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Abstract—Impulsive noise is the bottle neck that determines the
maximum length of the DSL. Impulsive noise seldom occurs in DSL
but when it occurs, it is very destructive and results in dropping the
affected DSL symbols at the receiver as they cannot be recovered. By
considering impulsive noise a sparse vector, recently developed sparse
reconstruction algorithms can be utilized to combat it. We propose an
algorithm that utilizes the null carriers for the impulsive noise estimation
and cancellation. Specifically, we use compressive sampling for a coarse
estimate of the impulse position, an a priori information based MAP
metric for its refinement, followed by MMSE estimation for estimating
the impulse amplitudes. We also present a comparison of the achievable
rate in DSL using our algorithm and recently developed algorithms for
sparse signal reconstruction.

Index Terms—Impulsive noise, DSL, Sparse signal reconstruction, and
Compressive sampling.

I. INTRODUCTION

One of the most severe problems that is encountered in Digital
Subscriber Line (DSL) design is impulsive noise. As DSL technol-
ogy works at extremely high SNR, additive white Gaussian noise
(AWGN) is generally not a problem. Impulsive noise, as its name
suggests, is a phenomenon that happens rarely. However, when it
occurs it almost destroys the DSL signal. It is generally attributed to
switching electronic equipment in the telephone network or nearby
disturbances (such as starting of an automobile or vacuum cleaner).
As its name suggests, impulsive noise is an impulse or a group of
large individual impulses that take place in the time domain and
then spread out in the frequency domain. It is difficult to design
DSL systems to combat impulsive noise because it happens rarely
(and thus it is not economical to design a system for a worst case
scenario) but it cannot be ignored completely because when it takes
place, it could devastate transmission and force the receiver to drop
a few DSL symbols as they cannot be recovered.

Impulsive noise estimation and cancellation in OFDM systems is
an area of active research. A Gaussian erasure matrix is used in [1]
that assumes the impulses to be i.i.d. and occurring with a certain
probability p. The receiver is given information of the exact position
of the impulses by a genie, thus enabling it to eliminate the impulsive
noise. In [2] and [3], precoding and frequency algebraic interpolation
techniques using Reed-Solomon coding and decoding are proposed.
Specifically, the presence of impulsive noise with few samples creates
certain syndromes on a sequence of pilots or null frequencies which
can be used to detect the location of impulsive noise, estimate it, and
cancel it. The drawback of these techniques is that they require a
certain structure of the null frequencies or pilots and they can be very
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sensitive to background noise. In [4], impulsive noise is considered a
sparse vector (as it occurs as spikes in time domain) and compressive
sampling (CS) [6], [7] is used to recover it by projections onto a
small-dimensional space in background noise. This method allows
much more flexible system design and much better robustness to the
background noise.

In this paper, we present an extended version of the algorithm
proposed in [4]. Instead of directly using the estimate obtained
by using CS [4], we consider it a coarse estimate of the support
(impulse positions) and utilize the a priori information that impulsive
noise is Bernoulli-Gaussian to refine it. MMSE estimation is then
employed for estimating the impulse amplitudes. We also compare
the performance of our algorithm with the recently developed sparse
reconstruction algorithms over a practical DSL channel. Since the
advent of CS theory [5], [6], [7], there has been an increased interest
in the area of sparse signal recovery. The main idea of CS is that
a sparse signal can be reconstructed with high probability from an
under-determined system of linear equations by l1 optimization using
linear programming techniques. The drawback of linear programming
is its high complexity. Thus, recently many low complex alternatives
have been proposed in literature for sparse signal recovery that
include algorithms based on belief propagation [8], subspace based
algorithms like subspace pursuit (SP) [9], and iterative greedy ap-
proaches including orthogonal matching pursuit (OMP) [10], gradient
pursuit (GP), and nearly orthogonal matching pursuit (NOMP) [11].

II. TRANSMISSION MODEL

The time-domain complex baseband equivalent DSL channel is
given by

yk =
L∑

`=0

h`xk−` + zk + ek (1)

where xk is the channel input, yk is the channel output, h =
(h0, . . . , hL) is the impulse response of the DSL channel, zk is
circular complex Gaussian noise ∼ CN (0, N0), and ek is impulsive
noise. We assume impulsive noise process to be Bernoulli-Gaussian,
i.e. ek = λkgk, where λk are i.i.d. Bernoulli random variables,
with P (λk = 1) = p, and gk are i.i.d. Gaussian random variables
∼ CN (0, I0). We define the channel SNR as Ex/N0 and the impulse
to noise ratio (INR) as I0/N0.

