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Abstract—OFDM combines the advantages of high perfor-
mance and relatively low implementation complexity. However,
for reliable coherent detection of the input signal, the OFDM
receiver needs accurate channel information. When the chan-
nel exhibits fast time variation as it is the case with several
recent OFDM-based mobile broadband wireless standards (e.g.
WiMAX, LTE, DVB-H), channel estimation at the receiver
becomes quite challenging for two main reasons 1) the receiver
needs to perform this estimation more frequently and 2) channel
time-variations introduce inter-carrier interference among the
OFDM sub-carriers which can degrade the performance of
conventional channel estimation algorithms significantly. In this
paper, we propose a new pilot-aided algorithm for the estimation
of fast time-varying channels in OFDM transmission. Unlike
many existing OFDM channel estimation algorithms in the liter-
ature, we propose to perform channel estimation in the frequency
domain, to exploit the structure of the channel response (such
as frequency and time correlations and bandedness), optimize
the pilot group size and perform most of the computations
offline resulting in high performance at substantial complexity
reductions.

Index Terms—Channel estimation, Doppler frequency, Model
reduction, ICI, OFDM.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) en-
ables high-speed transmission over frequency-selective chan-
nels with simple one-tap equalizers by creating a set of
parallel, orthogonal, frequency-flat sub-channels using the
computationally-efficient IFFT/FFT modulation/demodulation
vectors. OFDM has found widespread applications and is
already part of many industry standards including digital audio
and video broadcasting (DAB/DVB), high-speed transmission
over digital subscriber line (DSL), and wireless local area net-
work (WLAN) standards (e.g., IEEE 802.11a/b/g and HIPER-
LAN/2) [1]. OFDM is also the modulation scheme of choice
for broadband wireless communications standards including
802.16e (metropolitan area networks), 802.11n (local area
networks), and 802.15.3 (personal area networks) and other
emerging cellular wireless communications systems like 3GPP
evolution and 4G.
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However, in a mobile wireless environment (which is the
case for many of the applications mentioned above), the
channel is continuously changing with time. This represents
a burden on the receiver since it has to estimate the channel
accurately before coherent detection. A more severe conse-
quence of time variation is that the set of parallel OFDM sub-
carriers lose their orthogonality in a phenomenon known as
inter-carrier interference (ICI). This ICI phenomenon is the
frequency-domain dual of inter-symbol interference (ISI) that
plagues single-carrier transmission over frequency-selective
channels. The severity of ICI depends on the degree of
channel time variation (Doppler frequency). ICI makes data
detection less reliable as the OFDM sub-carriers are now
coupled and one-tap per sub-channel equalization becomes
highly suboptimal. More complex equalizers are thus needed
at the receiver to untangle the data streams that are transmitted
over the OFDM sub-carriers. Furthermore, this ICI makes
the channel estimation task more challenging since not only
the individual sub-channel frequency responses need to be
estimated but also the interference caused by each sub-channel
into the other sub-channels in each OFDM symbol.

In the absence of ICI (which occurs when the channel
remains constant within each OFDM symbol), the diagonal
of the channel frequency response (CFR) matrix needs to
be estimated (i.e., N parameters where N is the FFT size).
However, for severe time variation, in principle, one needs to
estimate every element of the CFR matrix (i.e., N2 parame-
ters). In practice, it turns out that it is sufficient to estimate
only M (M ¿ N) diagonals of the CFR matrix and, hence,
estimate only MN parameters. Thus, in the presence of ICI,
the number of estimated channel parameters increases which,
in turn, increases the training overhead and, hence, reduces
the useful data throughput of the system [2].

Channel estimation for OFDM can be performed in the
frequency or time domains. Conventional frequency-domain
channel estimation algorithms ignore ICI and the equalization
in an OFDM receiver is implemented as a simple single-
tap per subcarrier filter [3], [4], which makes them highly
suboptimal under high Doppler. Using pilot OFDM symbols
(sometimes also called training sequences or preambles) to
estimate the channel and using this channel estimate until
the next preamble is another popular solution for OFDM
channel estimation [5], however, it assumes the channel to
be slowly-varying. Adaptive-filter based channel estimation
techniques has also been proposed in [6], [7] with expectation-
maximization algorithm.

By performing channel estimation in the time domain for
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the time-invariant case, the number of estimated parameters is
reduced from N, the number of frequency sub-channels, to L,
the number of (time-domain) channel taps which is a drastic
reduction since typically L ¿ N . The reduction in the dimen-
sionality of the parameter estimation space in turn results in
improved estimation accuracy. This gain, however, does not
come for free. Since OFDM data detection is performed in
the frequency domain, even in the time-invariant channel case,
estimating the channel in the time-domain makes it necessary
to perform an extra FFT operation.

For fast time-varying channels, time-domain channel esti-
mation algorithms typically mark a few rows of the time-
domain channel matrix and estimate them using pilot tones
embedded within each OFDM symbol [1], [8]. Since the
multi-path delay spread can be very large in highly-frequency-
selective channels, the number of unknown channel taps for
each marker row can be too high to estimate with the limited
available pilot tones. Moreover, more marker rows are needed
as the Doppler frequency increases which increases complexity
and reduces the throughput.

Apart from the computational complexity issue, performing
channel estimation in the time domain might be over-solving
a problem. For example, in multiple-access OFDM systems
like WiMAX, users are not interested in the whole frequency
spectrum, but only in that part of the spectrum they are using,
something that can be easily achieved by performing channel
estimation in the frequency domain. Moreover, even if some
users were interested in estimating the whole spectrum, many
standards would not be able to support that as there are not
enough pilots to do so.

Considering a fast-varying channel, Mostofi proposed in [9]
a hybrid frequency/time-domain channel estimation algorithm
based on a linear approximation of the time variations of each
channel impulse response (CIR) coefficient within one OFDM
symbol. However, this algorithm introduces a processing delay
of at least one OFDM symbol and its performance degrades
for long OFDM symbols (necessary to combat severe channel
frequency selectivity) at very high Doppler, as we show in
Section VI.

