd=10% and M = 3.

in the frequency domain, to exploit the structure of the
channel response (such as frequency and time correlations
and bandedness), optimize the pilot signal structure, and
perform most of the computations offline resulting in high
performance at substantial complexity reductions.
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