In matrix form, the channel model (1) is given by

y = Hx+ z+ e (2)

where y ∈ Cn and x ∈ Cn are the time-domain OFDM receive
and transmit signal blocks (after cyclic prefix removal) and z ∼



CN (0, N0I). The vector e is an impulse noise process as specified
above. Due to the presence of the cyclic prefix (which is inserted to
avoid inter-block interference), H is a circulant matrix describing the
cyclic convolution of the channel impulse response with the block x.
Let F denote a unitary DFT matrix with (k, `) element [F]k,` =
1√
ne

−j2πk`/n with k, ` ∈ {0, . . . , n−1}. The time domain signal is
related to the frequency domain signal by x = 1√

nF
Hx̌. The received

signal block (in frequency domain) is given by

y̌ = Dx̌+ ž+ Fe (3)

where D = diag(ȟ), ȟ =
√
nFh is the DFT of the channel impulse

response (whose coefficients are found, by construction, on the first
column of H), and ž has the same statistics of z, since F is unitary.
Without impulsive noise, the transmitted data can be easily recovered
using the element-by-element relationship,

ˆ̌x = D−1y̌ (4)

In the presence of the impulsive noise, the performance of an
OFDM receiver may suffer severe deterioration. Although impulsive
noise attacks the DSL signal in time domain, it affects the symbols
in the whole OFDM block in frequency domain, thus making the
recovery of the OFDM block very difficult.

III. IMPULSIVE NOISE ELIMINATION USING COMPRESSIVE

SAMPLING

Consider the OFDM frequency domain channel model (3). Now
trusting the fact that e is a sparse signal, we shall estimate it using
a compressive sampling algorithm, and then remove it from the
received signal. Let ê denote the resulting estimate of e produced
by the compressive sampling algorithm. Then, the signal actually fed
to the receiver is given by

ŷ = DSxď+ F(e− ê) + ž (5)

The OFDM receiver will then treat this signal as if it was the output
of a standard OFDM system without impulsive noise. Notice that
a naive OFDM receiver that simply ignores the presence of the
impulsive noise, would treat (5) as the output of an OFDM system
with Gaussian noise. It is apparent that the gain of the proposed
scheme is significant if the variance per component of the residual
noise

v = F(e− ê) + ž (6)

is significantly less than the variance per component of the resulting
frequency-domain Gaussian plus impulsive noise

w = Fe+ ž (7)

Let Ω ⊂ Zn denote the set of frequencies that are not used to send
modulation symbols. As in [2], [3], we shall exploit these frequencies
to estimate the impulsive noise vector e at the receiver. Our approach
relies on using the null carriers that are available on the transmission
spectrum to detect, estimate, and cancel impulsive noise.

We construct the time domain transmit signal as

x = FHSxď (8)

where ď is frequency-domain data symbol vector of dimension k ≤
n and where Sx is an n × k “selection matrix” containing only
one element equal to 1 per column, and with m = n − k zero
rows. The columns of Sx index the subcarriers that are used for
data transmission in the OFDM system. The remaining subcarriers
are either not used, or used for transmitting known pilot symbols in
the frequency domain, which are not shown here since we do not
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Fig. 1. Flowchart of the proposed method

deal with channel estimation, and these can be ideally subtracted
from the received signal at the receiver. Therefore, to all extents, the
subcarriers not indexed by columns of Sx are not used. We shall
denote by S the matrix with a single element equal to 1 per column,
that span the orthogonal complement of the columns of Sx.

The frequency domain vector is thus given by

y̌ = Fy = DSxď+Fe+ ž (9)

We shall estimate e from the projection into the orthogonal comple-
ment of the signal subspace. This is given by

y′ = STy̌ = STFe+ z′ (10)

where the observation vector y′ is a projection of the n-dimensional
impulsive noise onto a basis of dimension n−m < n corrupted by
the AWGN z′ which is an i.i.d. Gaussian vector with variance N0

per component, of length m. For later use, we shall denote the m×n
projection matrix obtained by a row selection of F (according to S)
by Ψ = STF.