The above-mentioned considerations motivate us in this
paper to design a high-performance computationally-efficient
OFDM channel estimation algorithm in the presence of ICI
while reducing the training overhead. The main contributions
of this paper are

1) Exploiting the channel correlations in the time and
frequency domains to enhance the channel estimation
accuracy and reduce its complexity (by performing most
of the computations offline).

2) Performing channel estimation and ICI equalization in
the frequency domain by exploiting the banded structure
[10], [11] of the CFR matrix.

3) Reducing the dimensionality of the parameter estimation
space at negligible performance loss.

4) Optimizing the pilot group size.
5) Performing detailed complexity and performance analy-

sis of our proposed algorithm and comparing it with the
widely-cited algorithm of [9].

Notation We denote scalars by lower-case letters (e.g., x),

vectors by lower-case boldface letters (e.g., x), and matrices
by upper-case boldface letters (e.g., X). Calligraphic notation
(e.g. X ) is reserved for vectors in the frequency domain. A hat
over a variable indicates an estimate of the variable (e.g., ĥ is
an estimate of h). We use (·)∗ to denote complex conjugate,
(·)T transpose, and (·)H complex conjugate transpose (Hermi-
tian) operation. We use IN to denote the N×N identity matrix
and 0m,n to denote an m × n all-zero matrix. In addition,
Diag(v) denotes the diagonal matrix with diagonal elements
given by the vector v, while vec(R) denotes the operation of
vectorizing an m× n matrix into a mn× 1 vector [12]. The
Kronecker product of R (m × n) and S (p × q), denoted by
R⊗ S, is a mp× nq matrix which is defined as follows

R⊗ S =




r11S · · · r1nS
...

. . .
...

rm1S · · · rmnS




=




r11s11 · · · r11s1q · · · r1ns11 · · · r1ns1q

...
. . .

...
. . .

...
. . .

...
r11sp1 · · · r11spq · · · r1nsp1 · · · r1nspq

...
. . .

...
. . .

...
. . .

...
rm1s11 · · · rm1s1q · · · rmns11 · · · rmns1q

...
. . .

...
. . .

...
. . .

...
rm1sp1 · · · rm1spq · · · rmnsp1 · · · rmnspq




Throughout the paper, we use the terms sub-carrier and sub-
channel interchangeably. For the convenience of the reader,
we have summarized the key system parameters and variables
used in the paper in Table I.

TABLE I
LIST OF KEY PARAMETERS AND VARIABLES

Parameters Description
/ Variables

N FFT size
fd Doppler frequency
L Number of channel impulse response taps
T Number of training pilot tones in each OFDM symbol
H Time-domain channel matrix
G Frequency-domain channel matrix

RH Covariance matrix of vec(H)

RH , E[vec(H)vec(H)H ]
RG Covariance matrix of vec(G)

RG , E[vec(G)vec(G)H ]
Nd Number of dominant eigenvalues of RH for each channel tap
M Number of diagonals in approximated banded G
X Frequency-domain comb-type input vector

II. MODEL AND ASSUMPTIONS

We consider an OFDM system with N subcarriers where
each OFDM symbol, denoted by X = [X0 . . . XN−1]T , is
converted into time-domain samples x = [x0 . . . xN−1]T using
the N -point Inverse Fast Fourier Transform (IFFT) operation
x = QHX where QH is the N -point IFFT matrix. The (m,n)
element of the matrix Q is defined as

Qm,n =
1√
N

e−
j2πmn

N for m,n = 0, 1, · · ·N − 1

We assume that the cyclic prefix (CP) length is equal to or
larger than the CIR memory denoted by L. Then, the received
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OFDM symbol y = [y0 . . . yN−1]T after CP removal is given
by

y = Hx + z (1)

where H is an N ×N time-domain channel matrix given by

H =




h0(0) 0 · · · h0(2) h0(1)
h1(1) h1(0) · · · h1(3) h1(2)

...
. . .

. . .
...

...
hL−1(L− 1) hL−1(L− 2) · · · 0 0

0 hL(L− 1) · · · 0 0
...

. . .
. . .

...
...

0 0 · · · hN−2(0) 0
0 0 · · · hN−1(1) hN−1(0)




(2)
where hn(l) is the complex zero-mean unit-variance CIR tap
at lag l (for 0 ≤ l ≤ L − 1) and time instant n and z is the
time-domain noise vector. Taking the FFT of (1) yields

Y = Qy = QHQHX + Qz = GX + Z (3)

where G , QHQH is the CFR matrix and Z is the
frequency-domain noise vector. The vectors X and Y are
the transmit and receive OFDM symbols, respectively, in the
frequency domain. The signal-to-noise ratio (SNR) of the
system is defined as

SNR =
Trace

[
E

(
XX H

)]

Trace
[
E

(
ZZH

)]

where E(.) denotes the expectation operator. For a time-
invariant or a quasi-static fading channel, the CIR remains
fixed over the OFDM symbol duration, making H a circulant
matrix and, hence, G in (3) a diagonal matrix. In this case, the
OFDM sub-carriers are decoupled, and a one-tap frequency-
domain equalizer (FEQ) is optimal.

However, for a time-variant channel, H is not circulant, and
G can no longer be assumed diagonal [13]. Some of the signal
energy will be dispersed to the off-diagonal elements of G. In
this case, the input-output relation for the k-th subcarrier is

Yk = Gk,kXk︸ ︷︷ ︸
desired

+
N−1∑

n=0,n 6=k

Gk,nXn

︸ ︷︷ ︸
ICI term

+Zk (4)

The first term on the right hand side of (4) is the desired
signal term while the second one is the ICI term. When the
channel is fast-varying, ICI becomes significant and produces
an irreducible error floor.

