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Abstract—Random beamforming (RBF) exploits multiuser di-
versity to increase the sum-rate capacity of MIMO broadcast
channels. However, in the presence of spatial correlation between
the downlink channels, multiuser diversity can not be exploited
and the sum-rate suffers a signal to noise (SNR) hit. In this paper,
we explore precoding techniques that minimize this hit. Basically,
we derive an optimum and an approximate precoding matrix that
minimizes the sum-rate hit of RBF. As a by product, we introduce
a technique that evaluates the cumulative distribution function
(CDF) of weighted norms of Gaussian random variables.

I. INTRODUCTION

Multiple antennas in multiuser systems have been intro-
duced as an effective means to boost wireless system capacity.
While dirty paper coding (DPC) is known for achieving the ca-
pacity region in a broadcast scenario, it requires full feedback
and it is computationally expensive [1]. Other less expensive
techniques like random beamforming were able to capture
most of the DPC capacity with less feedback requirements
[2]. In a large user regime, the sumrate of RBF and DPC
coincide at

R = M log log n + log
P
M

+ o(1)

where P is the transmitted power, M is the number of transmit
antennas and n is the number of users. In the presence of
spatial correlation between the users’ channels, the sum-rate
capacity experiences a hit and becomes,

R = M log log n + log
P
M

+ log c + o(1)

where log c represents the hit and c ≤ 1.
In this paper, we investigate different precoding techniques

that minimize the sum-rate hit in the presence of spatial
correlation. The paper is organized as follows. After the
introduction in section I, we introduce the channel model in
section II. Random beamforming with precoding techniques
are reviewed in section III and in section IV we show our
simulations results followed by our conclusions in section V.

II. CHANNEL MODEL

We consider a multi-antenna Gaussian broadcast channel
with n receivers equipped with one antenna and a transmitter
with M antennas. The received signal at the kth user is
expressed as

Yk(t) =
√

PHkS(t) + Wk, k = 1, . . . , n, (1)

where k denotes a user index. S(t) denotes transmitted symbol
and satisfies the power constraint E{S∗S} ≤ P . The channel
matrix Hi consists of complex Gaussian random variables
CN(0, R) and Wk is the additive complex Gaussian noise
with CN(0, 1). The covariance matrix R is a measure of
the spatial correlation and is assumed to be non-singular with
tr(R) = M .

III. RANDOM BEAMFORMING WITH PRECODING

In the presence of spatial correlation, we can precode the
transmitted symbol with a general matrix A before beamform-
ing, i.e.transmit αAS(t). The parameter α satisfies the power
constraint (α = M

tr(AA∗) ) and the sum-rate eventually becomes

RPrec = M log log n + M log
P
M

− hPrec

with a hit of

hPrec = M log
tr(AA∗)

M
+ ME log

(

‖φm‖2
Λ̃−1

)

. (2)

It should be noted that Λ̃ is constructed from the eigenvalues
of R̃ and the effective channel gain is H̃k = AHk. Finding the
optimum precoding matrix Aopt is challenging, but one can
show that the optimum precoding matrix takes the following
form

Aopt = QAoptDAopt

where QAopt is orthonormal and DAopt is a diagonal matrix
with positive entries 1. The proof of the above expression
is straight forward and for brevity we omit it here. Finding
QAopt and DAopt is not easy. An intuitive choice would be to
set QAopt = QR and optimize over DAopt. In the following
sections, we examine various choices of the diagonal matrix.

A. Random Beamforming with Zero Forcing

A natural choice of the precoding matrix is one which
cancels the effect of the correlation, i.e.

AZF = QRΛ− 1
2

R

From (2), this choice would results in the following hit

hZF = M log tr(R−1)
M

1It is shown in [6]that this intuitive choice is actually optimum
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B. Random Beamforming with MMSE Precoding

The zero-forcing solution did not optimizes the sum-rate
as it invested most of the input power to take care of the
minimum eigenvalue. In this subsection, we consider the
MMSE precoding matrix to be

AMMSE = QR(Λ + βI)−
1
2

where β is a constant that we optimize to get the minimum
hit. The hit in this case is given by

hMMSE = M log
Tr(Λ + βI)−1

M
+ ME log

(

1 + β‖Φm‖2
Λ−1

)

(3)

To find the optimum β, we differentiate (3) with respect to
β and get the following equation

Tr(Λ + β∗I)−2

Tr(Λ + β∗I)−1 = E





1
β + 1

‖Φm‖2
Λ−1



 (4)

To solve this implicit equation, we need to find the expectation
in (4) and hence the CDF of 1