In (10), the impulsive noise e ∈ Cn and the observation vector
y′ ∈ Cm where m < n. Thus we have an under-determined
system of linear equations which is an ill-posed problem. Similar to
[4], we use the CS algorithm [5], [6], [7] to identify the support.
Our work is different from [4] in that we refine the estimate
obtained by CS algorithm using a MAP metric and then estimate the
amplitudes of non-zero components of e using MMSE estimation.
This clearly decomposes the algorithm into the coarse estimation of
the support (impulse location), its refinement, and the estimation of
the coefficients (impulse amplitudes) as shown in Figure 1.

A. Coarse Estimation of the Support

We specifically use the convex optimization algorithm proposed
by Candes, Randall, and Tao [6], [7] to recover e. In our notation, it



is given by

minimize ‖ẽ‖1,
subject to ‖y′ −Ψẽ‖2 ≤ ε (11)

for some small enough ε.

B. Refining the Support Estimate

We wish to estimate optimally the support of e denoted by Ie, from
the observation y′, where e is Bernoulli-Gaussian with parameters
p and I0, as specified in Section II. The a priori probability of Ie

depends only on its size J = |Ie| (number of non-zero components).
For a given binary vector b of Hamming weight r, we have P (Ie =
b) = P (|Ie| = r) = pr(1 − p)n−r. The Maximum A-posteriori
Probability rule (optimal Bayesian estimation rule) is given by

Î = argmax
I

P (I|y′)

Up to an irrelevant proportionality factor, we can maximize the joint
probability (density) P (I,y), i.e., the MAP metric

p(y′|I)P (I) = p|I|(1−p)n−|I|
exp

(
− 1

N0
(y′)HΣ(I)−1y′

)

det (Σ(I)) (12)

where we define the covariance matrix of y′ given I, normalized by
the noise variance, as

Σ(I) = 1
N0

E[y′(y′)H|I] = I+
I0
N0

Ψ(I)Ψ(I)H (13)

where Ψ = STF = [ψ1, . . . ,ψn], and where Ψ(I) denotes the
submatrix formed by the columns {ψj : j ∈ I}, indexed by the
support I. Here, we have used the fact that, under the support
hypothesis Ie = I, the observation y′ is conditionally Gaussian with
covariance N0Σ(I).

An optimal MAP support detector would test each hypothesis
and find the one that maximizes the MAP metric above. Even by
limiting to a subset of most probable supports, i.e., of weight at most
rmax for some reasonable value of rmax > np, this scheme would
be prohibitively complex. Nevertheless, we can use the following
augmented CS scheme: we use a CS algorithm in order to find a
set of candidate positions. Let ê denote the estimated impulse vector
from the CS algorithm. Sort its components in decreasing order of
magnitude, and consider the candidate supports

1) I0 = 0 (no impulses);
2) I1 containing a single 1 in the position of the largest element

of ê;
3) I2 containing two 1’s in the position of the two largest elements

of ê;
4) ... so on, till a maximum number rmax > np of ones.

We eventually select the support as the one that maximizes the above
MAP metric among the above set of candidates.

C. Estimating the Impulse Amplitudes

Assuming that Î is correct, we apply MMSE estimation for the
non-zero components ue of e, and eventually reconstruct ê = Ŝeûe,
where Ŝe is the selection matrix corresponding to Î. Mathematically,
we can write

e = Ŝeue

and proceed to estimate the impulse amplitudes from the system of
equations

y′ = STFŜeue + z′

∆= Φeue + z′ (14)
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Fig. 2. Magnitude of the channel frequency response in dB for different
distance between CO and CPE

This gives us the MMSE estimate

ûmmse
e = ΦH

e (
N0

I0
I+ΦeΦH

e )
−1y′ (15)

so that
êmmse = ŜeΦH

e (
N0

I0
I+ΦeΦH

e )
−1y′ (16)

IV. PERFORMANCE COMPARISON OVER A DSL CHANNEL

The characteristics of a DSL channel are determined by numerous
factors that include wire length, wire diameter and gauge, bridged
taps, load coils, different resistor-capacitor terminations and shunt
resistances [12]. The DSL channel is modeled here based on the
transmission line theory provided in [13]. Specifically, the ”ABCD”
model and the transmission line RLCG characterization are used to
model the american wire gauge (AWG26) wire. The parameters used
to model the AWG26 twisted pair [13] are given in Table I.