III. PROPOSED CHANNEL ESTIMATION ALGORITHM

A. Statistics of the Frequency-Domain Channel Coefficients
In this section, we determine the covariance matrix of the

CFR matrix coefficients. We start from the following relation
between the time-domain and frequency-domain channel ma-
trices

G = QHQH (5)

Vectorizing both sides of (5) and using the Kronecker product
property in Theorem T2.13 in [12] yields

vec(G) = ((QH)T ⊗Q)vec(H) = (Q∗ ⊗Q)vec(H) (6)

We can now use (6) to calculate the covariance matrix of
vec(G) in terms of that of vec(H)

RG , E[vec(G)vec(G)H ]

= (Q∗ ⊗Q)E[vec(H)vec(H)H ](Q∗ ⊗Q)H

, (Q∗ ⊗Q)RH(Q∗ ⊗Q)H

(7)

Now, we turn our attention to calculating the covariance
matrix RH , E[vec(H)vec(H)H ]. By inspecting (2), we note
that we can decompose H as the sum of L matrices, each of
which corresponds to a CIR tap (and its time evolution), i.e.

H =
L−1∑

l=0

Al (8)

where A0 = Diag([h0(0), h1(0), . . . , hN−1(0)]) and Al is the
matrix corresponding to the lth CIR tap given by

Al = Diag([h0(l), h1(l), . . . , hN−1(l)])Bl (9)

The N ×N matrix B is a permutation matrix which has the
form

B =




0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0




(10)

Thus, post-multiplication of a matrix by B cyclicly shifts its
columns to the left. Vectorizing both sides of (8) yields

vec(H) =
L−1∑

l=0

vec(Al)

Hence, the covariance matrix of vec(H) is given by

RH , E[vec(H)vec(H)H ] =
L−1∑

i=0

E[vec(Al)vec(Al)H ] ,
L∑

l=1

Cl

(11)
where we assumed that the Ai’s are independent, i.e., we
assumed that the CIR taps at a given time instant are indepen-
dent. Moreover, we defined Cl to be the covariance matrix of
vec(Al), i.e., Cl = E

[
vec(Al)vec(Al)H

]
which we calculate

next. To this end, note that since A0 is a diagonal matrix, we
can write vec(A0) as

vec(A0) = [h0(0), 0, . . . , 0︸ ︷︷ ︸
Nzeros

, h1(0), 0, . . . , 0︸ ︷︷ ︸
Nzeros

, h2(0), . . . , hN−1(0)]T

(12)
Assuming Jakes’s model for channel time variation [14],1

we can show that the covariance matrix of vec(A0) is given
by

C0 , E[vec(A0)vec(A0)H ]

=




J(0) 01,N J(1) . . . 01,N J(N − 1)
0N,1 0N,N 0N,1 . . . 01,N 0N,1

J(1) 01,N J(0) . . . 01,N J(N − 2)
0N,1 0N,N 0N,1 . . . 01,N 0N,1

...
...

...
. . .

...
...

J(N − 1) 01,N J(N − 2) . . . 01,N J(0)




(13)

1Any other CIR time correlation model can be used but we assume Jakes’s
model in this paper due to its popularity.
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which follows from the assumption that

E[hm(l)hn(l)∗] = J0(2πfd(m− n)Ts) , J(m− n) (14)

where fd and Ts are the Doppler frequency and sam-
pling period, respectively, and J0(·) is the zero-order Bessel
function. We can calculate the covariance matrix Cl ,
E[vec(Al)vec(Al)H ] in a similar manner. It is enough though
to observe the following properties about Cl

1) Cl consists of zero entries and non-zero entries all of
which belong to the matrix

J ,




J(0) J(1) . . . J(N − 1)
J(1) J(0) . . . J(N − 2)

...
...

. . .
...

J(N − 1) J(N − 2) . . . J(0)




(15)
In fact, Cl is simply an oversampled version of J.

2) From 1), it follows that the rank of Cl is N.
3) If Cl(m,n) 6= 0, then Cl′(m,n) = 0 for l 6= l′, i.e.

the matrices Cl and Cl′ are never non-zero at the same
entry.

4) From the above properties and (11), it follows that the
rank of RH is NL.

These properties allow us to calculate the eigenvalue de-
composition of RH which we undertake next.

B. Eigenvalue Decomposition of RH

Let λ1, . . . , λN be the eigenvalues of J and let
v1,v2, . . . ,vN be the corresponding eigenvectors. These
quantities can be used to construct the eigenvalues and eigen-
vectors of Cl’s and subsequently those of RH and RG. To
this end, define v̄n as an oversampled version of eigenvector
vn; i.e.

v̄n = [vn(0), 0, . . . , 0︸ ︷︷ ︸
Nzeros

, vn(1), 0, . . . , 0︸ ︷︷ ︸
Nzeros

, vn(2), . . . , vn(N−1)]T

(16)
Starting from the relation Jvi = λivi, we note that this
relationship continues to hold when we replace J by its over-
sampled version C0 and vn by its over-sampled version v̄n,
i.e.

C0v̄n = λnv̄n for n = 1, . . . , N (17)

From the above, and since C0 is of rank N, it follows
that λ1, λ2, . . . , λN are the nonzero eigenvalues of C0 and
v̄1, v̄2, . . . , v̄N are the corresponding eigenvectors. We now
turn our attention to the eigenvalue decomposition (EVD) of
C1,C2, . . . ,CL−1. From (9), we note that Al is a cyclicly-
shifted version of a diagonal matrix, and so we can easily
vectorize Ai as follows using T2.13 from [12]

vec(Al) = (BlT ⊗ IN )vec(Diag([h0(l), h1(l), . . . , hN−1(l)]))

= Dlvec(Diag([h0(l), h1(l), . . . , hN−1(l)]))
(18)

where D is the N2-by-N2 permutation matrix defined by

D , BT ⊗ IN (19)

Now, by definition, we have that

Cl = E[vec(Al)vec(Al)H ]
= DlE[vec(Diag([h0(l), h1(l), . . . , hN−1(l)]))

.vec(Diag([h0(l), h1(l), . . . , hN−1(l)]))H ]DlH

= DlC0DlH (20)

The last line above follows from the fact that the CIR taps
are assumed identically distributed 2 and so the expectation in
the second equality remains the same if we replace the lth tap
with the zero-th tap. From this relation, it is easy to see that
Dlv̄n, n = 1, 2, . . . , N are the eigenvectors of Cl as follows

ClDlv̄n = DlC0DlHDlv̄n = DlC0v̄n = λnDlv̄n (21)

where the second equality above follows from the fact that D
is a permutation matrix and, hence, DDH = IN2 .

