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Abstract 
The class of least mean square (LMS) algorithms 

employing a general error nonlinearity is  considered. 
A linearization approach is used to  characterize thc 
convergence and performance of this class of algo- 
rithms f o r  an  independent and identically distributed 
(aid) input. The  analysis results are entirely consis- 
tent with those of the LMS algorithm and several of its 
variants. The  results also encompass those of a recent 
work that considered the same class of algorithms f o r  
arbitrary and Gaussian inputs. 

1 Introduction 

The LI'vlS algorithm is one of the most widely used 
adaptive schemes. It has many desirable features, e.g., 
lower order of complexity and easy implementation. 
However, to overcome some of its limitations, sev- 
eral LMS-variants have been proposed and analyzed. 
These limitations are generally due to  noise distri- 
butions and spectral coloration of the input signal. 
In the case of the noise distributions, the LMS algo- 
rithm is optimal only if this distribution happens to  
be Gaussian. However, the least mean fourth (LMF) 
[I] outperforms the LMS algorithm only when the dis- 
tribution is not Gaussian. 

In many situations in which adaptive filters are 
used, the dominant source of interference is not Gaus- 

0-7803-5 148-7/98/$10.000 1998 IEEE 

sian and instead has impulsive character. For exam- 
ple, lightning and switching transients can cause im- 
pulsive interference on telephone lines. In these kinds 
of operating environments, echo cancellers and adap- 
tive equalizers which use the LMS algorithm may suf- 
fer from poor performance due to high variance gra- 
dient estimates resulting from non-Gaussian noise. 

Of particular importance is the class of least mean 
adaptive algorithms with a general error nonlinear- 
ity. The optimum error nonlinearity will result in the 
best performance of the adaptive algorithm. In this 
work, the convergence analysis for stochastic gradient 
algorithms with a general error nonlinearity and an 
iid input is considered. The optimum nonlinearity for 
such a scenario is reported in [2]. 

After presenting the proposed algorithm in Section 
2, the convergence analysis of the algorithm is pre- 
sented in Section 3, and finally a conclusion to  this 
work is given. 

2 Proposed algorithm 

For analysis purposes, it is more convenient to de- 
scribe this class in terms of the weight error vector 
V ( k )  which is updated according to 
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where X(k) is the input data in the filter memory a t  
time k, f is an error nonlinearity, and p is the step 
size. In a system identification model, as it  is depicted 
in Figure 1, the error e(k) is related to  V(k) and to 
the additive noise n ( k )  through the filtering equation 

e ( k )  = n ( k )  - ~ ‘ ( k ) ~ ( k ) .  (2) 

Several familiar algorithms are obtained by a proper 
choice of the nonlinearity f. Examples include the 
LMS algorithm, the sign-error algorithm, the LMF 
algorithm and its family [l], and the mixed-norm al- 
gorithm [3], [4]. 

I n(k) 

Input rlgrul 
Unknown System 

I -  

Figure 1: Adaptive system identification. 
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3 Convergence analysis of the algo- 
rit hm 

For an effective use of such algorithms, it is impor- 
tant to characterize their convergence and quantify 
their performance. For an arbitrary distribution of 
the input and noise, this is usually done by linearizing 
the nonlinearity f about some operating point. This 
linearization trick was explicitly realized in [5] and 
was used to  study the convergence and performance of 
the class of algorithms (1)-(2) for an arbitrary input. 
Here, we employ this linearization approach to  study 
the same class of algorithms for an iid input. The 
simplifying iid assumption makes it possible to arrive 

at tighter convergence conditions and a more accurate 
description or the algorithm performance. The non- 
linearity f can be expanded in a third order Taylor 
series about the noise sample n ( k ) .  Thus, as the error 
e ( k )  is related to n ( k )  by the filtering equation (2), it 
follows that 

f ( e ( k ) )  = f ( n ( k ) )  - f’(n(k)) (VT(k)XW) 

+ i f ’ / ( n ( k ) )  (VT(k)X(k))2 * (3) 

With this linearization, the adaptation equation (1) 
becomes 

V(k + 1) = V(k)  + PfMk))X(k) 
- P f W ) )  ( V T ( W ) )  X ( k )  

+ p f ?  (. ( I C ) )  

x (VT(k)X(k))’X(k). (4) 

1 

The above equation is called the linearized adaptation 
equation. 
3.1 Convergence in the mean and the 

Starting with the adaptation equation (4) and tak- 
mean-square error 

ing expectation gives: 

the convergence in the mean is ensured by the follow- 
ing proposition [6]: 

Proposition 1 The inequality 

represents a necessary and suf ic ient  condition for  
convergence of (1)-(2) in the mean. 
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While, the convergence in the mean-square of the 2. From Table 1, we can compare the performance 
proposed algorithm is governed by the convergence of results of [5] when specialized to an iid input 
the following: with those reported in this paper. We notice 

that the arbitrary input results approximate, to  
E [ V ( k  + l)VT(lc + l ) ]  = E [VV‘] 

the  first order and for sufficiently small step size, 
the results of the independent input case. + p 2 E [ f 2 ] E  [ X X T ]  

-PE[f’]E [Xv’(V‘X)] 

+p E [ f ’ ] E [ V X  ( V’X ) ]  

+P2E[(f’2 + ff”)] 
[ X X T ( V T X ) 2 ]  7 (7) 

3. If the input is restricted to  be iid Gaussian, then 
the mean and mean-square recursions obtained 
through the linearization approach are in agree- 
ment with the corresponding recursions obtained 
in [5] through a conditional analysis approach 
(for details, see [SI). equivalently [SI : 

Proposition 2 The  inequality 4 Conclusion 

The convergence analysis for stochastic gradient al- 
gorithms with a general error nonlinearity and an iid 
input is treated in this work. The performance anal- 
ysis results of several algorithm can be immediately 

( 8 )  
2 4 E [ f  ‘ I  

m2,4 + ( L  - 1 ) 4 l E [ f ’ 2  + f f l q  
O < p <  

gives a suf ic ient  condition for  convergence of (I)-($) 
in the mean square sense. 

recovered by a proper choice of the error nonlinearity. 
The expectations E [ f 2 ] ,  E[f’] ,  and E[f12 + ff’] are 
taken with respect to  the noise n(lc), and  TIL,,^ is the 
fourth moment of x. 
3.2 Misadjustment 

A measure of how far the excess mean-square error 
(MSE) t o  its minimum is measured through the use 
of the misadjustment factor, and for this algorithm is 
given by [6]: 
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Conditions 
for convergence 

of the mean 

Time 
constants 

Conditions 
for convergence 

in the mean-square 

Misadjust ment 

Arbitrary Input 

1 
Xmaz E[  f ‘1 O < p <  

Independent Input 

2 
o < p < - -  ‘ 

UfE[f ‘ I  

Table 1: A summary of the convergence analysis re- 
sults for the algorithms with a correlated input and 
an iid input, respectively. 
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