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ABSTRACT

OFDM is a convenient vehicle for high rate transmission. How-
ever, this requires an accurate estimation of the channel at the re-
ceiver side. This paper proposes an iterative/adaptive algorithm
for semi-blind channel estimation. An initial channel estimate is
obtained by relying on the artificial constraint of pilots. The al-
gorithm subsequently switches to the blind mode powered by the
natural constraints imposed by the sparsity of the channel and
the redundant and finite alphabet nature of the data. It iterates
between using the channel estimate to detect the data, and using
the data estimate to further improve the channel estimate. The
diagonal nature of the OFDM channel makes it possible to op-
timally detect the data with low complexity. The complexity of
the algorithm is further reduced by performing channel estimation
adaptively. The simulation results demonstrate the favorable be-
havior of the algorithm and the tradeoff that it provides between
the number of pilots used and convergence speed.

1. INTRODUCTION

Lately, there has been increasing interest in OFDM as it com-
bines the advantages of high achievable rates and easy im-
plementation. This is reflected by the many standards that
have considered and adopted OFDM including those for dig-
ital audio and video broadcasting, high speed modems over
digital subscriber lines, and local area wireless broadband
systems. [1]

OFDM divides the communication channel into indepen-
dent subchannels by appending a cyclic prefix (CP) to the
data block transmitted through the channel. This turns out
to be a very convenient structure that lends itself to exploit-
ing the various constraints imposed by the transmitter and
the channel. Many techniques have been proposed in lit-
erature to estimate and equalize channels for OFDM trans-
mission (see, e.g., [1, 2, 3, 4] and the references therein).
In this paper, we propose a method for semi-blind channel
and data recovery. Specifically, we use the natural channel
constraints and those imposed by the transmitter to per-
form channel and data recovery within a few packets and to
reduce the number of pilots that are eventually needed.

The paper is organized as follows. After introducing our
notation, we describe the essential elements of OFDM trans-
mission in Section 2. In Section 3, we study three chan-
nels associated with OFDM transmission and describe how
they can be used for channel and/or data recovery. Our
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findings are subsequently organized in Section 4 into a self-
contained semi-blind algorithm. Simulations are presented
in Section 5.

1.1. Notation

‘We denote scalars with small-case letters, vectors with small-
case boldface letters, and matrices with uppercase boldface
letters. Caligraphic notation (e.g. X) is reserved for vectors
in the frequency domain. When these variables become a
function of time, the time index i appears between paren-
theses for scalars (e.g. z(i)) and as a subscript for vectors
(e.g. h;). The notation h is used to denote an estimate of

Now consider a length-N vector ©;. We deal with three
derivatives associated with this vector. The first two are
obtained by partitioning ; into an upper (prefix) vector g,
and a lower (usually longer) vector &;. The third derivative,
T, is created by concatenating @; with a copy of its pre-
fix z;. The interrelations among @; and its derivatives are
summarized by the following

x Z;
T = [ ;’: ] = | & (1)
&

This notational convention will be extended to matrices as
well. Thus, a matrix Q with N rows can be partitioned as

Q=[%]=[o%f,,]=[%ﬁl] ®

The subscripts stand for the indicator set of the rows in the
partitioned matrices or for their number. They are omitted
whenever they are understood.

2. ESSENTIAL ELEMENTS OF OFDM

In OFDM, a data sequence {X(i)} is transmitted in packets
X; of length N. Each packet undergoes an IDFT operation
to produce the transform vector x; :

Ty = Qxi (3)



where Q is the IDFT matrix
;2
Q= [e’T;””‘]

If the underlying sequence {z(i)} is transmitted through a
channel k (whick we take to be FIR of length L+1), it will be
subject to intersymbol interference (IS1). To get around this,
a guard band is inserted between any consecutive packets,
@;-1 and z;. Specifically, to each packet x;, we append a
cyclic prefix z; of length L as done in (1). This induces the
sequence {Z(i)} which in turn produces the sequence {g()}
at the channel output. Motivated by the packet structure of
the input, it is also convenient to deal with the output in the
form of packets of length M = N + L, and further split each
packet into a length-N packet gy, and a prefix associated
with it g, ie.

This is a natural way to partition the output because the
prefix Y, takes the burden of interference between %;-; and
T;, while the remaining part, y;, depends on the ith input
packet F; only. These facts and more can be seen from the
relationship

O

Y

=i

Y

Y= (5)

Yia -1
Y; = n; + (6)
Y i
H Onxr Onxn Zi-y
R ‘e wi—l
OLxny HP H" OLxn Liy
Onxn OnxL H :'
x;

where n is the output noise, which is assumed to be white
Gaussian with variance o2. The matrices H, HZ, and HF
are convolution (Toeplitz) matrices of proper sizes created
from the vector h.

3. DECOMPOSING THE OFDM CHANNEL

Because of the redundant nature of the input, the convolu-
tion in (6) can be decomposed into two constituent convolu-
tion operations or subchannels. In the following we discuss
both and demonstrate how they can be used for channel
and/or data recovery.

