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Abstract—Impulsive noise is the bottleneck that limits the
distance at which DSL communications can take place. By
considering impulsive noise a sparse vector, recently developed
sparse reconstruction algorithms can be utilized to combat it.
We propose an algorithm that utilizes the guard band null
carriers for the impulsive noise estimation and cancellation.
Instead of relying on /; minimization as done in some popular
general-purpose compressive sensing (CS) schemes, the proposed
method exploits the structure present in the problem and the
available a priori information jointly for sparse signal recovery.
The computational complexity of the proposed algorithm is very
low as compared to the sparse reconstruction algorithms based
on /; minimization. A performance comparison of the proposed
method with other techniques, including ¢; minimization and
another recently developed scheme for sparse signal recovery, is
provided in terms of achievable rates for a DSL line with impulse
noise estimation and cancellation.

Index Terms—Impulsive noise, DSL, Sparse signal reconstruc-
tion, and Compressive sensing.

I. INTRODUCTION

One of the most severe problems encountered in Digital
Subscriber Line (DSL) design is impulsive noise. As DSL
technology works at extremely high SNR, additive white
Gaussian noise (AWGN) is generally not a problem. Impulsive
noise is a phenomenon that occurs rarely, but when it arises it
may “erase” an entire OFDM symbol if no counter-measure is
adopted. Since the impulsive noise in the time domain reflects
into a large block of corrupted symbols in the frequency
domain, coding able to handle large bursts of errors, or
concatenation of conventional random-error oriented codes
with a large interleaver are envisaged [1].

As an alternative, impulsive noise can be estimated and
actively cancelled. A Gaussian/erasure channel model is con-
sidered in [2] to calculate the capacity of this channel. In [3]
and [4], precoding and frequency algebraic interpolation tech-
niques using Reed-Solomon coding and decoding are proposed
but these approaches are very sensitive to background noise. In
[5], impulsive noise is considered a sparse vector and compres-
sive sensing (CS) based on convex relaxation methods using
/1 minimization [6] is used for estimation from a small subset
of frequency-domain observations. The drawbacks of using
this method are 1) ¢; minimization requires high complexity
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(polynomial average complexity in the problem dimension),
2) It does not make use of any a priori statistical information
(apart from the sparsity information), and 3) It does not utilize
structure of the sensing matrix which in our case is a sub-
matrix of a DFT matrix.

Recently several low complex alternatives have been pro-
posed in literature for sparse signal recovery that include
algorithms based on belief propagation [7], Bayesian meth-
ods applied to compressive sensing [8], and iterative greedy
approaches including orthogonal matching pursuit (OMP) [9],
and fast Bayesian matching pursuit (FBMP) [10]. In this paper,
we make use of the free guard band carriers to estimate and
cancel impulsive noise. We make a collective use of the a
priori statistical and sparsity information together with the
structure of the problem to obtain nearly optimal estimates at
low complexity. We compare the performance of the proposed
method with other techniques, including ¢; minimization [5]
and FBMP [10], in terms of achievable rates for a DSL line
with impulse noise estimation and cancellation.

II. TRANSMISSION MODEL

The time-domain complex baseband equivalent DSL chan-
nel is given by

y=Hx+z+e (@€))]
where y € C" and x € C" are the time-domain OFDM
receive and transmit signal blocks (after cyclic prefix removal),
H is a circulant matrix constructed from the channel impulse
response, and z is the complex white Gaussian additive noise
CN(0, NoI). We assume the impulsive noise process e to
be Bernoulli-Gaussian, i.e. e = Apgr, where Ay are i.i.d.
Bernoulli random variables, with P(A\;y = 1) = p, and gy, are
i.i.d. Gaussian random variables ~ CN(0, Iy). We define the
channel SNR as €, /Ny and the impulse to noise ratio (INR)
as In/No. We can represent (1) in the frequency domain as

y=Dx+z+F,e 2)

where y, X, and z are the DFTs of y, x, and z respectively1

and where D = diag(h) with h = \/nF,h. Here F,, is the
size n unitary DFT matrix with F,,(k, ¢) = \/Lﬁe*j 2mkl/m with
k. te{0,...,n—1}.