Now, we construct the eigenvectors of RH =
E[vec(H)vec(H)H ]. As shown in (21), the Cl’s are modified
versions of C0 where the first Nl rows are cyclically shifted
downwards and the first Nl columns are cyclically shifted
to the left. On the other hand, the v̄n’s are over-sampled
versions of eigenvectors vn, where N consecutive zeros
are inserted between adjacent elements of vn. Therefore, as
long as l 6= 0, the j-th element of each row of Cl satisfies
Cl(i, j) = 0 where v̄n(j) 6= 0 and i, j = 0, 1, · · · , N2 − 1.
Hence, Clv̄n = 0 for l 6= 0. Following the above argument
and using (11) we can write

RH v̄n =

(
L−1∑

i=0

Ci

)
v̄n = C0v̄n +

L−1∑

i=1

Civ̄n = λnv̄n (22)

Hence, the eigenvectors of C0 are also eigenvectors of RH .
In a similar manner, for every eigenvector of Cl we can show
that

RHDlv̄n =

(
L−1∑

i=0

Ci

)
Dlv̄n

= ClDlv̄n +
N−1∑

i=0
i 6=l

CiDlv̄n = λnDlv̄n

(23)

Equation (23) follows from the observation that the permu-
tation matrix Dl cyclically shifts the first Nl elements of v̄n

downwards. Unless i = l, the q-th element of each row of Ci is
Ci(p, q) = 0 where Dlv̄n(q) 6= 0 and p, q = 0, 1, · · · , N2−1
and, hence, CiDlv̄n = 0 . Thus, every eigenvector of
Cl is also an eigenvector of RH . This produces the NL
eigenvalues and the NL corresponding eigenvectors of RH .
Since rank(RH) = NL, those eigenvalues are all the nonzero
eigenvalues of RH .

Proposition 1
Let λ1 ≥ λ2 ≥ · · · ≥ λN denote the eigenvalues of

the matrix J defined in (15), and let v1, . . . ,vN denote the
corresponding eigenvectors. Then, the covariance matrix RH ,
defined in (11), has the NL eigenvalues

2See Remark 4 below for the generalization to the case of an arbitrary
power delay profile.
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λ1, . . . , λ1︸ ︷︷ ︸
L times

, . . . , λN , . . . , λN︸ ︷︷ ︸
L times

(24)

with corresponding eigenvectors

v̄1,Dv̄1, . . . ,DL−1v̄1, . . . , v̄N ,Dv̄N , . . . ,DL−1v̄N (25)

where v̄n is the over-sampled version of vn defined in (16)
and D is the permutation matrix defined in (19).

Remarks
1) Proposition 1 shows that the EVD of the N2-by-N2

matrix RH can be obtained from the EVD of the N -by-
N matrix J.

2) The EVD of J can be performed off-line as it is only
a function of the number of sub-carriers N and the
Doppler frequency fd.

3) We can derive an approximate analytical closed form
for the EVD of J by noting that the matrix J is
a Toeplitz Hermitian matrix and, hence, can be ap-
proximated by a circulant matrix for large N [15].
Therefore, we can write J ≈ QΛQH , where Λ is
a diagonal matrix whose (m,m) element is given by
λ(m,m) ,

∑N−1
k=0 J0 (2πkfdTs) e

−j2πkm
N .

4) So far, we have assumed that the CIR power delay
profile (PDP) is uniform, meaning that all CIR taps have
the same unit power, i.e. E[| hn(l) |2] = E[| hn(l′) |2]
for l 6= l′. We can relax this assumption to an arbitrary
PDP as follows. Assuming that the l-th CIR tap
has a variance of γl = E[| hn(l) |2], it is easy to
show that E[hm(l)hn(l)∗] = γlJ(m − n), hence, the
covariance matrix of vec(Al), which we have denoted
by Cl, is scaled by a factor of γl compared to the
uniform PDP case. Therefore, the NL eigenvectors
of the covariance matrix RH remain the same
(v̄1,Dv̄1, . . . ,DL−1v̄1, . . . , v̄N ,Dv̄N , . . . ,DLv̄N )
while the eigenvalues are scaled by
the individual variance of each tap, i.e.
γ0λ1, . . . , γL−1λ1︸ ︷︷ ︸

L times

, . . . , γ0λN , . . . , γL−1λN︸ ︷︷ ︸
L times

.

C. Eigenvalue Decomposition of RG

From (7), we can deduce the EVD of RG from that of RH

since the matrix (Q∗ ⊗Q) is orthonormal. This observation
is the basis for the following proposition.

Proposition 2
Consider the setting of Proposition 1. The covariance matrix

RG of the CFR matrix G has the NL nonzero eigenvalues

λ1, . . . , λ1︸ ︷︷ ︸
L times

, . . . , λN , . . . , λN︸ ︷︷ ︸
L times

(26)

with corresponding eigenvectors Gp (1 ≤ p ≤ NL) given by

(Q∗ ⊗Q)v̄1, . . . , (Q∗ ⊗Q)DL−1v̄1, . . . ,

(Q∗ ⊗Q)v̄N , . . . , (Q∗ ⊗Q)DL−1v̄N (27)

IV. MODEL REDUCTION FOR BAYESIAN MMSE CHANNEL
ESTIMATION

In the previous section, we found the EVD of RG in terms
of that of J. In this section, we show how to estimate G or
equivalently vec(G) efficiently using the EVD of RG.