8.1. Circular Convolution (Subchannel)

From (6), we have the subsystem of equations

|

&;
T

Z;

y,=H ] =HTi+n )
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This means that y; is created solely from F; through con-
volution. Moreover, the existence of a cyclic prefix in &
renders this convolution cyclic:

®
where h is a length-N zero-padded version of b
A h
h= [ O(n—L-1)x1 ] ©®

It is best to describe this channel in the frequency domain
where the the cyclic convolution (8) reduces to the element-
by-element operation

[Yi=HOXi+Ni] (10)

Here H, X;, and Y; are the DFT’s of h, ;, and y;, respec-
tively. In other words, we have

h=QH, =z =QX; (11) .

From (9) and (11), we can show, using the unitary nature -
of Q, that

and y; =QY;

H

Qb= (12)"

This in turn enables us to write (10) in the time-frequency -
form

b2 =diag(xi)Q2+1h+Ni (13)

3.1.1. Mean-Square Estimation of Data

The diagonal nature of the cyclic subchannel makes it possi-
ble to perform MMSE estimation with low complexity. Specif-
ically, given the channel # or an estimate of it, one can
recover the input through an element-by-element operation:

VEXH* (1)

PMMSE 1y _
A0 = SO + o

y:(l) (14)

However, this represents the best linear estimate of A;(l)
given Y;(I) which becomes truly optimal only when A;(l)
and Y;(l) are jointly Gaussian. This is not the case for
data transmission where X;(l) is drawn from a finite alpha-
bet. The diagonal nature of the channel actually enables
us to pursue truly optimal estimation without compromis-
ing complexity. The optimum estimate of X;(l) given Yi({)
is given by the conditional expectation E[X;(1)|V:i(1)] [5],:
which calls for calculating the conditional pdf f[X:(1)]):i(1)].
Assuming that X;(l) takes its values from the alphabet A =

{A1, As,...,A 4} with equal probability, it is straight for-
ward to show that '
Y ERORIUEAU! 3
e o
ARDPO] = . (15)
e |



and subsequently that

imlAl _Ii=nman?
Ej;l Aje on

AMMsE(y E X)) =

(16)

_1%)-K()4;13
Z}ill e on

The estimate gets eventually rounded to the nearest alpha-
bet '

&= 1AM an

8.1.2. Using Pilots for Initial Channel Estimation:

The circular convolution channel can be used for the dual
purpose of channel estimation from known input. Although
there are N elements in the frequency response #, they
have at most L + 1 degrees of freedom controlled by the
corresponding elements of h (see (12)). Thus, instead of
identifying H from (10), we attempt to identify k from (13).
To this end, let I, = {41,143,... ,iL} denote the index set of
the pilot bins. These pilots yield a subsystem of (13) in the
IRh

(yi)1,,

il

(aog(x0@;,,), B+Wa, (8
Arh+ (N,'),p (19)

where

A2 diag (xi)th

The subscript I, in Ay, is an indicator set of the rows of Ap,
as a submatrix of A. The system (19) can be solved uniquely
in the LS sense when L, > L + 1. We can also reduce the
overhead of pilots below L + 1 and rely on the more natural
channel and transmitter induced constraints * to identify the
channe! uniquely. In this case, however, the system of equa-
tions (19) becomes underdetermined and uniqueness can be
restored by solving the (a-) regularized LS problem instead

min olh||* + [V ~ Akl (20)

where W = ;%-I is the inverse covariance matrix of the
noise. The solution of (20) is given by

h = (aI+A;,WAL) " AW, (1)

3.2. Linear Convolution (Subchannel)

From (6), one can deduce the following relationship involv-
ing input and output prefixes

v=(H B ][5 ]+n (22)

=1

!The maximum delay spread is the only channel constraint
that was used here. Additional sparsity constraints like the exact
channel order and the location of the active (nonzero) taps can
also be incorporated to improve convergence speed.
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This shows that the underlying output prefix sequence {y()}
can be obtained from the input prefix sequence {z(¢)} through
linear convolution with the channel, i.e.

|46) = k() + 2() +n(3) | (23)

This input/output relationship can be used for channel iden-
tification. Thus, given an estimate of the input, obtained,
say, through frequency domain equalization, one can obtain
a corresponding estimate of &;. This estimate, together with
the output prefix, can be used to track channel variations
(see [6]). However, since the channel and prefix lengths are of
the same order, the identification algorithm requires a large
number of prefixes (and hence packets) to converge. Con-
vergence speed can be substantially increased if the whole
packet F; (including its cyclic prefix part) is used for channel
estimation, as we will now explain.

3.3. Total (Linear) Convoiution

The sequence {%(¢)} at the channel output is related natu-
rally to the input sequence {Z(¢)} through linear convolution
with the channel

F(¢) = h(i) * T(3) + 7(3) (24)

Now, in line with the notation adopted here, define h to be
another zero-padded version of k of length N 4 L ?