Ix = FHx
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Fig. 1: Waterfill level at SNR = 30 dB for DSL transmission over
cat5 coaxial cable having lengths (300ft, 2000ft, and 3000ft)

III. PROBLEM FORMULATION

Consider the OFDM frequency domain channel model (2).
We will use the sparse nature of e to estimate it and then
remove it from the received signal. As in [3], [4], we will use
carriers free of modulation symbols to estimate e. Specifically,
we will assume that these carriers belong to a continuous
band. This is not unusual for in practical DSL transmission,
many high frequency carriers are left unutilized due to high
attenuation. Figure 1 shows that many of the carriers in the
DSL become useless for longer distances.?

We construct the time domain transmit signal as
x = FHS,.d, where d is frequency-domain data symbol
vector of dimension k < n and where S, is an n X k “selection
matrix” containing only one element equal to 1 per column,
and with m = n — k zero rows. The columns of S, index the
subcarriers that are used for data transmission in the OFDM
system. The remaining subcarriers are not used. Let S be
a matrix with a single element equal to 1 per column, that
span the orthogonal complement of the columns of S,. The
frequency domain vector is thus given by

y=F,y=DS.d+F,e+z 3)

We shall estimate e from the projection into the orthogonal
complement of the signal subspace. This is given by

y'=S'y=S"F,e+7 )

where the observation vector y’ is a projection of the n-
dimensional impulsive noise onto a basis of dimension n —
m < n corrupted by the AWGN z’ which is an i.i.d. Gaussian
vector with variance Ny per component, of length m. For later
use, we shall denote the m X n projection matrix obtained by
a row selection of F,, (according to S) by ¥ = STF,,. When
the support J of e is known, we can equivalently write (4) as

vy = Pies + 25 ©)

where ¥ = [v,,...,,], and where ¥, denotes the submatrix
formed by columns {, : j € J}, indexed by the support J.

2In our illustrations and simulations, we assume that the last quarter band
of carriers is free of data transmission. However, our approach applies for any
continuous band of carriers.

IV. OPTIMUM ESTIMATION OF e

The MMSE estimate of e given the observation y’ guaran-
tees to minimize the covariance of the residual noise

évuse = Elely’] = Zp(3|y')E[e|y’,J] (0)
3

where the sum is carried out over the 2" supports set J of
e which could be computationally very complex for large n.
We show in the following how to calculate the various terms
in (6).

Calculating Elely’,J]: Since es is Gaussian, we can
easily deduce from (4) that the MMSE estimate of the active
elements of e is

e = LPis; 'y ©)

where 35 = =E[y'(y")"|9] = T+ {2 ¥, ¥
Calculating p(J|y’): Using Bayes rule, we can write

__p('19)p(9)
>y p(y’'|9)p(7)

where p(7) = p’!(1—p)"~’I. Moreover since e|J is Gaussian,
y’|7 is Gaussian with zero mean and covariance 35 and we

can write®
exp (-5 ¥+ )

det (2))

pUIly") ®)

p(y'[9) = ©)
up to an irrelevant constant multiplicative factor.

Evaluation over J: Note that the expressions (6)-(9) are
different for different values of J and the two summations in
(6) and (8) need to be evaluated over all possible 2™ sets.
Instead of this exhaustive search approach, we can limit the
MMSE evaluation over the most probable support of e. There
are two techniques to limit the search space.

CS based on convex relaxation: Starting from (4), we can
use the standard convex relaxation tools [6] to find the most
probable support of the sparse vector e. This approach does
not make use of any a priori statistical information. Moreover,
given the highly structured nature of W,* this method does not
perform as well as when the free carriers are chosen randomly
from the whole band.