A. Estimating G

We can write vec(G) in terms of its EVD as follows

vec(G) =
NL∑
p=1

αpGp (28)

where the αp’s are independent random variables each with
zero mean and variance equal to the eigenvalue λp. Equa-
tion (28) can be justified as given in Equation (29), where
λ1, λ2, · · · , λNL are the NL eigenvalues of the covariance
matrix RG and G1, G2, · · · , GNL are the corresponding eigen-
vectors. We can reduce the parameter estimation space for
G by retaining only those αi’s with large variance and
considering the rest as modeling noise. Thus, let Nd denote the
number of dominant eigenvalues of J and let Ns = N −Nd

denote the negligible ones. This results in NdL dominant
parameters αp in (28) while the rest can be considered as
noise. In other words, we can approximate (28) as follows

vec(G) =
NdL∑
p=1

αpGp + Z̃ ≈
NdL∑
p=1

αpGp (30)

where the term Z̃ =
∑NL

p=NdL+1 αpGp is ignored. Figure
1 shows the percentage of energy of the most dominant
eigenvalues of J normalized to the total energy of all the
eigenvalues for N = 256 and 1024. It illustrates that for
practical choices of normalized Doppler, fd, up to 20%, the 3
most dominant eigenvalues capture more than 99.99% of the
total energy of the all the eigenvalues. Hence, we set Nd = 3.
For a given Doppler spread, it is possible to calculate J off-line
and, thus, we can select Nd based on a judiciously-determined
energy threshold for the eigenvalues. Now since D = BT⊗IN

and vn = vec(diag(vn)), using Proposition 2 and Theorem
T2.4 from [12] we can rewrite Gp as

Gp = (Q∗ ⊗Q)(BlT ⊗ I)vec(Diag(vn))

= (Q∗BlT ⊗Q)vec(Diag(vn)) (31)

By un-vectorizing both sides of (31) and using Theorem
T2.13 from [12] we get

Gp = Qdiag(vn)BlQH

= Qdiag(vn)QH

︸ ︷︷ ︸
Cvn

.QBlQH

︸ ︷︷ ︸
Dl

w

= Cvn .Dl
w

(32)

where Cvn is a circulant matrix and Gp is such that Gp =
vec(Gp) and n and l are chosen such that p = Ndl+n. More
specifically, we have

l =
⌊

p− 1
Nd

⌋
and n = (p− 1)Nd

+ 1 (33)
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RG , E
[
(vec(G)vec(G)H

]
= E

(
NL∑
p=1

αpα
H
p GpGH

p

)

= [G1 G2 · · · GNL]E
(
Diag

(| α1 |2, | α2 |2, · · · , | αNL |2
))

[G1 G2 · · · GNL]H (29)

= [G1 G2 · · · GNL] Diag (λ1, λ2, · · · , λNL) [G1 G2 · · · GNL]H
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Fig. 1. Variation of percentage energy of the dominant eigenvalues of J
with normalized Doppler.

where (.)N is the modulo-N operation and b.c denotes the
floor function which maps a real number to the integer less
than or equal to it. Now, from (30) and (32), we have

G ≈
NdL∑
p=1

αpGp ≈
NdL∑
p=1

αpQdiag(vn)BlQH (34)

where l and n are related to p through (33). Alternatively, we
can write (34) as

G ≈
L−1∑

l=0

Nd∑
n=1

αNdl+nQdiag(vn)BlQH (35)

B. Bandedness Constraint

Now, we invoke another constraint on the Gp’s in (34), and
hence on G, namely, the constraint that they are approximately
banded matrices with, say, M main diagonals (where M is an
odd integer). To impose this constraint, we set all elements
of Gp outside these M diagonals to zero. Analytically, B,
given in (10), is a shifting matrix which is circulant as well.
Depending on the channel tap index, i.e. l, diag(vn)Bl is
either a diagonal or a shifted diagonal matrix. The matrix
Cvn in (32) is formed by the cyclic shift of a column with
only few leading dominant entries. Hence, we can approximate
Cvn as a banded matrix. Note that multiplying Cvn by Dl

w

only introduces a weighted phase change in the columns of
the Cvn , leaving the absolute value of the columns unchanged.
Hence, multiplying Cvn by Dl

w preserves the banded property
of Cvn and Gp as well. Therefore, we can approximate Gp as
a banded matrix. Under the banded assumption on Gp and the
circulant approximation of J for large N , the (r, c)-th element
of Gp as given by (32) can be expressed as in Equation (36)

where vn(i) is the i-th element of vn. Under the banded
constraint, G in (34) can be further simplified using (36). We
are now ready to formulate the input-output equations that are
used to estimate the dominant parameters αp for 1 ≤ p ≤ NdL
in Equation (35) as follows

Y = GX + Z ≈
NdL∑
p=1

αpGpX + Z (37)

=
NdL∑
p=1

αpEp + Z (38)

where Y = [Y(0), . . . ,Y(N − 1)]T , X = [X (0), . . . ,X (N −
1)]T , and Z = [Z(0), . . . ,Z(N − 1)]T are the frequency-
domain receive, transmit, and noise vectors, respectively, and
Ep , GpX . Now, some entries of X are pilot sub-carriers
while the rest are data sub-carriers. The presence of ICI forces
us to group enough pilot sub-carriers together to create an
output signal at the k-th sub-carrier that is independent of
unknown data sub-carriers. Specifically, since each row of Gp

in (37) has M non-zero elements, we need to group the pilots
in clusters of size greater than or equal to M to generate a
data-independent output vector that can be used to solve for the
αp’s. Since M is odd in general, from (37), the input-output
equation at the k-th sub-carrier is given by

Y(k) =
NdL∑
p=1

αp

M−1
2∑

m=−M−1
2

Gp(k, k + m)X (k + m)

︸ ︷︷ ︸
Ep(k)

+Z(k)

=
NdL∑
p=1

αpEp(k) + Z(k) (39)

where M−1
2 ≤ k ≤ N − M−1

2 . Thus, for Ep(k) to be
known (i.e. independent of the data), the sub-carriers X (k −
M−1

2 ), · · · ,X (k + M−1
2 ) must be pilot sub-carriers resulting

in pilot grouping.
Let {k1, k2, . . . , kT } denote the set of sub-carrier indices

that can be used for training. We can prune (37) of all sub-
carriers that do not belong to the training set, resulting in the
following linear system of T equations in NdL unknowns