"2 | utoms |~ 00 ]
Ow-nx1 ] | Owxa

Zero padding does not affect linear convolution, and the out-
put sequence {%(2)} is still related to {Z(:)} though linear
convolution with k. Thus, the convolution (24) can be writ-
ten in the more consistent form

|76) = RG) + 36) +76) | (25)

Given the output sequence {%(i)} and the input sequence
{Z(i)} or an estimate of it, the total linear convolution can
now be used for channel identification. This can be achieved
adaptively, e.g. with the LMS algorithm:

&14.1 .ili + I‘e(i)f; (26)
(i) = y6)-Tihy (@7)
= o= [ 3() ZG-L+1) 3(i—L) ] (28)

where h; is the estimate of h at time i. Note that the row
vector E; stands not for the packet transmitted at time ¢ but
rather for the shift regressor vector obtained from the time
sequence {Z(3)}.

Remark: The boxed relationships (8), (10), (23) and (25)
demonstrate how our notation blends smoothly with the na-
ture of the OFDM problem, so much so that these relation-
ships could be written almost by inspection.

2Recall that h, defined in (9), is too a zero-padded version of
b of length-N.



4. SEMI-BLIND ALGORITHM FOR CHANNEL
ESTIMATION

The above developments can be organized into a semi-blind
algorithm for channel estimation

e A priori information

— Noise variance o2 and pilot locations (indexed
by ]p)

e Initial channel estimation

— Use pilots to find the LS estimate of the channel,
h (21). Set W = %I

¢ Detection, estimation, and iterative refinement
of estimates For each incoming packet X;, perform

— MMSE detection:

* Find frequency response estimate 7 (12)

* Perform MMSE detection xzmse e i’:ﬂMSE

(linear (14) or optimal (16))

* Round to the nearest alphabet point Xo... X;

1n
* Obtain time domain blocks &p...&; (11)
— Adaptive channel estimation

*+ Employ the LMS to identify channel adap-
tively (26)-(28)

— Iterative refinement

* Repeat as long as estimates change

5. SIMULATIONS

We consider OFDM PAM transmission with packet length
N = 128 and cyclic prefix length L = 15. The channel is
FIR of length 16 (which requires 16 pilots to identify in the
noiseless case). Pilots are transmitted in the first packet
only, and their number is varied between 4 and 16 (i.e. be-
tween 25% and 100% of what is required for identifiability
in the noiseless case). The SNR is fixed at 11 dB. In the
algorithm, adaptation is performed over 5 packets with 4
iterations per packet for a total of 20 iterations. We use
three setups to demonstrate the various aspects of our algo-
rithm, plotting in each the mean-square error ||k; — h||® vs
the number of iterations.

Linear vs. optimum MMSE estimation: We begin by demon-
strating the advantage of employing optimum vs. linear es-
timation on the performance of our algorithm. We use only
8 pilots and take the input to be 4-PAM. The two methods
are compared in figure 1. As expected, optimal estimation
exhibits lower mean-square error.

Adaptation using the whole packet vs CP only: We proceed
by showing the advantage of using the whole packet for chan-
nel identification over using only part of it (e.g. using the CP
part as done in [6]). The input here is taken to be 2-PAM.
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Comparison of Linear ve Optimal estimation for 4-PAM
T T T T T T T

—= Linear Estimates
timal Eslimates

Iteration

Figure 1: Optimal vs.

linear MMSE estimation for,
4-PAM and 8 pilots '

The two methods are compared in Fig. 2 where estimation
is initialized with 8 pilots. Fig 3 compares the two methods
when 16 pilots are used.

Comparison of LMS using all received samples vs LMS using only the cyclic prefixes
! J J : ; : "~ W5 using entire packels
LMS usin, lic prefix onl

teration

Figure 2: Adaptation using the whole packet vs. CP.
only for 2-PAM and 8 pilots

Tradeoff between number of pilots and convergence speed:
Fig. 4 exhibits the trade off between the number of pilots
and convergence speed. Increasing the number of pilots im-
proves the convergence speed and reduces the steady-state
estimation error.




Comparison ol LMS using all received samples vs. LMS using only the cyclic prefixes
-

T T —T T T

035 L . : t B : ~— LMS using entire packets
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Figure 3: Adaptation using the whole packet vs. CP
only for 2-PAM and 16 pilots

Parformance of LMS for different number of pilots in the first packet
T T Y T T T T ~T e
: : : : : : : : — 4 pliots
2 : : : : : : : : + 12pills
RE : : : : : : : ~ 18 plets

Timim e i3 iHim - -
10 12 14 16 18 2
Iterations

Figure 4: Comparison of convergence speed for different
number of pilots in the first packet for 2-PAM input

6. CONCLUSION

In this paper, we introduced a semi-blind algorithm for chan-
nel identification in OFDM. The algorithm uses a few pilots
to initialize the estimation process and subsequently uti-
lizes the natural constraints imposed by the channel and
the transmitter to identify the channel completely. The iter-
ative nature of the algorithm enhances the quality of the es-
timates, and its adaptive nature serves to reduce the overall
complexity. By incorporating some reliability information
about the channel and data estimates, one could further im-
prove the robustness and speed of the proposed algorithm.
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