FBMP: A fast Bayesian recursive algorithm is presented
in [10] that finds the dominant support and the MMSE estimate
of the sparse vector jointly. It uses a greedy tree search over
all the combinations in pursuit of the dominant supports. The
algorithm starts with zero active elements support. At each
step, an active element is added that maximizes the MAP-
Gaussian metric. This procedure is repeated till we reach P
active elements in a branch. The number of branches in the
tree search is controlled by a parameter D which presents a
tradeoff between performance and complexity.’

3[[b||3 = bHAD.

4This is due to the fact that the carriers are chosen from the guard band.

SContrary to standard convex relaxation techniques, this algorithm is able
to make use of the a priori statistical information and reduce complexity by
employing a recursive implementation.
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Fig. 2: The 500*" column has high correlation with its neighbours
only

V. FINDING DOMINANT SUPPORT USING STRUCTURE

Neither of the two methods mentioned above make use
of the structure of the sensing matrix W. It turns out that
using this structure is very useful in reducing the complexity
involved in calculating (6). Specifically, let m = 7 be the
fraction of unused carriers. In this case, the observation vector
y’ is given by (see (4))

y =We+7 (10)

where the W is the m xn projection matrix. Note that columns
7 €0,0,20,....,ml, of ¥ correspond to (a scaled version of)
the DFT matrix F',,. As such, the columns of this matrix span
the column space of W. In fact, spanning happens in a special
way in that any column of ¥ that does not belong to F,,
has most of its energy along its left and right basis vectors.
Thus, the column vector Wy, (i = 1,2,...,£ — 1), has its
dominant components along the basis vectors W (1) and ¥y,

Mathematically, the correlation between two columns can
be shown to be

L, (k=Fk)
sin(rr(kfk’)m/n) 7 (kj?’ék/)

msin(w(k—k’)/n)

o, = an

which is a function of the difference (k¥ — k') mod n, so
it suffices to consider correlation of one column with the
remaining ones. Figures 2a and 2b demonstrate this correlation
for the case when n = 1024, ¢ = 4, and m = 2 = 256.

: 13
Let ' = % where ¢ = (£ —¢'), then

sin (mzx) sin (mz)

< 12)

msin (x) mx
for small values of = where x = 72
This suggests that we can get a first guess on the location
of impulsive noise by projecting y’ on F,,, to gety” = F.,,y’.
The larger values of y” point to the neighbourhood of where
these impulses are located. Thus, if the largest value of y”
is say the 17th one, it indicates that one impulse belongs to
the 17¢ column of W or its neighbours, namely 17/, 17¢ &+
1, 170+ 2, ... 17¢ + (¢ — 1). Thus, the largest values of y”
point to the clusters where the support of the impulsive noise

might belong.

Adjacent clusters can be grouped to form larger clusters.
Based on the dominant support J of e, we can reduce ¥ to ¥y
which can be written in block form as ¥y = [¥; ¥y --- Wp]
where P is the maximum number of clusters to which the
support of e is expected to belong.® As is evident from Figure

6P = [erfc™1(1072)/2np(1 — p) + np] similar to [10].

2, these clusters are almost orthogonal to each other and thus
we can deal with them separately. Specifically, it turns out
that the overall likelihood is the product of likelihoods of the
individual clusters. We will prove this for the two clusters
case (i.e. P = 2). The proof for the general case can be
derived similarly. Now to calculate the likelihood (9), we
need to calculate the inverse and determinant of 5. Now
for simplicity, assume that y” points us to two clusters so that
Wy = [Q; Q). Thus, using the matrix inversion lemma, we
can write 37 T as

== I+ 2wt (13)

_ —1_ do o1 o o106 \—10H o~
= O No(a 92(1+N092® Q) 'te(i4)
where ® =1+ ]ﬂ—%QlQT As ) and 2, are orthogonal (i.e.