Y =
NdL∑
p=1

αpEp + Z
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Gp(r, c) =

{
1
N

∑N−1
m=0 e

j2π
N [mc−r(m+l)N ]vn(m + l)N |r − c| ≤ M−1

2 & |r − c| ≥ N − M−1
2

0 M−1
2 < |r − c| < N − M−1

2

(36)

where

Y =




Y(k1)
Y(k2)

...
Y(kT )


 Ep =




Ep(k1)
Ep(k2)

...
Ep(kT )


 (40)

In matrix form, we can write

Y = Epα + Z (41)

where

Ep =
[ E1 · · ·ENdL

]
and α =

[
α1 · · ·αNdL

]T

This is a Bayesian estimation model since the unknown
random vector α is assumed zero mean with covariance matrix
Rα = diag([λ1, . . . , λNdL]). Hence, we can compute α for a
generalized noise covariance matrix Rz using the following
linear minimum mean square error (LMMSE) estimator [16]

α̂ = RαEH
p

[
EpRαEH

p + Rz

]−1

Y

=
[
R−1

α + EH
p R−1

z Ep

]−1

EH
p R−1

z Y , WY (42)

For white noise, the second form in (42) is preferred since it
reduces the size of the inverted matrix from T to NdL where
T ≥ NdL. The performance of this estimator is measured by
the error vector ε = α − α̂ whose mean is zero and whose
covariance matrix is [16]

Cε =
[
R−1

α + EH
p R−1

z Ep

]−1

(43)

Hence, the MSE in estimating αi is MSE(α̂i) = Cε(i, i). In
Appendix A, we show how to select the pilot group size to
minimize the MSE of the α̂i’s .

Algorithm Summary:
Input : N , Nd, fd, power delay profile (otherwise assumed

uniform) and noise covariance matrix (otherwise assumed
white).

1) Determine the Nd dominant eigenvectors and eigenval-
ues of J exactly off-line (e.g. using a look-up table)
or approximately using the circulant approximation (for
large N ).

2) Determine the NdL dominant eigenvalues and eigenvec-
tors of RH off-line using (24) and (25) in Proposition
1.

3) Determine the NdL dominant eigenvalues and eigen-
vectors of RG off-line using Equations (26) and (27) in
Proposition 2.

4) Compute α̂ using (42). Note that the NdL × T matrix
W can be computed off-line. Hence, the on-line com-
putation consists of multiplying W by the received data
vector Y only !

5) Approximate G as in (34) under the banded constraint
and the circulant approximation (for large N ).

C. Complexity Comparison

In this section, we compare the complexity of our proposed
algorithm with the widely-cited algorithm proposed by Mostofi
and Cox in [9] (referred to henceforth as the MC algorithm).
Both algorithms estimate the CFR matrix G and then detect
information symbols using the estimate of G. In this section,
we will compare the complexity of both algorithms in esti-
mating G. Their performance will be compared in Section
VI.

1) Complexity of Our Proposed Algorithm: For given N
and fd, Steps 1-3 of the algorithm summary need to be cal-
culated only once offline. Hence, we consider the complexity
of Steps 4 and 5 only as described in Table II. For given N ,
fd and SNR, Step 4 except S6 can be computed offline to
reduce processing complexity and delay. In our analysis, we
assumed Z to be white Gaussian noise and, therefore, used
the second form of (42) to estimate α.

2) Complexity of MC Algorithm: Next, in Table III, we
evaluate the complexity of estimating G as proposed in [9].
For concreteness, we have quantified the complexity of both
algorithms in terms of floating point operations (FLOP) where
each FLOP represents a real-valued addition or multiplication
operation. Conventional processors require more than four
clock cycles for multiplication of real numbers. Pipeline
arrangements speed up the process and make it possible to
perform one FLOP per clock cycle. In Figure 2 we have
compared the number of required FLOPs of the two algorithms
to process each OFDM symbol for different FFT sizes and
CIR lengths L = 3 and 6. For example, to process one
OFDM symbol (real-time complexity only) of size N=1024
assuming a 3-tap channel, a TI TMS320C6455-1000 DSP with
a processing capability of 8000 MIPS, takes around 25.42 µs
and 9.79 µs for the exact and approximate circulant versions
of our proposed algorithm, respectively, compared to 19.42
µs required by the MC algorithm. Although the complex-
ity of our algorithm increases linearly with L, significant
complexity reductions are achieved by performing most of
the computations offline. Hence, the real-time complexity of
our algorithm is comparable to that of the MC algorithm
for small to moderate CIR lengths and is less than the MC
algorithm under the circulant approximation which becomes
more accurate for large N . The MC algorithm suffers from
higher latency and requires larger buffer because it processes
three adjacent OFDM symbols together while our algorithm
processes one OFDM symbol at a time.

V. REDUCED-COMPLEXITY ICI EQUALIZATION

Based on the banded structure of G, a reduced-tap FEQ in
the form of an FIR filter designed using the MMSE criterion,
hence the name FIR-MMSE FEQ, was proposed in [11] and
is based only on the following M × (2M − 1) sub-matrix of
G which is shown in Figure 3.
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TABLE II
COMPLEXITY OF OUR PROPOSED ALGORITHM

Operation Complexity Remarks
S1: Forming Ep TNdLM complex multiplications

TNdL(M − 1) complex additions
S2: Inverse of Rα NdL real divisions
S3: Calculate SH

1 R−1
z S1

1
2
(NdL)2T complex multiplications

1
2
(NdL)2(T − 1) complex additions

(NdL)2 real divisions
S4: Inverse of (S2 + S3) NdL(NdL− 1)(NdL + 1) complex divisions Can be computed

Step 4 NdL(NdL− 1)(NdL + 1) complex multiplications offline for given
NdL(NdL− 1)(NdL + 1) complex subtractions N ,fd and SNR

S5: Calculate S4SH
1 R−1

z T (NdL)2 complex multiplications
T (NdL)(NdL− 1) complex additions
NdL real divisions