‖φm‖2
Λ−1

. In the Appendix, we

evaluate the CDF of the more general form Z = ‖φ‖2
B

‖φ‖2
C

. By
setting B = I and C = Λ−1, we get the desired CDF which

turns out to be G(x) = 1−∑

i ηi

(

1
x − 1

λi

)M−1
u

(

1 − x
λi

)

,
where ηi = 1

∏

j 6=i
1

λj
− 1

λi

, λM (λM ≥ · · · ≥ λ1 > 0) are the

eigenvalues of R and u(x) is the unit step function. Thus, the
expectation in (4) is given by

E





1
β + 1

‖Φm‖2
Λ−1



 =
1

1 + λM
+

∫ λM

λ1

1
(β + x)2

G(x)dx

C. Random Beamforming with Diagonal Precoding

We can try to improve MMSE precoding by using a more
general precoding where we optimize over M unknowns
instead of just one unknown (β). As shown in [6], this will
yield the optimum precoding matrix. Specifically, we set

ADiag = QRD
1
2

where D is a diagonal matrix with positive entries to be
determined. This will result in the following hit

hDiag = M log tr(D)
M + E log ‖φ‖2

D−1Λ−1

Thus, we have a set of M parameters, d1, d2, . . . , dM that we
need to optimize. By taking the derivative with respect to the
ith diagonal di element and setting it to zero, we obtain

1
di

E

[

1
diλi

|φ(i)|2

‖φ‖2
D−1Λ−1

]

=
1

tr(D)
(5)

To solve for di, we need to find the expectation that appears in
(5). This can be deduced from the CDF that is derived in the
Appendix by setting B = diag(0, . . . , 1

diλi
, . . . , 0) and C =

D−1Λ−1. This allows us to evaluate the expression in (5) in
closed form directly from the CDF as shown below:

E[Z1] =
∫ 1

0
(1 − FZ1(z1))dz1.

D. An approximate Precoding Matrix

As proved in [6], the matrix ADiag = QRD
1
2 is the

optimum precoding matrix but this requires solving M non-
linear equations. In this section we derive a simple and an
approximate precoding matrix that avoids this. To this end,
note that the difficult part in minimizing the hit is the term
that depends on φm. So we rewrite the hit as

h(t) = M log
tr(A∗A)

M
+ ME log ‖φ‖2

(A∗RA)−1

= M log
tr(A∗A)

M
+ M log tr((A∗RA)−1)

+ ME log ‖φ‖2
(A∗RA)−1

tr(A∗RA)−1

(6)

We now minimize the sum of the first two terms of the hit and
ignore the 3rd term. There are two justifications for doing so

1) The first two terms constitute an upper bound on the hit.
To see this, note that

log ‖φ‖2
(A∗RA)−1

tr(A∗RA)−1

= E log ‖φ‖2
(Λ̃)−1

tr(Λ̃−1)

≤ log ‖φ‖2 tr(Λ̃−1)
tr(Λ̃−1)

= 0

where Λ̃ is the diagonal matrix of eigenvalues of A∗RA.
2) Another justification is to consider the term ‖φ‖2

(Λ̃)−1

tr(Λ̃−1)

as the squared dot product of two unit norm vectors

φ and c = diag(Λ̃)−
1
2√

tr(Λ̃−1)
. This squared dot product can

be approximated as the squared dot product of two
uniformly distributed unit norm vectors υ which has a
CDF [5]

F (υ) = 1 − (1 − υ)M−1 υ ∈ [0, 1]

Hence, we can approximate the expectation in (6) as

E log ‖φ‖2
(Λ̃)−1

tr(Λ̃−1)

' E[log υ] (7)

= −
M−1
∑

m=1

1
m

(8)

Figure (1) plots the two sides of (7) for various values
of the correlation coefficient α and shows that they are
almost the same.

Thus up to an almost constant term, the hit is given by

h(t) = M log(
tr(A∗A)

M
+ tr((A∗RA)−1))

To minimize the hit we take the first derivative with respect
to A, equate it to zero and use the eigenvalue decomposition,
R = QRΛRQ∗

R, to get

AAppx = QRΛ−1/4
R
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Fig. 1. Comparison between the exact and approximate terms in Equ. (7).

The resulting hit for this choice of A is given by

hAppx = M log tr(Λ− 1
2 )

M + M log ‖φ‖2
Λ− 1

2

IV. SIMULATION RESULTS

We consider a base station having M = 2 and M = 3 anten-
nas. The downlink channels exhibit the following correlations
respectively 0 ≤ α < 1

R2 =
[

1 α
α 1

]

R3 =





1 α α2

α 1 α
α2 α 1





Figures 2 - 4 show the scaling for the different precoding
techniques. As seen, diagonal precoding achieved the best
sum-rate capacity with minimum hit. This is closely followed
by the MMSE and the approximate precoding. Note also that
zero forcing is inferior to pure RBF.