Q108 = 00 = 0(L1)), (14) becomes

_ I I _
5 o= I- F(;Ql(l—&— Fzﬂi'm) Lo
Iy Iy
—No QQ(I —+ No
Io

Iy
—I I - — 01 (I+—
+< No 1( +NO

Q)71 0Y

o)
I To \u —1nH
—+ <I No Q2(1+ No Qg QQ) QQ

bi -1 bi -1
1s (1+ —Osm?> + <1+ Lo mﬂ?) (15)

No No
where (15) is valid up to an error term of order O(%)
As such, we can write exp(—NLOHy’HQE,l) as in (16) where
J
B, = T+ 220 and B, = I+ 120,05 Using a similar
reasoning, we can show that the determinant decomposes in a

similar way,

det(Xy) = det(Xq, )det(Xqn,) an

Thus if we denote the MAP Gaussian metric at a particular

support J by L4 and incorporate the results in (16) and (17),
(9) becomes

& = - e (IYIF)

exp (=51 g ) oo (~251 1)
det(EQI) det(Egz)

n— 1 /
= pl1—p)"exp <F”y ||2> Laba,  (18)
0

Thus, the general form of (18) can be written as

P-1 £
& =0 (S ) T £ 09
m=0
where P is the total number of clusters considered.

A. Orthogonal Clustering Algorithm

From the discussion, we can summarize our algorithm as
follows.

Start by taking the m point DFT of y’. The dominant values
of the resulting vector y” point to the most probable support
of e. Group the resulting support regions into disjoint and
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Fig. 3: Block diagram of the reduced complexity algorithm to
calculate the likelihood of the ¢th cluster

separate clusters 21, o, -+, Qp and let L be the maximum
cluster length. For each cluster, proceed as follows.

1) Find the support for the case of 1,2, -
each cluster by maximizing (9).

2) For each cluster, find the most probable support by se-
lecting the maximum one from the s supports calculated
in step 1, save Lgq,, and evaluate Ele|y’, J] using (7).

3) Evaluate £g (19) for all the 2°~! dominant supports
using Lq, saved in the previous step.

4) Evaluate p(J|y’) by averaging over all the dominant
supports and obtain ey SE.

, s impulses in

Summarizing, the % DFT of y’ points us to the candidate
clusters whose likelihoods can be calculated independently.
Now, since the clusters have relatively small spans, the likeli-
hood of an impulse or a number of impulses appearing in each
cluster can be calculated independently and combined with
the likelihoods of the other clusters to calculate the overall
likelihood with low complexity.

B. Computational Complexity

As evident from the previous section, calculating the like-
lihood £ can be done in a divide and conquer manner by
calculating the likelihood from each cluster independently.
That in turn requires calculating the inverse and determinant
of X, for each cluster. In this subsection we will show
that it is enough to calculate the quantities for one cluster
(say the first one) and the corresponding quantities can be
deduced for other clusters. To this end, let a;, as, ---, ar,
denote the sensing columns associated with the first cluster.
Then, it is easy to see that the corresponding columns for
the ith cluster of equal length that is /A\; columns away are
a;Qap,, az®ap,, -+ ,ar@ap,, where ® denotes element-
by-element multiplication and

T
an, = [ exp (—%%Ai)T exp (—J%nAi)T }
Now assume that we calculate the inverse 2511 and deter-

minant det(Xgq,) for a set of columns Q; in the first cluster
and let €; denote the same set of columns chosen in the ith
cluster. Then it is easy to show that

det(S0,) = det(Sa,) and |y |—s =y ©ak 31 (0)
i 1

1 712
exp (51111 -

1 12 1 me 1 "2
exp Folly [” ) exp —Folly ||25; exp —Folly HE;Z;

e N——
No Yo, No o,

(16)

In other words, to calculate the likelihood Lq,, we can
use the same quantities (det(Xq,) & 2511) involved in
calculating Lg, and we only need to modulate y’ by aj
before calculating the likelihood Lgq,. See Figure 4 for a
block diagram for this calculation. As such, the complexity
of proposed algorithm comes out to be O(mPL) where P
and L correspond to the maximum number of clusters and
maximum length of a cluster respectively.” The complexity
of CS based on convex relaxation using ¢; minimization is
O(m?n3/?) [11] and that of FBMP is O(mnPD) [10].