S6: Calculate S5Y TNdL complex multiplications Real-time
(T − 1)NdL complex additions

Step 5 Approximate G NMNd(L− 1) + MNd complex multiplications Real-time
using (34) NM(NdL− 1) complex additions

TABLE III
COMPLEXITY OF MC ALGORITHM

Operation Complexity Remarks
Estimate Hli,0 , 0 ≤ i ≤ (T − 1) T (2M − 1) complex divisions
Estimate have

k , 0 ≤ k ≤ (L− 1) 3LT (2M − 1) complex multiplications
3L [(2M − 1)T − 1]complex additions
3L real divisions

Calculating slope 2L complex subtractions Real-time
2L real divisions

FFT 3NM complex multiplications
3N(M − 1) complex additions

Estimate G 2NM complex multiplications
2NM complex additions
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Fig. 2. Real-time complexity comparison of our proposed and MC algo-
rithms, T = b b0.15Nc

2M−1
c(Np −M + 1), Nd = 3 and M = 3.

The M -tap FIR-MMSE FEQ is given by

Wm = CH
m(GmGH

m + σ2IM )−1 (44)

where Cm = Gm(:,M) is the middle column of Gm shown
in Equation (45). Hence, the M -tap FEQ output for the m-th
subcarrier is

X̂ m = WmYm (46)

where Ym = [Y(m−M−1
2 )

N

. . .Y(m+ M−1
2 )

N

]T . Instead of
detecting all sub-carriers of an OFDM symbol simultaneously
using an N × N matrix inversion, our proposed FIR-MMSE

Fig. 3. Banded Structure of the G matrix.

FEQ detects each subcarrier individually, but taking ICI from
neighboring sub-carriers into account, requiring N matrix
inversions each of size M × M (where M ¿ N ), which
significantly reduces the detection complexity.

VI. SIMULATION RESULTS

In this section, we compare the performance of our proposed
algorithm with the MC algorithm for a mobile coded OFDM
system for large (N=1024) and small (N = 256) FFT sizes. A
rate- 1

2 convolutional code with bit interleaving is implemented.
Unless otherwise stated, we assume a high Doppler frequency
of 10% (normalized to the subcarrier spacing). Furthermore,
we have assumed the 3-tap SUI-3 channel model with L = 3
and having path delays of 0, 0.5 and 1 µs with powers of 0,-5



9

Gm =




G(
m−M−1

2

)
N

,(m−M+1)N
. . . G(

m−M−1
2

)
N

,(m+M−1)N

...
. . .

...
Gm,(m−M+1)N

. . . Gm,(m+M−1)N

...
. . .

...
G(

m+ M−1
2

)
N

,(m−M+1)N
. . . G(

m+ M−1
2

)
N

,(m+M−1)N




(45)

and -10 dB, respectively. For a fair comparison with the MC
algorithm, we estimated the channel assuming the variances of
its CIR taps to be equal to 1 (i.e. uniform PDP) by ignoring
any knowledge of the PDP at the receiver.

We found that for a normalized Doppler of 10% with the
afore-mentioned FFT sizes, G can be well approximated by
a banded matrix with M = 3 diagonals and the first 3
eigenvalues of J in (15) are dominant, i.e. Nd = 3. Hence, we
retained only NdL = 9 eigenvalues of RH and RG (see (30))
and computed the eigenvalues and eigenvectors off-line. For
data detection, we implemented a 3-tap FEQ computed using
(44). We assumed a 15% pilot training overhead with equally-
spaced pilot clusters. In each cluster, we have Np pilots gen-
erated as random BPSK (±1) symbols. Using Equations (41)
and (42), we estimate α where T = b b0.15Nc

2M−1 c(Np−M + 1).
Figures 4 and 5 show the BER achieved by our proposed
algorithm for N = 256 and 1024, respectively, with Np =
3 and 5 pilots per cluster. As performance benchmarks, we
also show the achievable BER with perfect CSI when G is
constrained to be a banded matrix (with M = 3 diagonals)
and when it is not. It can be seen from both figures that the
performance loss of our channel estimation algorithm with 5
pilots per cluster from the case of perfect CSI with banded G
is negligible. Figure 6 depicts the BER results for a very high
Doppler of 20%. In this case, we set M = 5 to account for the
resulting severe ICI. Again, this figure demonstrates that the
best estimated CSI performance is achieved with (2M−1) = 9
pilots per cluster. This corroborates our conjecture in Appendix
A that the optimum number of pilot sub-carriers per cluster
is (2M − 1). Figures 4 and 5 also show that the banded
constraint which is imposed to reduce channel estimation and
ICI equalization complexity results in only 1 dB perform loss
at BER = 10−4 which is a modest penalty. Figures 7 and 8
demonstrate the significant performance gains achieved by our
algorithm (both exact and approximate circulant versions) over
the MC algorithm for N = 256 and 1024, respectively, where
the later has an error floor at BER = 10−3. Finally Figure 8
shows that the BER performance gain of our algorithm with
perfect PDP knowledge at the receiver is negligible compared
to the case of no PDP knowledge. This illustrates that our
algorithm is not sensitive to PDP knowledge.

VII. CONCLUSIONS

In this paper, we proposed a novel algorithm for the
estimation of the channel and ICI coefficients in OFDM
systems under high-mobility conditions. The key ideas in
developing this algorithm are exploiting the time and fre-
quency correlations of the channel taps, the (approximately)
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Fig. 4. BER comparison between perfect CSI and estimated CSI using our
proposed algorithm for N=256, fd=10% and M = 3.