V. CONCLUSION

In this paper we suggested precoding techniques that
counter the effect of correlation on the sum-rate of RBF.
Specifically, we showed that in the presence of spatial correla-
tion, RBF incurs a hit. We also showed that RBF with MMSE
and diagonal loading reduced the SNR hit and improved the
sum-rate capacity as compared to pure RBF and RBF with zero
forcing was inferior to pure RBF. Furthermore, we introduced
a rather simple, direct and an approximate precoding technique
that matched the performance of MMSE precoding.
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Fahd University of Petroleum and Minerals, Dhahran, Saudi
Arabia.
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Fig. 2. Sum-rate versus the number of users in a system with M = 2, P =
10 and α = 0.5.
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Fig. 3. Sum-rate loss versus correlation factor for a system with M = 2,
P=10 and n = 400.
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Fig. 4. Sum-rate loss versus correlation factor for a system with M = 3,
P=10 and n = 100.
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VI. APPENDIX

In this section, we evaluate the CDF of a general quantity

Z =
‖φ‖2

B

‖φ‖2
C

where B and C are diagonal matrices. To this end, note that
the inequality Z ≤ x can be written as ‖φm‖2

xC−B ≥ 0 . The
CDF is then given by

P{Z ≤ x} =
∫

‖φm‖2
xC−B≥0

p(φ)dφ

=
∫

p(φ)u(‖φm‖2
xC−B)dφ (9)

where p(φ) is the pdf of φ defined in (4) and u(x) is the
step function. This integral is difficult to calculate due the
inequality constraint (the unit step function) and due to the
delta function. To go around this, we use the following unit
step representation [4]

u(x) =
1
2π

∫ ∞

−∞

ex(jω1+β1)

jω1 + β

which is valid for any β1 > 0. We can thus write

u(‖φm‖2
xC−B) =

1
2π

∫ ∞

−∞

e(‖φm‖2
xC−B)(jω1+β1)

jω1 + β1
dω1

We can also replace the delta function with a similar integral
representation

p(φ) =
Γ(M)
πM

1
2π

∫ ∞

−∞
ejω2(‖φ‖2−1)dω2

We thus have the following integral representation of the CDF
of Z

P{r ≤ x} =
Γ(M)
4πM+2 ×
∫ ∞

−∞
dω1

1
jω1 + β1

∫ ∞

−∞
dω2e−jω2

∫

dφe−φ∗((B−xC)(jω1+β1)−jω2I)φ

By inspecting the inner integral, we note that it is similar to
the Gaussian density integral. Specifically, we have

1
πM

∫

dφe−φ∗((B−xC)(jω1+β1)−jω2I)φ =

1
det ((B − xC)(jω1 + 1) − jω2I)

This allows us to write

P{Z ≤ x} =
Γ(M)
4πM+2

∫

dω1
1

jω1 + β1
∫

dω2
e−jω2

det ((jω1 + β1)(B − xC) − jω2I)
(10)

We now turn our attention to the integral with respect to ω2.
To evaluate this integral, we use partial fraction expansion to

represent the determinant as

1
det ((jω1 + β1)(B − xC) − jω2I)

=
1

∏M
i=1 ((bi − cix)(jω1 + β1) − jω2)

=
1

(jω1 + β1)M−1 ×
M
∑

i=1

ηi

((bi − cix)(jω1 + β1) − jω2)
(11)

where ηi = 1
∏

k 6=i((bk−bi)−(ck−ci)x) . This expansion is valid
assuming that (bk−bi)2 +(ck−ci)2 6= 0. We can now residue
theory to evaluate the integral with respect to ω2 as

1
2π

∫

dω2
e−jω2

det ((jω1 + β1)(B − xC) − jω2I)
=

M
∑

i=1

ηie(bi−cix)(jω1+β1)u(bi − cix)

We can thus write

P{Z ≤ x} =
Γ(M)
4πM+2

∫ ∞

−∞
dω1

1
(jω1 + β1)M

M
∑

i=1

ηie(ai−bix)(jω1+β1)u(ai − bix)

We can now use residue theory to show that

P{Z ≤ x} =
Γ(M)
4πM+2

M
∑

i=1

ηiu(bi − cix)

∫ ∞

−∞
dω1

e(jω1+β1)(bi−cix)

(jω1 + β1)M

=
M
∑

i=1

ηi(bi − cix)M−1u(bi − cix)u(bi − cix)
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