C. Approximate Residual Noise Covariance using the Orthog-
onality of Clusters

Let e = S.u., where S, is a 0-1 selection matrix of
dimension n X r, with ones corresponding to the true support J
of e, of cardinality 7, and u. denoting the vector of dimension
r that collects only the non-zero elements of e. Thus the
observation y’ is given by

!

y = STFne—i—z'
= FS.u.+7 =®.u. +7

@n
(22)

If the receiver has perfect knowledge of the support J of e,
the covariance of the MMSE estimate of u,. is given by

-1
Cull = E[a.al|7] = <l1 + i()@?@e) (23)

Iy N

To get the overall estimation error, we need to average over

J. To do so, we pursue the clustering approach and divide

the support into 7 clusters of size ¢ each. Thus, we write

F=[¥; ¥, --- W=z]. Using our semi-orthogonal approach,

only neighbouring clusters will interact, and it is easy to show

that Cy|J will take the form of a P x P block matrix with

only the blocks (4, j) non-zero, for |i — j| <= 1 (when the

support J intersects with the 7th block). Moreover, it is easy to

show that the expectation [E (%I + NLQZHQJ is invariant
0 0

over clusters (i.e. it is enough to calculate it for ¢ = 1). Denote
these expectations by A; and A5 respectively. Then, we can
write the residual estimation error as

Ees" = A1 @1z + A2 ®1s + A, ©Ts (24)

where i% is a matrix with ones on only the super-diagonal.

In Figure 4, we compare the residual noise covariance for
probability of impulse p = 1072, the case when support
is perfectly known (MMSE used for impulse amplitudes
estimation), and the orthogonal clustering algorithm discussed
in Section V. A cluster of maximum length L = 16 is
considered. The expectation involved ils calculated by eval-
uating p’ (1 — p)=~? (%I + N%)\IJUH\I!J) over all the possible
combinations.

"Typical values of P and L are 8 and 32 respectively for n = 1024,
m = 256, and p = 3 x 1073,
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Fig. 4: Comparison of the residual noise covariance for probability
of impulse p = 1073
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VI. SIMULATION RESULTS

As we are interested in transmission over DSL, we assume
the channel impulse response to be constant and known
forever. The parameters used are n = 1024 tones and m =
% = 256 null carriers at the end of the transmission band,
with SNR = 20 dB and INR = 35 dB. The range of number
of impulses (K) is 0 < K < 10 and all the algorithms are
run for 256 Monte Carlo iterations at each value of K. The
performance of the proposed algorithm is compared with [5]
that uses CS based on convex relaxation to find the impulse
support followed by MMSE estimation to recover the impulse
amplitudes and FBMP [10]. The upper bound (benchmark) is
given by the case when support is perfectly known and MMSE
is used for estimation of impulse amplitudes. The algorithms
are compared in terms of the achievable rates evaluated similar
to [5]. The simulation results are shown in Figure 5. It can
be seen that both the proposed and FBMP algorithms perform
better than ¢; reconstruction, reported in [5]. The performance
of FBMP is slightly better than the proposed algorithm but this
gain in performance is due to greater complexity as shown
in Figure 6 that compares the mean runtime of both the
algorithms.

VII. CONCLUSION

In this paper, we propose a new method for impulsive
noise estimation and cancellation in DSL. Instead of using

10 :
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=D~ Proposed
10° | q
)
©
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Fig. 6: Comparison of mean runtime of proposed algorithm, FBMP,
and CS-MMSE

compressive sensing or matching pursuit algorithms for sparse
reconstruction, the proposed paper utilizes structure of the
sensing matrix and a priori information of the impulsive noise
distribution jointly resulting in a fast and efficient algorithm.
Simulation results demonstrate the good performance of the
proposed algorithm.
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