5 10 15 20 25
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 
Perfect CSI, full G
Perfect CSI, banded G (M=3)
Estimated CSI, 5 pilots  per cluster
Estimated CSI, 3 pilots  per cluster

Fig. 5. BER comparison between perfect CSI and estimated CSI using our
proposed algorithm for N=1024, fd=10% and M = 3.
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Fig. 7. BER comparison between our proposed algorithm (both exact and
approximate versions) and MC algorithm for N=256.
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Fig. 8. BER comparison between our proposed algorithm (both exact and
approximate versions) and MC algorithm for N=1024.

banded structure of the frequency-domain channel matrix, the
asymptotic equivalence of Toeplitz and circulant matrices, and
reducing the dimensionality of the parameter estimation space
by retaining only the dominant terms in an off-line eigen-
decomposition. Additional performance gains are achieved
by optimizing the pilot subcarrier group size bringing the
performance very close to the case of perfect CSI at practical
training overhead ratios. Detailed performance and complexity
comparisons of our proposed algorithm with a widely-cited
recent algorithm demonstrate a significant performance advan-
tage at comparable real-time complexity levels.

APPENDIX A
OPTIMIZING THE PILOT GROUP SIZE

Assuming that the Z(k)’s are i.i.d samples with zeros mean
and variance of σ2

z , (43) can be written as

Cε = (R−1
α +

1
σ2

z

EH
p Ep)

−1 (47)

Now, C−1
ε , R−1

α + 1
σ2

z
EH

p Ep is a positive-definite Her-
mitian matrix of size NdL × NdL for any X ∈ CN . Hence,
all the eigenvalues of C−1

ε , and in turn of Cε, will be real
and positive. Let λC(i), i = 1, 2, · · · , NdL be the NdL

eigenvalues of C−1
ε . For positive real numbers, using Jensen’s

inequality [17], it can be shown that the arithmetic mean
is greater than the harmonic mean. Therefore, we have the
following inequality

∑NdL
i=1 λC(i)
NdL

≥ NdL∑NdL
i=1

1
λC(i)

(48)

⇒ Trace(C−1
ε )

NdL
≥ NdL

Trace(Cε)
⇒ Trace(Cε)Trace(C−1

ε ) ≥ (NdL)2

⇒ Trace(Cε) ≥ (NdL)2

Trace
(
R−1

α

)
+ Trace

(
1

σ2
z
EH

p Ep

)

with equality if and only if C−1
ε = kINdL where k is

a real positive constant. From (47) and using the fact that
Rα is a diagonal matrix, we conclude that Trace(Cε) in
minimized by making RE , EH

p Ep a diagonal matrix. In this
paper, we assume equally-spaced 3 pilot clusters where each
cluster consists of Np randomly chosen (±1) BPSK symbols.
Under this pilot structure, RE can not be made diagonal in
general and hence Cε will also be non-diagonal. The cost
function Trace(Cε) measures only the self-variances of the
α̂i’s ignoring the co-variances between the α̂i’s which can
have significant effect on the BER performance.

When Cε is diagonal, C−1
ε will also be diagonal and the

eigenvalues of C−1
ε are equal to its diagonal elements, i.e.

λC−1
ε

(i) = Cε(i, i) where i = 1, 2, · · · , NdL. Therefore,
in general, we want to minimize the difference between the
eigenvalues and diagonal elements of C−1

ε , i.e. |λC−1
ε

(i) −
C−1

ε (i, i)|. By using the Gershgorin circle theorem 4 [18], an
upper bound on this difference is given by

|λC−1
ε

(i)−C−1
ε (i, i)| ≤

∑

i 6=j

|C−1
ε (i, j)| (49)

Hence, by minimizing the sum of the magnitudes of the
off-diagonal elements of C−1

ε we can achieve our objective.
But R−1

α is diagonal, hence, the off-diagonal elements of C−1
ε

are the off-diagonal elements of RE . Therefore, our objective
is to choose Np to minimize the sum of the magnitudes of
the off-diagonal elements of RE subject to the pilot power
constraint. The structure of RE is given by Equation (50).

To design the optimum pilot symbols for channel estimation,
our objective is to make RE diagonal or as close to diagonal
as possible, i.e. to minimize the sum of the absolute values
of the off-diagonal elements of C−1

ε . We have investigated
the minimization of this sum as a function of the clustered
pilot symbols in the frequency domain with an average pilot
power constraint. This turns out to be a non-linear non-convex
optimization problem and is outside the scope of this paper
which will be investigated in future work [19]. Hence, we
determine the optimum pilot group size only and then use

3For further motivation and more details on equally-spaced pilot groups,
see [2].

4This theorem assumes a diagonally-dominant matrix which is the case for
C−1

ε .
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RE = EH
p Ep

=




X HGH
1 G1X X HGH

1 G2X · · · X HGH
1 GNdLX

X HGH
2 G1X X HGH

2 G2X · · · X HGH
2 GNdLX

...
...

. . .
...

X HGH
NdLG1X X HGH

NdLG2X · · · X HGH
NdLGNdLX




(50)
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Fig. 10. Comparison of the trace of Cε to its lower bound for pilot cluster
size of 2M − 1 (N = 1024).
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random BPSK symbols as pilot tones which are easy to
generate and commonly used in industrial standards.

Since the Gi’s are constrained to be banded matrices with
M main diagonals, GH

i Gj’s will also be banded but with
(2M − 1) diagonals. To eliminate ICI effects from adjacent
data sub-carriers into pilot sub-carriers we must have at least
M pilot sub-carriers in each pilot cluster. An upper-limit on
the number of pilot sub-carriers in each cluster, Np, is derived
by observing that if we choose Np greater than (2M−1) sub-
carriers, we will be only adding zeros to the cost function in
(49) since the GH

i Gj’s are banded with (2M − 1) diagonals.
On the other hand, for a given pilot overhead ratio, increasing
Np beyond (2M−1) will decrease the number of pilot clusters.
Hence, we must have

M ≤ Np ≤ 2M −1 : M = 3, 5, · · · and Np odd (51)

Figure 9 shows the variation of the sum of the magnitudes
of the off-diagonal elements of RE versus Np as it varies
within its range given by (51). It is evident from Figure 9
that the optimum pilot cluster size is (2M − 1) pilot sub-
carriers for normalized Doppler up to 20%. Figure 10 shows
that the difference between the achievable Trace(Cε) with our
pilot design and its theoretical lower bound given in (48) is
negligible for a pilot cluster size of (2M − 1) pilots.
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