TABLE I
AWG26 TWISTED PAIR PARAMETERS

Resistance r0c r0s ac as
(value) 286.18 Ω/km ∞ Ω/km 0.15 0

Inductance l0 l∞ b fm
(value) 675.37 µH/km 488.95 µ H/km 0.93 806.34 kHz

Capacitance c∞ c0 ce
(value) 49 nF/km 0 nF/km 0

Conductance g0 ge
(value) 43 nS/km 0.7

The channel frequency response for the AWG26 cable with differ-
ent distance between the central office (CO) and customer premises
equipment (CPE) is presented in Figure 2. The number of tones is
fixed at n = 1024 and a carrier spacing of 4.3125 KHz is used
according to the ITU G.992.1 DSL standard. It can be observed that
the channel gain reduces with the increase in frequency and longer
length cables are attenuated more compared to the shorter ones. Due
to this reason, most of the carriers at high frequencies are not utilized
to transmit data and thus can be utilized for impulsive noise estima-
tion and cancellation. The performance of the proposed algorithm is
compared with [4] that uses CS to find the impulse support followed
by MMSE estimation to recover the impulse amplitudes. We also
compare the proposed algorithm with three recently developed sparse
reconstruction algorithms namely, subspace pursuit (SP) [9], gradient
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Fig. 3. Performance comparison for full band null carriers

pursuit (GP) [11], and nearly orthogonal matching pursuit (NOMP).
The upper bound (benchmark) is given by the case when support
is perfectly known and least squares (LS) is used for estimation of
amplitudes. We consider an AWG26 wire of length 8000 meters, n =
1024 tones and m = 30 null carriers, with SNR = 20 dB and INR = 35
dB. The range of number of impulses (K) is 0 ≤ K ≤ 10 and all
the algorithms are run for 256 Monte Carlo iterations at each value
of K. The probability of impulse p is assumed to be known a priori
at the receiver. We evaluate the achievable rate (similar to [4]) for all
the algorithms in the following two scenarios.

A. Full band

Full band implies that the m null carriers used for impulsive
noise estimation and cancellation are chosen at random with uniform
probability over all possible

(n
m

)
subsets. The performance of the

algorithms in this case is presented in Figure 3. It can be seen that
the proposed algorithm easily outperforms the CS-MMSE algorithm.
This signifies the advantage of refining the CS output using a priori
statistical information. The performance of the proposed algorithm is
also superior to all the three recently developed algorithms.

B. Quarter band

Quarter band here means that the m null carriers are chosen at
random with uniform probability over the last

(n/4
m

)
subsets i.e.

null carriers can only be placed in the last 25% carriers. This
is in accordance with DSL specifications as most of the carriers
at spectrum edges are not considered for data transmission due
to high attenuation. From Figure 4, it can be observed that the
proposed algorithm performs better than all the other algorithms. The
performance of greedy algorithms (GP and NOMP) is reasonable but
the SP algorithm fails completely as the projection matrix Ψ is not
rich enough in this case (as null carriers are not random enough).
The proposed algorithm beats the CS-MMSE algorithm in this case
also.

V. CONCLUSION

In this paper, we propose a CS based algorithm to detect, estimate
and eliminate the effect of impulsive noise is DSL systems. The
presented algorithm consists of three steps. First, the impulsive noise
is projected onto a small dimensional space to obtain a coarse
estimate of the impulse positions using CS. This is followed by
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its refinement using a MAP metric based on a priori information
that the impulse noise is Bernoulli-Gaussian. Finally, the impulse
amplitudes are obtained using MMSE estimation. Simulation results
demonstrate that the proposed algorithm easily outperforms the CS-
MMSE algorithm presented in [4] which signifies the gain achieved
by refining the CS output. The proposed algorithm is also compared
with three recently developed sparse reconstruction methods over a
DSL channel and the simulations show the favorable performance of
the proposed algorithm.
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